Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Identification of Pim-1 Kinase Inhibitors by Pharmacophore Model, Molecular Docking-based Virtual Screening, and Biological Evaluation

Author(s): Jing Huang, Ye Yuan, Xiaoxiao Zhu, Guodong Li, Ya Xu, Wenlin Chen and Ying Zhu*

Volume 18, Issue 3, 2022

Published on: 09 June, 2022

Page: [240 - 246] Pages: 7

DOI: 10.2174/1573409918666220427120524

Price: $65

Abstract

Aim: This study aimed at screening and development of Pim-1 inhibitors as anticancer agent.

Background: Pim-1, a member of the Ser/Thr kinase family, plays a crucial role in cell proliferation and is being regarded as a promising target for cancer therapeutics.

Objective: The present work focused on screening more potent Pim-1 inhibitors by in-silico method and biological evaluation.

Materials and Methods: To identify more potent Pim-1 inhibitors, a GALAHAD pharmacophore model was constructed based on nine known Pim-1 inhibitors and followed by in silico screening including pharmacophore and molecular docking-based virtual screening. The hit compounds were further assessed the Pim-1, 2, and 3 kinase activities and the anticancer inhibition property against human myeloma RPMI-8226 and U266 cells using cytotoxicity studies.

Results: Based on Qfit value (from pharmacophore), docking score and clustering analysis, six compounds including C445_0268, C470_0769, 4456_0744, 0806_0325, G395_1510 and V023_3227 were hit. Binding mode analysis showed that hydrogen bond, hydrophobic and π-π stacking interactions dominated the bindings of these compounds to Pim-1. The further biological evaluation indicated that compounds C445_0268 and C470_0769 possessed excellent pan-Pim kinase activities and inhibited the growths of RPMI-8226 and U266 cell lines with IC50 values lower than 3.75 μM.

Conclusion: We reported a series of Pim-1 small molecule inhibitors that could serve as the lead compounds to develop new targeted anticancer therapeutics.

Keywords: Pim-1, pharmacophore, virtual screening, inhibitor, GALAHAD, molecular docking.

« Previous
Graphical Abstract
[1]
Brault, L.; Gasser, C.; Bracher, F.; Huber, K.; Knapp, S.; Schwaller, J. PIM serine/threonine kinases in the pathogenesis and therapy of he-matologic malignancies and solid cancers. Haematologica, 2010, 95(6), 1004-1015.
[http://dx.doi.org/10.3324/haematol.2009.017079] [PMID: 20145274]
[2]
Wang, Y.; Xiu, J.; Ren, C.; Yu, Z. Protein kinase PIM2: A simple PIM family kinase with complex functions in cancer metabolism and ther-apeutics. J. Cancer, 2021, 12(9), 2570-2581.
[http://dx.doi.org/10.7150/jca.53134] [PMID: 33854618]
[3]
Zhang, X.; Song, M.; Kundu, J.K.; Lee, M.H.; Liu, Z.Z. PIM kinase as an executional target in cancer. J. Cancer Prev., 2018, 23(3), 109-116.
[http://dx.doi.org/10.15430/JCP.2018.23.3.109] [PMID: 30370255]
[4]
Panchal, N.K.; Sabina, E.P. A serine/threonine protein PIM kinase as a biomarker of cancer and a target for anti-tumor therapy. Life Sci., 2020, 255, 117866.
[http://dx.doi.org/10.1016/j.lfs.2020.117866] [PMID: 32479955]
[5]
Chen, Q.; Wang, Y.; Shi, S.; Li, K.; Zhang, L.; Gao, J. Insights into the interaction mechanisms of the proviral integration site of moloney murine leukemia virus (Pim) kinases with pan-pim inhibitors PIM447 and AZD1208: A molecular dynamics simulation and MM/GBSA calculation study. Int. J. Mol. Sci., 2019, 20(21), 5410.
[http://dx.doi.org/10.3390/ijms20215410] [PMID: 31671637]
[6]
Magnuson, N.S.; Wang, Z.; Ding, G.; Reeves, R. Why target PIM1 for cancer diagnosis and treatment? Future Oncol., 2010, 6(9), 1461-1478.
[http://dx.doi.org/10.2217/fon.10.106] [PMID: 20919829]
[7]
Merkel, A.L.; Meggers, E.; Ocker, M. PIM1 kinase as a target for cancer therapy. Expert Opin. Investig. Drugs, 2012, 21(4), 425-436.
[http://dx.doi.org/10.1517/13543784.2012.668527] [PMID: 22385334]
[8]
Ogawa, N.; Yuki, H.; Tanaka, A. Insights from Pim1 structure for anti-cancer drug design. Expert Opin. Drug Discov., 2012, 7(12), 1177-1192.
[http://dx.doi.org/10.1517/17460441.2012.727394] [PMID: 23004574]
[9]
Pierce, A.C.; Jacobs, M.; Stuver-Moody, C. Docking study yields four novel inhibitors of the protooncogene Pim-1 kinase. J. Med. Chem., 2008, 51(6), 1972-1975.
[http://dx.doi.org/10.1021/jm701248t] [PMID: 18290603]
[10]
Pogacic, V.; Bullock, A.N.; Fedorov, O.; Filippakopoulos, P.; Gasser, C.; Biondi, A.; Meyer-Monard, S.; Knapp, S.; Schwaller, J. Structural analysis identifies imidazo[1,2-b]pyridazines as PIM kinase inhibitors with in vitro antileukemic activity. Cancer Res., 2007, 67(14), 6916-6924.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0320] [PMID: 17638903]
[11]
Pastor, J.; Oyarzabal, J.; Saluste, G.; Alvarez, R.M.; Rivero, V.; Ramos, F.; Cendón, E.; Blanco-Aparicio, C.; Ajenjo, N.; Cebriá, A.; Al-barrán, M.I.; Cebrián, D.; Corrionero, A.; Fominaya, J.; Montoya, G.; Mazzorana, M. Hit to lead evaluation of 1,2,3-triazolo[4,5-b]pyridines as PIM kinase inhibitors. Bioorg. Med. Chem. Lett., 2012, 22(4), 1591-1597.
[http://dx.doi.org/10.1016/j.bmcl.2011.12.130] [PMID: 22266039]
[12]
Wang, X.; Magnuson, S.; Pastor, R.; Fan, E.; Hu, H.; Tsui, V.; Deng, W.; Murray, J.; Steffek, M.; Wallweber, H.; Moffat, J.; Drummond, J.; Chan, G.; Harstad, E.; Ebens, A.J. Discovery of novel pyrazolo[1,5-a]pyrimidines as potent pan-Pim inhibitors by structure- and property-based drug design. Bioorg. Med. Chem. Lett., 2013, 23(11), 3149-3153.
[http://dx.doi.org/10.1016/j.bmcl.2013.04.020] [PMID: 23623490]
[13]
Dwyer, M.P.; Keertikar, K.; Paruch, K.; Alvarez, C.; Labroli, M.; Poker, C.; Fischmann, T.O.; Mayer-Ezell, R.; Bond, R.; Wang, Y.; Azeve-do, R.; Guzi, T.J. Discovery of pyrazolo[1,5-a]pyrimidine-based Pim inhibitors: a template-based approach. Bioorg. Med. Chem. Lett., 2013, 23(22), 6178-6182.
[http://dx.doi.org/10.1016/j.bmcl.2013.08.110] [PMID: 24091081]
[14]
Watanabe, C.; Watanabe, H.; Fukuzawa, K.; Parker, L.J.; Okiyama, Y.; Yuki, H.; Yokoyama, S.; Nakano, H.; Tanaka, S.; Honma, T. Theo-retical analysis of activity Cliffs among benzofuranone-class pim1 inhibitors using the fragment molecular orbital method with molecular mechanics poisson-boltzmann surface area (FMO+MM-PBSA) approach. J. Chem. Inf. Model., 2017, 57(12), 2996-3010.
[http://dx.doi.org/10.1021/acs.jcim.7b00110] [PMID: 29111719]
[15]
Nakano, H.; Saito, N.; Parker, L.; Tada, Y.; Abe, M.; Tsuganezawa, K.; Yokoyama, S.; Tanaka, A.; Kojima, H.; Okabe, T.; Nagano, T. Ra-tional evolution of a novel type of potent and selective proviral integration site in Moloney murine leukemia virus kinase 1 (PIM1) inhibitor from a screening-hit compound. J. Med. Chem., 2012, 55(11), 5151-5164.
[http://dx.doi.org/10.1021/jm3001289] [PMID: 22540945]
[16]
Parker, L.J.; Watanabe, H.; Tsuganezawa, K.; Tomabechi, Y.; Handa, N.; Shirouzu, M.; Yuki, H.; Honma, T.; Ogawa, N.; Nagano, T.; Yoko-yama, S.; Tanaka, A. Flexibility of the P-loop of Pim-1 kinase: observation of a novel conformation induced by interaction with an inhibi-tor. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 2012, 68(Pt 8), 860-866.
[http://dx.doi.org/10.1107/S1744309112027108] [PMID: 22869110]
[17]
Richmond, N.J.; Abrams, C.A.; Wolohan, P.R.; Abrahamian, E.; Willett, P.; Clark, R.D. GALAHAD: 1. pharmacophore identification by hypermolecular alignment of ligands in 3D. J. Comput. Aided Mol. Des., 2006, 20(9), 567-587.
[http://dx.doi.org/10.1007/s10822-006-9082-y] [PMID: 17051338]
[18]
Balakin, K.V.; Ivanenkov, Y.A.; Savchuk, N.P. Compound library design for target families. Methods Mol. Biol., 2009, 575, 21-46.
[http://dx.doi.org/10.1007/978-1-60761-274-2_2] [PMID: 19727610]
[19]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[20]
Gao, J.; Liang, L.; Zhu, Y.; Qiu, S.; Wang, T.; Zhang, L. Ligand and structure-based approaches for the identification of peptide deformyl-ase inhibitors as antibacterial drugs. Int. J. Mol. Sci., 2016, 17(7), 1141.
[http://dx.doi.org/10.3390/ijms17071141] [PMID: 27428963]
[21]
Gao, J.; Chen, Q-Q.; Huang, Y.; Li, K-H.; Geng, X-J.; Wang, T.; Lin, Q-S.; Yao, R-S. Design, synthesis and pharmacological evaluation of naphthofuran derivatives as potent SIRT1 activators. Front. Pharmacol., 2021, 12(917), 653233.
[http://dx.doi.org/10.3389/fphar.2021.653233] [PMID: 33995069]
[22]
Liang, L.; Zhou, Q.; Hao, Z.; Wang, F.; Zhu, Y.; Lin, Q.; Gao, J. The discovery of antibacterial natural compound based on peptide deform-ylase. Comb. Chem. High T. Scr., 2018, 21(4), 292-297.
[http://dx.doi.org/10.2174/1386207321666180220124259] [PMID: 29468960]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy