Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Mini-Review Article

The Important Nutritional and Wonderful Health Benefits of Cashew (Anacardium occidentale L.)

Author(s): Mohamad Hesam Shahrajabian and Wenli Sun*

Volume 13, Issue 4, 2023

Published on: 25 October, 2022

Article ID: e270422204127 Pages: 9

DOI: 10.2174/2210315512666220427113702

Price: $65

Abstract

Traditional medicines are considered as both food items and medicine, which have been used for thousands of years. They contain aerial and underground parts of plants as active ingredients, and they also contain a variety of pharmacologically active plant constituents. The aim of this study was to summarize and highlight the most important traditional and modern health benefits of cashew nuts. The literature search was conducted in PubMed, Science Direct, Scopus, Medline and Google Scholar databases. The main compounds of cashew nuts are β-phellandrene + limonene, methyl chavicol, germacrene D, germacrene B, trans-α-bergamotene, β-copaene, linalool, α-cadinol, β-phellandrene, β-caryophyllene, β-bisabolene, 9-epi-(E)-caryophyllene, α-phellandrene, epi-α- cadinol, hexadecanoic acid, and epi-α-muurolol. The most important pharmacological benefits of Anacardium occidentale are anti-bacterial activities, anti-diabetic activities, anti-diarrheal activities, anti-fungal activities, anti-hyperglycemic activities, anti-inflammatory activities, anti-microbial activities, anti-oxidant activities, anti-tumor activities, insecticidal activities, and wound healing. Cashew nut is a high potential natural functional food because of its high pharmacological activities and it being an efficacious natural drug.

Keywords: Anti-inflammatory activity, antioxidant activity, cashew nuts, traditional medicine, functional food, alkyl-phenols.

Graphical Abstract
[1]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Ginkgo biloba, a famous living fossil tree and an ancient herbal traditional Chinese medicine. Curr. Nutr. Food Sci., 2021, 18(3), 259-264.
[http://dx.doi.org/10.2174/1573401317666210910120735]
[2]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. The importance of flavonoids and phytochemicals medicinal plants with antiviral activities. Mini Rev. Org. Chem., 2021, 18, 1-26.
[3]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Asafoetida, a natural medicine for a future. Curr. Nutr. Food Sci., 2021, 17(9), 1-10.
[http://dx.doi.org/10.2174/1573401317666210222161609]
[4]
Sun, W.; Shahrajabian, M.H.; Cheng, Q. Natural dietary and medicinal plants with anti-obesity therapeutics activities for treatment and pre-vention of obesity during lock down and in era post-Covid-19. Appl. Sci., 2021, 11(17), 7889.
[http://dx.doi.org/10.3390/app11177889]
[5]
Sun, W.; Shahrajabian, M.H.; Cheng, Q. Health benefits of wolfberry (Gou Qi Zi) on the basis of ancient Chinese herbalism and Western modern medicine. Avicenna J. Phytomed., 2021, 11(2), 109-119.
[PMID: 33907670]
[6]
Sun, W.; Shahrajabian, M.H.; Cheng, Q. Barberry (Berberis vulgaris), a medicinal fruit and food with traditional and modern pharmaceutical uses. Isr. J. Plant Sci., 2021, 68(1-2), 1-11.
[http://dx.doi.org/10.1163/22238980-bja10019]
[7]
Sun, W.; Shahrajabian, M.H.; Cheng, Q. Fenugreek cultivation with emphasis on historical aspects and its uses in traditional medicine and modern pharmaceutical science. Mini Rev. Med. Chem., 2021, 21(6), 724-730.
[http://dx.doi.org/10.2174/1389557520666201127104907] [PMID: 33245271]
[8]
Oparaeke, A.M.; Dike, M.C.; Amatobi, C.I. The potential for controlling Megalurothrips sjostedti (thysanoptera: Thripidae) on cowpea, Vigna unguiculata (L.) walp flowers using extracts of cashew (Anacardium occidentale L.) products. Arch. Phytopathol. Pflanzenschutz, 2007, 40(4), 252-256.
[http://dx.doi.org/10.1080/03235400500383958]
[9]
Berry, A.D.; Sargent, S.A. Cashew apple and nut (Anacardium occidentale L.). In: Postharvest Biology and Technology of Tropical and Subtropical Fruits; Woodhead Publishing: Sawston, UK, 2011, pp. 414-423e.
[http://dx.doi.org/10.1533/9780857092762.414]
[10]
Rufino, M.; Perez-Jimenez, J.; Tabernero, M.; Alves, R.; De Brito, E.; Saura-Calixto, F. Acerola and cashew apple as sources of antioxidants and dietary. Int. J. Food Sci. Technol., 2010, 45(11), 2227-2233.
[http://dx.doi.org/10.1111/j.1365-2621.2010.02394.x]
[11]
Carvalho, D.V.; Santos, F.A.; Lima, R.P.D.; Viana, A.F.; Fonseca, S.G.C.; Nunes, P.I.G.; Melo, T.S.D.; Gallao, M.I.; Brito, E.S.D. Influence of low molecular weight compounds associated to cashew (Anacardium occidentale L.) fiber on lipid metabolism, glycemia and insulinemia of normal mice. Bioact. Carbohydr. Diet Fiber, 2018, 13, 1-6.
[http://dx.doi.org/10.1016/j.bcdf.2017.12.001]
[12]
Ananthakrishnan, G.; Ravikumar, R.; Girja, S.; Ganapathi, A. In vitro adventitious shoot formation from cotyledon explants of cashew (Anacardium occidentale L.). Sci. Hortic., 2002, 93(3-4), 343-355.
[http://dx.doi.org/10.1016/S0304-4238(01)00354-5]
[13]
Ogueji, E.O.; Iheanacho, S.C.; Mbah, C.E.; Yaji, A.J.; Ezemagu, U. Effect of partial and complete replacement of soybean with discarded cashew nut (Anacardium occidentale L.) on liver and stomach histology of Clarias gariepinus (Burchell, 1822). Aquac. Fish., 2020, 5(2), 86-91.
[http://dx.doi.org/10.1016/j.aaf.2019.10.005]
[14]
Queiroz, C.; Da Silva, A.J.R.; Lopes, M.L.M.; Fialho, E.; Valente-Mesquita, V.L. Polyphenol oxidase activity, phenolic acid composition and browning in cashew apple (Anacardium occidentale L.) after processing. Food Chem., 2011, 125(1), 128-132.
[http://dx.doi.org/10.1016/j.foodchem.2010.08.048]
[15]
Madjitol-Betoloum, S.; Talla, E.; Nyemb, J.N.; Ngassoum, M.B.; Tsague, R.K.; Mahmout, Y. Comparative survey of three processes used for the extraction of total phenol content and total flavonoid content of Anacardium occidentale L. and the assessment of its antioxidant activity. Afr. J. Biotechnol., 2018, 17(40), 1265-1273.
[http://dx.doi.org/10.5897/AJB2017.16294]
[16]
Hasnain, M.S.; Rishishwar, P.; Rishishwar, S.; Ali, S.; Nayak, A.K. Extraction and characterization of cashew tree (Anacardium occidentale) gum; use in aceclofenac dental pastes. Int. J. Biol. Macromol., 2018, 116, 1074-1081.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.05.133] [PMID: 29791876]
[17]
Brito, E.S.D.; Silva, E.D.O.; Rodrigues, S. Caju-Anacardium occidentale. In: Exotic Fruitsm; Academic Press: Massachusetts, USA, 2018, pp. 85-89.
[http://dx.doi.org/10.1016/B978-0-12-803138-4.00012-5]
[18]
Oliveira, N.F.; Leal, R.S.; Dantas, T.N.C. The importance of the cashew nut (Anacardium occidentale L.) coat: A review. Am. Int. J. Contemp. Sci. Res., 2015, 2(4), 9-41.
[19]
Kubo, I.; Nitoda, T.; Tocoli, F.E.; Green, I.R. Multifunctional cytotoxic agents from Anacardium occidentale. Phytother. Res., 2011, 25(1), 38-45.
[http://dx.doi.org/10.1002/ptr.3109] [PMID: 20623613]
[20]
Oliveira, M.S.; Morais, S.M.; Magalhães, D.V.; Batista, W.P.; Vieira, I.G.; Craveiro, A.A.; de Manezes, J.E.; Carvalho, A.F.; de Lima, G.P. Antioxidant, larvicidal and antiacetylcholinesterase activities of cashew nut shell liquid constituents. Acta Trop., 2011, 117(3), 165-170.
[http://dx.doi.org/10.1016/j.actatropica.2010.08.003] [PMID: 20707981]
[21]
Alvarenga, T.A.; de Oliveira, P.F.; de Souza, J.M.; Tavares, D.C.; Andrade, E.; Silva, M.L.; Cunha, W.R.; Groppo, M.; Januário, A.H.; Magalhães, L.G.; Pauletti, P.M.; Pauletti, P.M. Schistosomicidal activity of alkyl-phenols from the Cashew Anacardium occidentale against Schistosoma mansoni adult worms. J. Agric. Food Chem., 2016, 64(46), 8821-8827.
[http://dx.doi.org/10.1021/acs.jafc.6b04200] [PMID: 27934289]
[22]
Chan, E.W.C.; Baba, S.; Chan, H.T.; Kainuma, M.; Inoue, T.; Wong, S.K. Ulam herbs: A review on the medicinal properties of Anacardium occidentale and Barringtonia racemosa. J. Appl. Pharm. Sci., 2017, 7(02), 241-247.
[23]
Gimenez, V.M.M.; Alvarenga, T.A.; Groppo, M.; Silva, M.L.; Cunha, W.R.; Januario, A.H.; Smilkstein, M.J.; Riscoe, M.K.; Pauletti, P.M. Antiplasmodial evaluation of Anacardium occidentale and alkyl-phenols. Rev. Bras. Farmacogn., 2019, 29(1), 26-39.
[http://dx.doi.org/10.1016/j.bjp.2018.11.003]
[24]
Shahrajabian, M.H.; Sun, W.; Soleymani, A.; Cheng, Q. Traditional herbal medicines to overcome stress, anxiety and improve mental health in outbreaks of human coronaviruses. Phytother. Res., 2020, 2020(1), 1-11.
[PMID: 33350538]
[25]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Exploring Artemisia annua L., artemisinin and its derivatives from traditional Chinese wonder medicinal science. Not. Bot. Horti Agrobot. Cluj-Napoca, 2020, 48(4), 1719-1741.
[http://dx.doi.org/10.15835/nbha48412002]
[26]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Chemical components and pharmacological benefits of Basil (Ocimum basilicum): A review. Int. J. Food Prop., 2020, 23(1), 1961-1970.
[http://dx.doi.org/10.1080/10942912.2020.1828456]
[27]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Traditional herbal medicine for the prevention and treatment of cold and flu in the autumn of 2020, overlapped with COVID-19. Nat. Prod. Commun., 2020, 15(8), 1-10.
[http://dx.doi.org/10.1177/1934578X20951431]
[28]
Costa, A.R.; Silva, J.R.D.L.; Oliveira, T.J.S.D.; Silva, T.G.D.; Pereira, P.S.; Borba, E.F.; Brito, E.S.D.; Ribeiro, P.R.V.; Almeida-Bezerra, J.W.; Junior, J.T.C.; Menezes, I.R.A.D.; Kamdem, J.P.; Duarte, A.E.; Barros, L.M. Phytochemical profile of Anacardium occidentale L. (cashew tree) and the cytotoxic and toxicological evaluation of its bark and leaf extracts. S. Afr. J. Bot., 2020, 135, 355-364.
[http://dx.doi.org/10.1016/j.sajb.2020.09.017]
[29]
Campos, D.C.P.; Santos, A.S.; Wolkoff, D.B.; Matta, V.M.; Cabral, L.M.C.; Couri, S. Cashew apple juice stabilization by microfiltration. Desalination, 2002, 148(1-3), 61-65.
[http://dx.doi.org/10.1016/S0011-9164(02)00654-9]
[30]
Vergara, C.M.D.A.C.; Honorato, T.L.; Maia, G.A.; Rodrigues, S. Prebiotic effect of fermented cashew apple (Anacardium occidentale L.) juice. Lebensm. Wiss. Technol., 2010, 43(1), 141-145.
[http://dx.doi.org/10.1016/j.lwt.2009.06.009]
[31]
De Paula, R.C.M.; Rodrigues, J.F. Composition and rheological properties of cashew tree gum, the exudates polysaccharide from Anacardi-um occidentale L. Carbohydr. Polym., 1995, 26(3), 177-181.
[http://dx.doi.org/10.1016/0144-8617(95)00006-S]
[32]
Schweiggert, R.M.; Vargas, E.; Conrad, J.; Hempel, J.; Gras, C.C.; Ziegler, J.U.; Mayer, A.; Jiménez, V.; Esquivel, P.; Carle, R. Carotenoids, carotenoid esters, and anthocyanins of yellow-, orange-, and red-peeled cashew apples (Anacardium occidentale L.). Food Chem., 2016, 200, 274-282.
[http://dx.doi.org/10.1016/j.foodchem.2016.01.038] [PMID: 26830589]
[33]
Kossouoh, C.; Moudachirou, M.; Adjakidje, V.; Chalchat, J-C.; Figueredo, G. Essential oil chemical composition of Anacardium occidentale L. leaves from Benin. J. Essent. Oil Res., 2008, 20(1), 5-8.
[http://dx.doi.org/10.1080/10412905.2008.9699407]
[34]
Michodjehoun-Mestres, L.; Souquet, J-M.; Fulcrand, H.; Meudec, E.; Reynes, M.; Brillouet, J.M. Characterisation of highlight polymerized prodelphinidins from skin and flesh of four cashew apple (Anacardium occidentale L.) genotypes. Food Chem., 2009, 114(3), 989-995.
[http://dx.doi.org/10.1016/j.foodchem.2008.10.052]
[35]
de Abreu, F.P.; Dornier, M.; Dionisio, A.P.; Carail, M.; Caris-Veyrat, C.; Dhuique-Mayer, C. Cashew apple (Anacardium occidentale L.) extract from by-product of juice processing: A focus on carotenoids. Food Chem., 2013, 138(1), 25-31.
[http://dx.doi.org/10.1016/j.foodchem.2012.10.028] [PMID: 23265451]
[36]
Maia, J.G.S.; Andrade, E.H.A.; Zoghbi, M.D.G. Volatile constituents of the leaves, fruits and flowers of cashew (Anacardium occidentale L.). J. Food Compos. Anal., 2000, 13(3), 227-232.
[http://dx.doi.org/10.1006/jfca.2000.0894]
[37]
Menestrina, J.M.; Iacomini, M.; Jones, C.; Gorin, P.A.J. Similarity of monosaccharide, oligosaccharide and polysaccharide structures in gum exudate of Anacardium occidentale. Phytochemistry, 1998, 47(5), 715-721.
[http://dx.doi.org/10.1016/S0031-9422(97)00666-3] [PMID: 9542167]
[38]
Trox, J.; Vadivel, V.; Vetter, W.; Stuetz, W.; Kammerer, D.; Carle, R.; Scherbaum, V.; Gola, U.; Nohr, D.; Biesalski, H.K. Catechin and epicatechin in testa and their association with bioactive compounds in kernels of cashew nut (Anacardium occidentale L.). Food Chem., 2011, 128(4), 1094-1099.
[http://dx.doi.org/10.1016/j.foodchem.2011.04.018]
[39]
Uslu, N.; Ozcan, M.M. Effect of microwave heating on phenolic compounds and fatty acid composition of cashew (Anacardium occi-dentale) nut and oil. J. Saudi Soc. Agric. Sci., 2019, 18(3), 344-347.
[http://dx.doi.org/10.1016/j.jssas.2017.10.001]
[40]
Bamgbola, A.A.; Adeyemi, O.O.; Olubomehin, O.O.; Akinlabi, A.K.; Sojinu, O.S.; Iwuchukwu, P.O. Isolation and characterization of cellu-lose from cashew (Anacardium occidentale L.) nut shells. Curr. Res. Green Sustain Chem., 2020, 3100032
[http://dx.doi.org/10.1016/j.crgsc.2020.100032]
[41]
Razali, N.; Razab, R.; Junit, S.M.; Aziz, A.A. Radical scavenging and reducing properties of extracts of cashew shoots (Anacardium occidentale). Food Chem., 2008, 111(1), 38-44.
[http://dx.doi.org/10.1016/j.foodchem.2008.03.024]
[42]
Emelike, N.J.T.; Barber, L.I.; Ebere, C.O. Proximate, mineral and functional properties of defatted and undefatted cashew (Anacardium oc-cidentale L.) kernel flour. Eur. J. Food Sci. Technol., 2015, 3(4), 11-19.
[43]
Togola, I.; Kaya, Y.; Diarra, N.; Konare, M.A.; Denou, A.; Sanogo, R. Comparative study of the phytochemistry and antioxidant activity of Anacardium occidentale (L.) leaf and stem bark extracts. J. Dis. Med. Plants, 2020, 6(3), 72-76.
[44]
Konan, N.A.; Bacchi, E.M.; Lincopan, N.; Varela, S.D.; Varanda, E.A. Acute, subacute toxicity and genotoxic effect of a hydroethanolic extract of the cashew (Anacardium occidentale L.). J. Ethnopharmacol., 2007, 110(1), 30-38.
[http://dx.doi.org/10.1016/j.jep.2006.08.033] [PMID: 17088034]
[45]
Mazzetto, S.E.; Lomonaco, D.; Mele, G. Cashew nut oil: opportunities and challenges in the context of industrial development and sustainability. Quim. Nova, 2009, 32(3), 732-741.
[http://dx.doi.org/10.1590/S0100-40422009000300017]
[46]
Girón, L.M.; Freire, V.; Alonzo, A.; Cáceres, A. Ethnobotanical survey of the medicinal flora used by the Caribs of Guatemala. J. Ethnopharmacol., 1991, 34(2-3), 173-187.
[http://dx.doi.org/10.1016/0378-8741(91)90035-C] [PMID: 1795521]
[47]
Sudarshan, S.R.; Trust, V.P.C.; Rao, S.K.R. Encyclopedia of Indian Medicine, 4th ed.; Popular Prakashan: Mumbai, India, 1985, p. 116.
[48]
Gowthamarajan, K.; Jawahar, N.; Wake, P.; Jain, K.; Sood, S. Development of buccal tablets for curcumin sing Anacardium occidentale gum. Carbohydr. Polym., 2012, 88(4), 1177-1183.
[http://dx.doi.org/10.1016/j.carbpol.2012.01.072]
[49]
Lima, J.L.S.; Furtado, D.A.; Pereira, J.P.G.; Baracuhy, J.G.V.; Xavier, H.S. Medicinal plants commonly used in northeastern Brazil.; Universidade Federal de Campina Grande: Campina Grande, Brazil, 2006.
[50]
Anderson, D.M.W.; Bell, P.C.; Millar, R.A. Composition of gum exudates from Anacardium occidentale. Phytochemistry, 1974, 13(10), 2189-2193.
[http://dx.doi.org/10.1016/0031-9422(74)85026-0]
[51]
Agra, M.F.; Franca, P.F.; Barbosa-Filho, J.M. Synopsis of the plants known as medicinal and poisonous in Northeast of Brazil. Rev. Bras. Farmacogn., 2007, 17(1), 114-140.
[http://dx.doi.org/10.1590/S0102-695X2007000100021]
[52]
Tamiello-Rosa, C.S.; Cantu-Jungles, T.M.; Iacomini, M.; Cordeiro, L.M.C. Pectins from cashew apple fruit (Anacardium occidentale): Extraction and chemical characterization. Carbohydr. Res., 2019, 483107752
[http://dx.doi.org/10.1016/j.carres.2019.107752] [PMID: 31362137]
[53]
Awakan, O.J.; Malomo, S.O.; Adejare, A.A.; Igunnu, A.; Atolani, O.; Adebayo, A.H.; Owoyele, B.V. Anti-inflammatory and bronchodilatory constituents of leaf extracts of Anacardium occidentale L. in animal models. J. Integr. Med., 2018, 16(1), 62-70.
[http://dx.doi.org/10.1016/j.joim.2017.12.009] [PMID: 29397096]
[54]
Borges, J. Cashew tree (Anacardium occidentale): Possible applications in dermatology. Clin. Dermatol., 2021, 39(3), 493-495.
[http://dx.doi.org/10.1016/j.clindermatol.2020.11.014] [PMID: 34518009]
[55]
Mohammed, H.; Sobri, S.B. Corrosion inhibition studies of cashew nut (Anacardium occidentale) on carbon steel in 1.0 M hydrochloric acid environment. Mater. Lett., 2018, 229, 82-84.
[http://dx.doi.org/10.1016/j.matlet.2018.06.108]
[56]
Coelho, G.F.; Goncalves, A.C.; Tarley, C.R.T.; Casarin, J.; Nacke, H.; Francziskowki, M. Removal of metal ions Cd (II0, Pb (II), and Cr (III) from water by the cashew nut shell Anacardium occidentale L. Ecol. Eng., 2014, 73, 514-525.
[http://dx.doi.org/10.1016/j.ecoleng.2014.09.103]
[57]
Kamtchouing, P.; Sokeng, S.D.; Moundipa, P.F.; Watcho, P.; Jatsa, H.B.; Lontsi, D. Protective role of Anacardium occidentale extract against streptozotocin-induced diabetes in rats. J. Ethnopharmacol., 1998, 62(2), 95-99.
[http://dx.doi.org/10.1016/S0378-8741(97)00159-1] [PMID: 9741880]
[58]
Konan, N.A.; Bacchi, E.M. Antiulcerogenic effect and acute toxicity of a hydroethanolic extract from the cashew (Anacardium occidentale L.) leaves. J. Ethnopharmacol., 2007, 112(2), 237-242.
[http://dx.doi.org/10.1016/j.jep.2007.03.003] [PMID: 17499463]
[59]
Dionisio, A.P.; Carvalho-Silva, L.B.D.; Vieira, N.M.; Goes, T.D.S.; Wurlitzer, N.J.; Borges, M.D.F.; De Brito, E.S.; Ionta, M.; Figueiredo, R.W.D. Cashew-apples (Anacardium occidentale L.) and yacon (Smallanthus sonchifolius) fuctional beverage improve the diabetic state in rats. Food Res. Int., 2015, 77(2), 171-176.
[http://dx.doi.org/10.1016/j.foodres.2015.07.020]
[60]
da Silva, D.P.B.; Florentino, I.F.; da Silva Moreira, L.K.; Brito, A.F.; Carvalho, V.V.; Rodrigues, M.F.; Vasconcelos, G.A.; Vaz, B.G.; Perei-ra-Junior, M.A.; Fernandes, K.F.; Costa, E.A. Chemical characterization and pharmacological assessment of polysaccharide free, standardized cashew gum extract (Anacardium occidentale L.). J. Ethnopharmacol., 2018, 213, 395-402.
[http://dx.doi.org/10.1016/j.jep.2017.11.021] [PMID: 29166575]
[61]
Chan, E.W.C.; Kong, L.Q.; Yee, K.Y.; Chua, W.Y.; Loo, T.Y. Antioxidant and antibacterial properties of some fresh and dried Labiatae herbs. Free Radic. Antioxid., 2012, 2(3), 20-27.
[http://dx.doi.org/10.5530/ax.2012.3.3]
[62]
Chan, E.W.C.; Kong, L.Q.; Yee, K.Y.; Chua, W.Y.; Loo, T.Y. Rosemary and sage outperformed six other culinary herbs in antioxidant and antibacterial properties. Int. J. Biotechnol. Wellness Ind., 2012, 1, 142-151.
[http://dx.doi.org/10.6000/1927-3037/2012.01.02.06]
[63]
Sulaiman, S.F.; Sajak, A.A.B.; Ooi, K.L.; Seow, E.M. Effect of solvents in extracting polyphenols and antioxidants of selected raw vegetables. J. Food Compos. Anal., 2011, 24(4-5), 506-515.
[http://dx.doi.org/10.1016/j.jfca.2011.01.020]
[64]
Huda-Faujan, N.; Rahim, Z.A.; Rehan, M.M.; Ahmad, F.H. Comparative analysis of phenolic content and antioxidant activities of eight Malaysian traditional vegetables. Malays. J. Anal. Sci., 2015, 19, 611-624.
[65]
Aiswarya, G.; Reza, K.H.; Radhika, G.; Mohamed Farook, S. Study for antibacterial activity of cashew apple (Anacardium occidentale) ex-tracts. Pharm. Lett., 2011, 3(1), 193-200.
[66]
de Araújo, J.S.; de Castilho, A.R.F.; Lira, A.B.; Pereira, A.V.; de Azevêdo, T.K.; de Brito Costa, E.M.; Pereira, M.D.; Pessôa, H.L.; Pereira, J.V. Antibacterial activity against cariogenic bacteria and cytotoxic and genotoxic potential of Anacardium occidentale L. and Anadenanthera macrocarpa (Benth.) Brenan extracts. Arch. Oral Biol., 2018, 85, 113-119.
[http://dx.doi.org/10.1016/j.archoralbio.2017.10.008] [PMID: 29054025]
[67]
Ajileye, O.O.; Obuotor, E.M.; Akinkunmi, E.O.; Aderogba, M.A. Isolation and characterization of antioxidant and antimicrobial compounds from Anacardium occidentale L. (Anacardiaceae) leaf extract. J. King Saud Univ. Sci., 2015, 27(3), 244-252.
[http://dx.doi.org/10.1016/j.jksus.2014.12.004]
[68]
Dos Santos, G.H.; Amaral, A.; da Silva, E.B. Antibacterial activity of irradiated extracts of Anacardium occidentale L. on multiresistant strains of Staphylococcus aureus. Appl. Radiat. Isot., 2018, 140, 327-332.
[http://dx.doi.org/10.1016/j.apradiso.2018.07.035] [PMID: 30121458]
[69]
Sunderam, V.; Thiyagarajan, D.; Lawrence, A.V.; Mohammed, S.S.; Selvaraj, A. In-vitro antimicrobial and anticancer properties of green synthesized gold nanoparticles using Anacardium occidentale leaves extract. Saudi J. Biol. Sci., 2019, 26(3), 455-459.
[http://dx.doi.org/10.1016/j.sjbs.2018.12.001] [PMID: 30899157]
[70]
Jaiswal, Y.S.; Tatke, P.A.; Gabhe, S.Y.; Vaidya, A.B. Antidiabetic activity of extracts of Anacardium occidentale L. leaves on n-streptozotocin diabetic rats. J. Tradit. Complement. Med., 2016, 7(4), 421-427.
[http://dx.doi.org/10.1016/j.jtcme.2016.11.007] [PMID: 29034189]
[71]
Araújo, T.S.; Costa, D.S.; Sousa, N.A.; Souza, L.K.; de Araújo, S.; Oliveira, A.P.; Sousa, F.B.M.; Silva, D.A.; Barbosa, A.L.; Leite, J.R.; Medeiros, J.V.R. Antidiarrheal activity of cashew GUM, a complex heteropolysaccharide extracted from exudate of Anacardium occidentale L. in rodents. J. Ethnopharmacol., 2015, 174, 299-307.
[http://dx.doi.org/10.1016/j.jep.2015.08.020] [PMID: 26297843]
[72]
Oliveira, S.T.; Azevedo, M.I.; Cunha, R.M.; Silva, C.F.B.; Muniz, C.R.; Monteiro-Júnior, J.E.; Carneiro, R.F.; Nagano, C.S.; Girão, M.S.; Freitas, C.D.; Grangeiro, T.B. Structural and functional features of a class VI chitinase from cashew (Anacardium occidentale L.) with anti-fungal properties. Phytochemistry, 2020, 180112527
[http://dx.doi.org/10.1016/j.phytochem.2020.112527] [PMID: 33007618]
[73]
Ukwenya, V.O.; Ashaolu, J.O.; Adeyemi, A.O.; Akinola, O.A.; Caxton-Martins, E.A. Antihyperglycemic activities of methanolic leaf extract of Anacardium occidentale (Linn.) on the pancreas of streptozotocin-induced diabetic rats. J. Cell Anim. Biol., 2012, 6(11), 169-174.
[http://dx.doi.org/10.5897/JCAB12.028]
[74]
Olajide, O.A.; Aderogba, M.A.; Adedapo, A.D.; Makinde, J.M. Effects of Anacardium occidentale stem bark extract on in vivo inflammatory models. J. Ethnopharmacol., 2004, 95(2-3), 139-142.
[http://dx.doi.org/10.1016/j.jep.2004.06.033] [PMID: 15507326]
[75]
Oliveira, A.S.; Nascimento, J.R.; Trovão, L.O.; Alves, P.C.; Maciel, M.C.; Silva, L.D.; Marques, A.A.; Santos, A.P.; Silva, L.A.; Nascimento, F.R.; Guerra, R.N. The anti-inflammatory activity of Anacardium occidentale L. increases the lifespan of diabetic mice with lethal sepsis. J. Ethnopharmacol., 2019, 236, 345-353.
[http://dx.doi.org/10.1016/j.jep.2019.03.014] [PMID: 30872173]
[76]
Olajide, O.A.; Aderogba, M.A.; Fiebich, B.L. Mechanisms of anti-inflammatory property of Anacardium occidentale stem bark: Inhibition of NF-κB and MAPK signalling in the microglia. J. Ethnopharmacol., 2013, 145(1), 42-49.
[http://dx.doi.org/10.1016/j.jep.2012.10.031] [PMID: 23142196]
[77]
Da Silva, R.A.; Liberio, S.A.; Do Amaral, F.M.; Do Nascimento, F.R.; Torres, L.M.; Neto, V.M.; Guerra, R.N. Antimicrobial and antioxidant activity of Anacardium occidentale L. flowers in comparison to bark and leaves extracts. J. Biosci. Med., 2016, 4(4), 87-99.
[78]
Akinpelu, D.A. Antimicrobial activity of Anacardium occidentale bark. Fitoterapia, 2001, 72(3), 286-287.
[http://dx.doi.org/10.1016/S0367-326X(00)00310-5] [PMID: 11295307]
[79]
Doss, V.A.; Thangavel, K.P. Antioxidant and antimicrobial activity using different extracts of Anacardium occidentale L. Int. J. Appl. Biol. Pharm. Technol., 2011, 2(3), 436-443.
[80]
Kamath, V.; Rajini, P.S. The efficacy of cashew nut (Anacardium occidentale L.) skin extract as a free radical scavenger. Food Chem., 2007, 103(2), 428-433.
[http://dx.doi.org/10.1016/j.foodchem.2006.07.031]
[81]
Tan, Y.P.; Chan, E.W.C. Antioxidant, antityrosinase and antibacterial properties of fresh and processed leaves of Anacardium occidentale and Piper betle. Food Biosci., 2014, 6, 17-23.
[http://dx.doi.org/10.1016/j.fbio.2014.03.001]
[82]
Barros, A.B.; Moura, A.F.; Silva, D.A.; Oliveira, T.M.; Barreto, F.S.; Ribeiro, W.L.; Alves, A.P.; Araújo, A.J.; Moraes Filho, M.O.; Iles, B.; Medeiros, J.V.; Marinho-Filho, J.D. Evaluation of antitumor potential of cashew gum extracted from Anacardium occidentale Linn. Int. J. Biol. Macromol., 2020, 154, 319-328.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.096] [PMID: 32173441]
[83]
de Oliveira Silva Ribeiro, F.; de França Dourado, F.; Silva, M.F.; Brito, L.M.; Pessoa, C.; de Lima, L.R.; de Paula, R.C.; de Souza de Almeida Leite, J.R.; de Araújo, A.R.; da Silva, D.A. Antiproliferative profile of Anacardium occidentale polysaccharide and characterization by AFM. Int. J. Biol. Macromol., 2020, 156, 981-987.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.145] [PMID: 32194125]
[84]
Oparaeke, A.M.; Bunmi, O.J. Insecticidal potential of cashew (Anacardium occidentale L.) for control of the beetle, Callosobruchus subinnotatus (Pic.) (Bruchidae) on bambarra-groundnut (Voandzeia subterranean L.). Arch. Phytopathol. Pflanzenschutz, 2006, 39(4), 247-251.
[http://dx.doi.org/10.1080/03235400500094431]
[85]
Monteiro, F.M.; Silva, G.M.; Silva, J.B.; Porto, C.S.; Carvalho, L.B.; Filho, J.L.; Carneiro-Leao, A.M.; Carneiro-da-Cunha, M.D.; Porto, A.L. Immobilization of trypsin on polysaccharide film from Anacardium occidentale L. and its application as cutaneous dressing. Process Biochem., 2007, 42(5), 884-888.
[http://dx.doi.org/10.1016/j.procbio.2007.01.006]
[86]
de Sousa Leite, A.; Islam, M.T.; Gomes Junior, A.L.; Sousa, J.M.; Alencar, M.V.; Jardim Paz, M.F.; Rolim, H.M.; Medeiros, M.D.; Melo-Cavalcante, A.A.; Lopes, J.A. Pharmacological properties of cashew (Anacardium occidentale). Afr. J. Biotechnol., 2016, 15(35), 1855-1863.
[87]
Mastinu, A.; Bonini, S.A.; Premoli, M.; Maccarinelli, G.; Mac Sweeney, E.; Zhang, L.; Lucini, L.; Memo, M. Protective effects of Gynostemma pentaphyllum (var. Ginpent) against lipopolysaccharide-induced inflammation and motor alteration in mice. Molecules, 2021, 26(3), 570.
[http://dx.doi.org/10.3390/molecules26030570] [PMID: 33499104]
[88]
Abate, G.; Zhang, L.; Pucci, M.; Morbini, G.; Mac Sweeney, E.; Maccarinelli, G.; Ribaudo, G.; Gianoncelli, A.; Uberti, D.; Memo, M.; Lucini, L.; Mastinu, A. Phytochemical analysis and anti-inflammation activity of different ethanolic phyto-extracts of Artemisia annua L. Biomolecules, 2021, 11(7), 975.
[http://dx.doi.org/10.3390/biom11070975] [PMID: 34356599]
[89]
Duangjan, C.; Rangsinth, P.; Zhang, S.; Wink, M.; Tencomnao, T. Anacardium Occidentale L. leaf extracts protect against glutamate/H2O2-induced oxidative toxicity and induce neurite outgrowth: The involvement of SIRT1/Nrf2 signaling pathway and teneurin 4 transmembrane protein. Front. Pharmacol., 2021, 12627738
[http://dx.doi.org/10.3389/fphar.2021.627738] [PMID: 33995025]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy