Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

Maternal Metabolic Health, Lifestyle, and Environment – Understanding How Epigenetics Drives Future Offspring Health

Author(s): Dalia Amrom and Stanley S. Schwartz*

Volume 19, Issue 2, 2023

Published on: 10 August, 2022

Article ID: e220422203919 Pages: 24

DOI: 10.2174/1573399818666220422085016

Price: $65

Abstract

The incidence of metabolic disorders, such as obesity and type two diabetes (T2DM), continues to increase worldwide, and their onset is often attributed to adherence to a western diet and a sedentary lifestyle. However, large variability exists in one's likelihood of developing metabolic dysregulation, illustrating that our understanding of heritability patterns remains poorly understood. Diabetes and obesity are multifactorial diseases, and their onset is influenced by both genetic and environmental factors. Genome-wide association studies report a number of alterations in the coding sequence associated with the onset of T2DM and obesity. However, these genes explain only a fraction of the cases, leaving the majority unaccounted for. The missing heritability question implies that other factors are responsible for the onset and development of the disease. Given that the developing fetus is susceptible to the maternal environment, a growing body of evidence demonstrates that maternal metabolic characteristics as well as disruptions to the prenatal environment may induce long-term genetic, phenotypic, and physiologic adaptations in the developing fetus, which could have a permanent effect on its future health. This phenomenon is known as developmental programming and is mediated through epigenetic modifications, which include modulation of gene expressions that do not alter the original deoxyribonucleic (DNA) sequence. Epigenetic modifications are capable of changing gene expression in metabolism-related genes and are accomplished through DNA methylation, histone acetylation, and ribonucleic acid (RNA) mechanisms. In this review, we discuss maternal metabolic factors, such as obesity, dyslipidemia, and gestational diabetes (GDM) that lead to epigenetic changes in the offspring and predispose future generations to metabolic abnormalities. We will also describe the association between maternal lifestyle factors and exposure to toxins with epigenetic modulations in the offspring. Lastly, we will provide a brief review of the possibility of using epigenetics as potential interventions and therapeutic modalities to help in early diagnosis and prevention of metabolic disorders.

Keywords: Epigenetic modification, developmental programming, maternal environment, maternal metabolic characteristics, diabetes, obesity.

[1]
Januar V, Desoye G, Novakovic B, Cvitic S, Saffery R. Epigenetic regulation of human placental function and pregnancy outcome: Considerations for causal inference. Am J Obstet Gynecol 2015; 213(4) (Suppl.): S182-96.
[http://dx.doi.org/10.1016/j.ajog.2015.07.011] [PMID: 26428498]
[2]
Sommese L, Zullo A, Mancini FP, Fabbricini R, Soricelli A, Napoli C. Clinical relevance of epigenetics in the onset and management of type 2 diabetes mellitus. Epigenetics 2017; 12(6): 401-15.
[http://dx.doi.org/10.1080/15592294.2016.1278097] [PMID: 28059593]
[3]
Cheng X, Blumenthal RM. Coordinated chromatin control: Structural and functional linkage of DNA and histone methylation. Biochemistry 2010; 49(14): 2999-3008.
[http://dx.doi.org/10.1021/bi100213t] [PMID: 20210320]
[4]
Paauw ND, Lely AT, Joles JA, et al. H3K27 acetylation and gene expression analysis reveals differences in placental chromatin activity in fetal growth restriction. Clin Epigenetics 2018; 10(1): 85.
[http://dx.doi.org/10.1186/s13148-018-0508-x] [PMID: 29983832]
[5]
Harville EW, Mishra PP, Kähönen M, et al. Reproductive history and blood cell DNA methylation later in life: The Young Finns Study. Clin Epigenetics 2021; 13(1): 227.
[http://dx.doi.org/10.1186/s13148-021-01215-1] [PMID: 34930449]
[6]
Moen GH, Sommer C, Prasad RB, et al. Mechanisms in endocrinology: Epigenetic modifications and gestational diabetes: A systematic review of published literature. Eur J Endocrinol 2017; 176(5): R247-67.
[http://dx.doi.org/10.1530/EJE-16-1017] [PMID: 28232369]
[7]
Goyal D, Limesand SW, Goyal R. Epigenetic responses and the developmental origins of health and disease. J Endocrinol 2019; 242(1): T105-19.
[http://dx.doi.org/10.1530/JOE-19-0009] [PMID: 31091503]
[8]
Sebastiani G, Guay C, Latreille M. Circulating noncoding RNAs as candidate biomarkers of endocrine and metabolic diseases. Int J Endocrinol 2018; 2018: 9514927.
[http://dx.doi.org/10.1155/2018/9514927] [PMID: 30123270]
[9]
Prasher D, Greenway SC, Singh RB. The impact of epigenetics on cardiovascular disease. Biochem Cell Biol 2020; 98(1): 12-22.
[http://dx.doi.org/10.1139/bcb-2019-0045] [PMID: 31112654]
[10]
Kerr B, Leiva A, Farías M, et al. Foetoplacental epigenetic changes associated with maternal metabolic dysfunction. Placenta 2018; 69: 146-52.
[http://dx.doi.org/10.1016/j.placenta.2018.04.006] [PMID: 29699712]
[11]
Poston L, Caleyachetty R, Cnattingius S, et al. Preconceptional and maternal obesity: Epidemiology and health consequences. Lancet Diabetes Endocrinol 2016; 4(12): 1025-36.
[http://dx.doi.org/10.1016/S2213-8587(16)30217-0] [PMID: 27743975]
[12]
Broughton DE, Moley KH. Obesity and female infertility: Potential mediators of obesity’s impact. Fertil Steril 2017; 107(4): 840-7.
[http://dx.doi.org/10.1016/j.fertnstert.2017.01.017] [PMID: 28292619]
[13]
Zive MM, Rhee KE. Call to action: Continuum of care for females of reproductive age to prevent obesity and ensure better health outcomes of offspring through nutrition. Clin Obstet Gynecol 2014; 57(3): 446-55.
[http://dx.doi.org/10.1097/GRF.0000000000000046] [PMID: 25022999]
[14]
Ou XH, Zhu CC, Sun SC. Effects of obesity and diabetes on the epigenetic modification of mammalian gametes. J Cell Physiol 2019; 234(6): 7847-55.
[http://dx.doi.org/10.1002/jcp.27847] [PMID: 30536398]
[15]
Godfrey KM, Reynolds RM, Prescott SL, et al. Influence of maternal obesity on the long-term health of offspring. Lancet Diabetes Endocrinol 2017; 5(1): 53-64.
[http://dx.doi.org/10.1016/S2213-8587(16)30107-3] [PMID: 27743978]
[16]
Gaillard R. Maternal obesity during pregnancy and cardiovascular development and disease in the offspring. Eur J Epidemiol 2015; 30(11): 1141-52.
[http://dx.doi.org/10.1007/s10654-015-0085-7] [PMID: 26377700]
[17]
Isganaitis E. Developmental programming of body composition: Update on evidence and mechanisms. Curr Diab Rep 2019; 19(8): 60.
[http://dx.doi.org/10.1007/s11892-019-1170-1] [PMID: 31327060]
[18]
Catalano PM, Farrell K, Thomas A, et al. Perinatal risk factors for childhood obesity and metabolic dysregulation. Am J Clin Nutr 2009; 90(5): 1303-13.
[http://dx.doi.org/10.3945/ajcn.2008.27416] [PMID: 19759171]
[19]
West J, Santorelli G, Whincup PH, et al. Association of maternal exposures with adiposity at age 4/5 years in white British and Pakistani children: Findings from the Born in Bradford study. Diabetologia 2018; 61(1): 242-52.
[http://dx.doi.org/10.1007/s00125-017-4457-2] [PMID: 29064033]
[20]
Voerman E, Santos S, Patro Golab B, et al. Maternal body mass index, gestational weight gain, and the risk of overweight and obesity across childhood: An individual participant data meta-analysis. PLoS Med 2019; 16(2): e1002744.
[http://dx.doi.org/10.1371/journal.pmed.1002744] [PMID: 30742624]
[21]
Schoppa I, Lyass A, Heard-Costa N, et al. Association of maternal prepregnancy weight with offspring adiposity throughout adulthood over 37 years of follow-up. Obesity (Silver Spring) 2019; 27(1): 137-44.
[http://dx.doi.org/10.1002/oby.22326] [PMID: 30474203]
[22]
van Dijk SJ, Tellam RL, Morrison JL, Muhlhausler BS, Molloy PL. Recent developments on the role of epigenetics in obesity and metabolic disease. Clin Epigenetics 2015; 7(1): 66.
[http://dx.doi.org/10.1186/s13148-015-0101-5] [PMID: 27408648]
[23]
Visscher PM, Brown MA, McCarthy MI, Yang J. Five years of GWAS discovery. Am J Hum Genet 2012; 90(1): 7-24.
[http://dx.doi.org/10.1016/j.ajhg.2011.11.029] [PMID: 22243964]
[24]
Locke AE, Kahali B, Berndt SI, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 2015; 518(7538): 197-206.
[http://dx.doi.org/10.1038/nature14177] [PMID: 25673413]
[25]
Ma RC, Tutino GE, Lillycrop KA, Hanson MA, Tam WH. Maternal diabetes, gestational diabetes and the role of epigenetics in their long term effects on offspring. Prog Biophys Mol Biol 2015; 118(1-2): 55-68.
[http://dx.doi.org/10.1016/j.pbiomolbio.2015.02.010] [PMID: 25792090]
[26]
Myatt L, Maloyan A. Obesity and placental function. Semin Reprod Med 2016; 34(1): 42-9.
[http://dx.doi.org/10.1055/s-0035-1570027] [PMID: 26734917]
[27]
Howell KR, Powell TL. Effects of maternal obesity on placental function and fetal development. Reproduction 2017; 153(3): R97-R108.
[http://dx.doi.org/10.1530/REP-16-0495] [PMID: 27864335]
[28]
Desoye G, Hauguel-de Mouzon S. The human placenta in gestational diabetes mellitus. The insulin and cytokine network. Diabetes Care 2007; 30 (Suppl. 2): S120-6.
[http://dx.doi.org/10.2337/dc07-s203] [PMID: 17596459]
[29]
Radaelli T, Varastehpour A, Catalano P, Hauguel-de Mouzon S. Gestational diabetes induces placental genes for chronic stress and inflammatory pathways. Diabetes 2003; 52(12): 2951-8.
[http://dx.doi.org/10.2337/diabetes.52.12.2951] [PMID: 14633856]
[30]
Donkin I, Versteyhe S, Ingerslev LR, et al. Obesity and bariatric surgery drive epigenetic variation of spermatozoa in humans. Cell Metab 2016; 23(2): 369-78.
[http://dx.doi.org/10.1016/j.cmet.2015.11.004] [PMID: 26669700]
[31]
Guénard F, Deshaies Y, Cianflone K, Kral JG, Marceau P, Vohl MC. Differential methylation in glucoregulatory genes of offspring born before vs. after maternal gastrointestinal bypass surgery. Proc Natl Acad Sci USA 2013; 110(28): 11439-44.
[http://dx.doi.org/10.1073/pnas.1216959110] [PMID: 23716672]
[32]
Kral JG, Biron S, Simard S, et al. Large maternal weight loss from obesity surgery prevents transmission of obesity to children who were followed for 2 to 18 years. Pediatrics 2006; 118(6): e1644-9.
[http://dx.doi.org/10.1542/peds.2006-1379] [PMID: 17142494]
[33]
Sharp GC, Lawlor DA, Richmond RC, et al. Maternal pre-pregnancy BMI and gestational weight gain, offspring DNA methylation and later offspring adiposity: Findings from the Avon longitudinal study of parents and children. Int J Epidemiol 2015; 44(4): 1288-304.
[http://dx.doi.org/10.1093/ije/dyv042] [PMID: 25855720]
[34]
Liu X, Chen Q, Tsai HJ, et al. Maternal preconception body mass index and offspring cord blood DNA methylation: Exploration of early life origins of disease. Environ Mol Mutagen 2014; 55(3): 223-30.
[http://dx.doi.org/10.1002/em.21827] [PMID: 24243566]
[35]
Lillycrop KA, Garratt ES, Titcombe P, et al. Differential SLC6A4 methylation: A predictive epigenetic marker of adiposity from birth to adulthood. Int J Obes 2019; 43(5): 974-88.
[http://dx.doi.org/10.1038/s41366-018-0254-3] [PMID: 30622309]
[36]
Dias H, Muc M, Padez C, Manco L. Association of polymorphisms in 5-HTT (SLC6A4) and MAOA genes with measures of obesity in young adults of Portuguese origin. Arch Physiol Biochem 2016; 122(1): 8-13.
[http://dx.doi.org/10.3109/13813455.2015.1111390] [PMID: 26698543]
[37]
Wahl S, Drong A, Lehne B, et al. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature 2017; 541(7635): 81-6.
[http://dx.doi.org/10.1038/nature20784] [PMID: 28002404]
[38]
van Dijk SJ, Peters TJ, Buckley M, et al. DNA methylation in blood from neonatal screening cards and the association with BMI and insulin sensitivity in early childhood. Int J Obes 2018; 42(1): 28-35.
[http://dx.doi.org/10.1038/ijo.2017.228] [PMID: 29064478]
[39]
Godfrey KM, Sheppard A, Gluckman PD, et al. Epigenetic gene promoter methylation at birth is associated with child’s later adiposity. Diabetes 2011; 60(5): 1528-34.
[http://dx.doi.org/10.2337/db10-0979] [PMID: 21471513]
[40]
Soubry A, Murphy SK, Wang F, et al. Newborns of obese parents have altered DNA methylation patterns at imprinted genes. Int J Obes 2015; 39(4): 650-7.
[http://dx.doi.org/10.1038/ijo.2013.193] [PMID: 24158121]
[41]
Soubry A, Schildkraut JM, Murtha A, et al. Paternal obesity is associated with IGF2 hypomethylation in newborns: Results from a Newborn Epigenetics Study (NEST) cohort. BMC Med 2013; 11(1): 29.
[http://dx.doi.org/10.1186/1741-7015-11-29] [PMID: 23388414]
[42]
Ge ZJ, Luo SM, Lin F, et al. DNA methylation in oocytes and liver of female mice and their offspring: Effects of high-fat-diet-induced obesity. Environ Health Perspect 2014; 122(2): 159-64.
[http://dx.doi.org/10.1289/ehp.1307047] [PMID: 24316659]
[43]
Barres R, Zierath JR. DNA methylation in metabolic disorders. Am J Clin Nutr 2011; 93(4): 897S-900.
[http://dx.doi.org/10.3945/ajcn.110.001933] [PMID: 21289222]
[44]
Ge ZJ, Liang QX, Hou Y, et al. Maternal obesity and diabetes may cause DNA methylation alteration in the spermatozoa of offspring in mice. Reprod Biol Endocrinol 2014; 12(1): 29.
[http://dx.doi.org/10.1186/1477-7827-12-29] [PMID: 24721882]
[45]
Hou YJ, Zhu CC, Duan X, Liu HL, Wang Q, Sun SC. Both diet and gene mutation induced obesity affect oocyte quality in mice. Sci Rep 2016; 6(1): 18858.
[http://dx.doi.org/10.1038/srep18858] [PMID: 26732298]
[46]
Panchenko PE, Voisin S, Jouin M, et al. Expression of epigenetic machinery genes is sensitive to maternal obesity and weight loss in relation to fetal growth in mice. Clin Epigenetics 2016; 8(1): 22.
[http://dx.doi.org/10.1186/s13148-016-0188-3] [PMID: 26925174]
[47]
Dunford AR, Sangster JM. Maternal and paternal periconceptional nutrition as an indicator of offspring metabolic syndrome risk in later life through epigenetic imprinting: A systematic review. Diabetes Metab Syndr 2017; 11 (Suppl. 2): S655-62.
[http://dx.doi.org/10.1016/j.dsx.2017.04.021] [PMID: 28533070]
[48]
Dunn GA, Bale TL. Maternal high-fat diet promotes body length increases and insulin insensitivity in second-generation mice. Endocrinology 2009; 150(11): 4999-5009.
[http://dx.doi.org/10.1210/en.2009-0500] [PMID: 19819967]
[49]
Liu Y, Ding Z. Obesity, a serious etiologic factor for male subfertility in modern society. Reproduction 2017; 154(4): R123-31.
[http://dx.doi.org/10.1530/REP-17-0161] [PMID: 28747541]
[50]
Ghanayem BI, Bai R, Kissling GE, Travlos G, Hoffler U. Diet-induced obesity in male mice is associated with reduced fertility and potentiation of acrylamide-induced reproductive toxicity. Biol Reprod 2010; 82(1): 96-104.
[http://dx.doi.org/10.1095/biolreprod.109.078915] [PMID: 19696015]
[51]
Fullston T, Ohlsson-Teague EM, Print CG, Sandeman LY, Lane M. Sperm microRNA content is altered in a mouse model of male obesity, but the same suite of microRNAs are not altered in offspring’s sperm. PLoS One 2016; 11(11): e0166076.
[http://dx.doi.org/10.1371/journal.pone.0166076] [PMID: 27814400]
[52]
Wei Y, Yang CR, Wei YP, et al. Paternally induced transgenerational inheritance of susceptibility to diabetes in mammals. Proc Natl Acad Sci USA 2014; 111(5): 1873-8.
[http://dx.doi.org/10.1073/pnas.1321195111] [PMID: 24449870]
[53]
Basaran A. Pregnancy-induced hyperlipoproteinemia: Review of the literature. Reprod Sci 2009; 16(5): 431-7.
[http://dx.doi.org/10.1177/1933719108330569] [PMID: 19233944]
[54]
Ethier-Chiasson M, Forest JC, Giguère Y, et al. Modulation of placental protein expression of OLR1: Implication in pregnancy-related disorders or pathologies. Reproduction 2008; 136(4): 491-502.
[http://dx.doi.org/10.1530/REP-08-0082] [PMID: 18599643]
[55]
Napoli C, D’Armiento FP, Mancini FP, et al. Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia. Intimal accumulation of low density lipoprotein and its oxidation precede monocyte recruitment into early atherosclerotic lesions. J Clin Invest 1997; 100(11): 2680-90.
[http://dx.doi.org/10.1172/JCI119813] [PMID: 9389731]
[56]
Napoli C, Glass CK, Witztum JL, Deutsch R, D’Armiento FP, Palinski W. Influence of maternal hypercholesterolaemia during pregnancy on progression of early atherosclerotic lesions in childhood: Fate of Early Lesions in Children (FELIC) study. Lancet 1999; 354(9186): 1234-41.
[http://dx.doi.org/10.1016/S0140-6736(99)02131-5] [PMID: 10520631]
[57]
Baardman ME, Kerstjens-Frederikse WS, Berger RM, Bakker MK, Hofstra RM, Plösch T. The role of maternal-fetal cholesterol transport in early fetal life: Current insights. Biol Reprod 2013; 88(1): 24.
[http://dx.doi.org/10.1095/biolreprod.112.102442] [PMID: 23153566]
[58]
Stefulj J, Panzenboeck U, Becker T, et al. Human endothelial cells of the placental barrier efficiently deliver cholesterol to the fetal circulation via ABCA1 and ABCG1. Circ Res 2009; 104(5): 600-8.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.185066] [PMID: 19168441]
[59]
Zhang R, Dong S, Ma WW, et al. Modulation of cholesterol transport by maternal hypercholesterolemia in human full-term placenta. PLoS One 2017; 12(2): e0171934.
[http://dx.doi.org/10.1371/journal.pone.0171934] [PMID: 28199412]
[60]
Mendelson MM, Lyass A, O’Donnell CJ, D’Agostino RB Sr, Levy D. Association of maternal prepregnancy dyslipidemia with adult offspring dyslipidemia in excess of anthropometric, lifestyle, and genetic factors in the Framingham heart study. JAMA Cardiol 2016; 1(1): 26-35.
[http://dx.doi.org/10.1001/jamacardio.2015.0304] [PMID: 27437650]
[61]
Trenteseaux C, Gaston AT, Aguesse A, et al. Perinatal hypercholesterolemia exacerbates atherosclerosis lesions in offspring by altering metabolism of trimethylamine-N-oxide and bile acids. Arterioscler Thromb Vasc Biol 2017; 37(11): 2053-63.
[http://dx.doi.org/10.1161/ATVBAHA.117.309923] [PMID: 28935756]
[62]
Tobi EW, Lumey LH, Talens RP, et al. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet 2009; 18(21): 4046-53.
[http://dx.doi.org/10.1093/hmg/ddp353] [PMID: 19656776]
[63]
Houde AA, Guay SP, Desgagné V, et al. Adaptations of placental and cord blood ABCA1 DNA methylation profile to maternal metabolic status. Epigenetics 2013; 8(12): 1289-302.
[http://dx.doi.org/10.4161/epi.26554] [PMID: 24113149]
[64]
Maranghi M, Truglio G, Gallo A, et al. A novel splicing mutation in the ABCA1 gene, causing Tangier disease and familial HDL deficiency in a large family. Biochem Biophys Res Commun 2019; 508(2): 487-93.
[http://dx.doi.org/10.1016/j.bbrc.2018.11.064] [PMID: 30503498]
[65]
Guay SP, Brisson D, Munger J, Lamarche B, Gaudet D, Bouchard L. ABCA1 gene promoter DNA methylation is associated with HDL particle profile and coronary artery disease in familial hypercholesterolemia. Epigenetics 2012; 7(5): 464-72.
[http://dx.doi.org/10.4161/epi.19633] [PMID: 22419126]
[66]
Michalczyk AA, Janus ED, Judge A, et al. Transient epigenomic changes during pregnancy and early postpartum in women with and without type 2 diabetes. Epigenomics 2018; 10(4): 419-31.
[http://dx.doi.org/10.2217/epi-2017-0129] [PMID: 29561170]
[67]
Ge K. Epigenetic regulation of adipogenesis by histone methylation. Biochim Biophys Acta 2012; 1819(7): 727-32.
[http://dx.doi.org/10.1016/j.bbagrm.2011.12.008] [PMID: 22240386]
[68]
Gupta J, Tikoo K. Involvement of insulin-induced reversible chromatin remodeling in altering the expression of oxidative stress-responsive genes under hyperglycemia in 3T3-L1 preadipocytes. Gene 2012; 504(2): 181-91.
[http://dx.doi.org/10.1016/j.gene.2012.05.027] [PMID: 22634610]
[69]
Holbrook JD. Catching diabetes. Epigenomics 2016; 8(9): 1173-7.
[http://dx.doi.org/10.2217/epi-2016-0079] [PMID: 27529737]
[70]
Rosik J, Szostak B, Machaj F, Pawlik A. The role of genetics and epigenetics in the pathogenesis of gestational diabetes mellitus. Ann Hum Genet 2020; 84(2): 114-24.
[http://dx.doi.org/10.1111/ahg.12356] [PMID: 31571208]
[71]
Stoffel M, Bell KL, Blackburn CL, et al. Identification of glucokinase mutations in subjects with gestational diabetes mellitus. Diabetes 1993; 42(6): 937-40.
[http://dx.doi.org/10.2337/diab.42.6.937] [PMID: 8495817]
[72]
Yan J, Yang H. Gestational diabetes mellitus, programing and epigenetics. J Matern Fetal Neonatal Med 2014; 27(12): 1266-9.
[http://dx.doi.org/10.3109/14767058.2013.853733] [PMID: 24125565]
[73]
Kc K, Shakya S, Zhang H. Gestational diabetes mellitus and macrosomia: A literature review. Ann Nutr Metab 2015; 66 (Suppl. 2): 14-20.
[http://dx.doi.org/10.1159/000371628] [PMID: 26045324]
[74]
Simmons D. Diabetes and obesity in pregnancy. Best Pract Res Clin Obstet Gynaecol 2011; 25(1): 25-36.
[http://dx.doi.org/10.1016/j.bpobgyn.2010.10.006] [PMID: 21247811]
[75]
Chu SY, Callaghan WM, Kim SY, et al. Maternal obesity and risk of gestational diabetes mellitus. Diabetes Care 2007; 30(8): 2070-6.
[http://dx.doi.org/10.2337/dc06-2559a] [PMID: 17416786]
[76]
Bajaj K, Gross SJ. The genetics of diabetic pregnancy. Best Pract Res Clin Obstet Gynaecol 2015; 29(1): 102-9.
[http://dx.doi.org/10.1016/j.bpobgyn.2014.08.008] [PMID: 25438929]
[77]
Michalczyk AA, Dunbar JA, Janus ED, et al. Epigenetic markers to predict conversion from gestational diabetes to type 2 diabetes. J Clin Endocrinol Metab 2016; 101(6): 2396-404.
[http://dx.doi.org/10.1210/jc.2015-4206] [PMID: 27045797]
[78]
Yeung RO, Zhang Y, Luk A, et al. Metabolic profiles and treatment gaps in young-onset type 2 diabetes in Asia (the JADE programme): A cross-sectional study of a prospective cohort. Lancet Diabetes Endocrinol 2014; 2(12): 935-43.
[http://dx.doi.org/10.1016/S2213-8587(14)70137-8] [PMID: 25081582]
[79]
Dabelea D, Mayer-Davis EJ, Lamichhane AP, et al. Association of intrauterine exposure to maternal diabetes and obesity with type 2 diabetes in youth: The SEARCH Case-Control Study. Diabetes Care 2008; 31(7): 1422-6.
[http://dx.doi.org/10.2337/dc07-2417] [PMID: 18375420]
[80]
Osgood ND, Dyck RF, Grassmann WK. The inter- and intragenerational impact of gestational diabetes on the epidemic of type 2 diabetes. Am J Public Health 2011; 101(1): 173-9.
[http://dx.doi.org/10.2105/AJPH.2009.186890] [PMID: 21148717]
[81]
O’Sullivan JB. Gestational diabetes. Unsuspected, asymptomatic diabetes in pregnancy. N Engl J Med 1961; 264(21): 1082-5.
[http://dx.doi.org/10.1056/NEJM196105252642104] [PMID: 13730123]
[82]
Brun T, Gauthier BR. A focus on the role of Pax4 in mature pancreatic islet beta-cell expansion and survival in health and disease. J Mol Endocrinol 2008; 40(2): 37-45.
[http://dx.doi.org/10.1677/JME-07-0134] [PMID: 18234907]
[83]
Ruchat SM, Houde AA, Voisin G, et al. Gestational diabetes mellitus epigenetically affects genes predominantly involved in metabolic diseases. Epigenetics 2013; 8(9): 935-43.
[http://dx.doi.org/10.4161/epi.25578] [PMID: 23975224]
[84]
Ge ZJ, Zhang CL, Schatten H, Sun QY. Maternal diabetes mellitus and the origin of non-communicable diseases in offspring: The role of epigenetics. Biol Reprod 2014; 90(6): 139.
[http://dx.doi.org/10.1095/biolreprod.114.118141] [PMID: 24829025]
[85]
Lizárraga D, García-Gasca A. The placenta as a target of epigenetic alterations in women with gestational diabetes mellitus and potential implications for the offspring. Epigenomes 2021; 5(2): 13.
[http://dx.doi.org/10.3390/epigenomes5020013] [PMID: 34968300]
[86]
Vrachnis N, Antonakopoulos N, Iliodromiti Z, et al. Impact of maternal diabetes on epigenetic modifications leading to diseases in the offspring. Exp Diabetes Res 2012; 2012: 538474.
[http://dx.doi.org/10.1155/2012/538474] [PMID: 23227034]
[87]
Moley KH, Chi MM, Mueckler MM. Maternal hyperglycemia alters glucose transport and utilization in mouse preimplantation embryos. Am J Physiol 1998; 275(1): E38-47.
[PMID: 9688872]
[88]
Nomura Y, Lambertini L, Rialdi A, et al. Global methylation in the placenta and umbilical cord blood from pregnancies with maternal gestational diabetes, preeclampsia, and obesity. Reprod Sci 2014; 21(1): 131-7.
[http://dx.doi.org/10.1177/1933719113492206] [PMID: 23765376]
[89]
Yang IV, Zhang W, Davidson EJ, Fingerlin TE, Kechris K, Dabelea D. Epigenetic marks of in utero exposure to gestational diabetes and childhood adiposity outcomes: The EPOCH study. Diabet Med 2018; 35(5): 612-20.
[http://dx.doi.org/10.1111/dme.13604] [PMID: 29461653]
[90]
Crume TL, Ogden L, Daniels S, Hamman RF, Norris JM, Dabelea D. The impact of in utero exposure to diabetes on childhood body mass index growth trajectories: The EPOCH study. J Pediatr 2011; 158(6): 941-6.
[http://dx.doi.org/10.1016/j.jpeds.2010.12.007] [PMID: 21238981]
[91]
Juvinao-Quintero DL, Cardenas A, Perron P, Bouchard L, Lutz SM, Hivert MF. Associations between an integrated component of maternal glycemic regulation in pregnancy and cord blood DNA methylation. Epigenomics 2021; 13(18): 1459-72.
[http://dx.doi.org/10.2217/epi-2021-0220] [PMID: 34596421]
[92]
Allard C, Desgagné V, Patenaude J, et al. Mendelian randomization supports causality between maternal hyperglycemia and epigenetic regulation of leptin gene in newborns. Epigenetics 2015; 10(4): 342-51.
[http://dx.doi.org/10.1080/15592294.2015.1029700] [PMID: 25800063]
[93]
Bouchard L, Thibault S, Guay SP, et al. Leptin gene epigenetic adaptation to impaired glucose metabolism during pregnancy. Diabetes Care 2010; 33(11): 2436-41.
[http://dx.doi.org/10.2337/dc10-1024] [PMID: 20724651]
[94]
El Hajj N, Pliushch G, Schneider E, et al. Metabolic programming of MEST DNA methylation by intrauterine exposure to gestational diabetes mellitus. Diabetes 2013; 62(4): 1320-8.
[http://dx.doi.org/10.2337/db12-0289] [PMID: 23209187]
[95]
Shao WJ, Tao LY, Gao C, Xie JY, Zhao RQ. Alterations in methylation and expression levels of imprinted genes H19 and Igf2 in the fetuses of diabetic mice. Comp Med 2008; 58(4): 341-6.
[PMID: 18724775]
[96]
Ding GL, Wang FF, Shu J, et al. Transgenerational glucose intolerance with Igf2/H19 epigenetic alterations in mouse islet induced by intrauterine hyperglycemia. Diabetes 2012; 61(5): 1133-42.
[http://dx.doi.org/10.2337/db11-1314] [PMID: 22447856]
[97]
Jovanovic-Peterson L, Peterson CM, Reed GF, et al. Maternal postprandial glucose levels and infant birth weight: The diabetes in early pregnancy study. The national institute of child health and human development--diabetes in early pregnancy study. Am J Obstet Gynecol 1991; 164(1 Pt 1): 103-11.
[http://dx.doi.org/10.1016/0002-9378(91)90637-7] [PMID: 1986596]
[98]
Wang Q, Tang SB, Song XB, et al. High-glucose concentrations change DNA methylation levels in human IVM oocytes. Hum Reprod 2018; 33(3): 474-81.
[http://dx.doi.org/10.1093/humrep/dey006] [PMID: 29377995]
[99]
Bouchard L, Hivert MF, Guay SP, St-Pierre J, Perron P, Brisson D. Placental adiponectin gene DNA methylation levels are associated with mothers’ blood glucose concentration. Diabetes 2012; 61(5): 1272-80.
[http://dx.doi.org/10.2337/db11-1160] [PMID: 22396200]
[100]
Houshmand-Oeregaard A, Hansen NS, Hjort L, et al. Differential adipokine DNA methylation and gene expression in subcutaneous adipose tissue from adult offspring of women with diabetes in pregnancy. Clin Epigenetics 2017; 9(1): 37.
[http://dx.doi.org/10.1186/s13148-017-0338-2] [PMID: 28413567]
[101]
Talton OO, Bates K, Salazar SR, Ji T, Schulz LC. Lean maternal hyperglycemia alters offspring lipid metabolism and susceptibility to diet-induced obesity in mice†. Biol Reprod 2019; 100(5): 1356-69.
[http://dx.doi.org/10.1093/biolre/ioz009] [PMID: 30698664]
[102]
Schaiff WT, Barak Y, Sadovsky Y. The pleiotropic function of PPAR gamma in the placenta. Mol Cell Endocrinol 2006; 249(1-2): 10-5.
[http://dx.doi.org/10.1016/j.mce.2006.02.009] [PMID: 16574314]
[103]
Zhao Q, Yang D, Gao L, et al. Downregulation of peroxisome proliferator-activated receptor gamma in the placenta correlates to hyperglycemia in offspring at young adulthood after exposure to gestational diabetes mellitus. J Diabetes Investig 2019; 10(2): 499-512.
[http://dx.doi.org/10.1111/jdi.12928] [PMID: 30187673]
[104]
McFarland MB, Trylovich CG, Langer O. Anthropometric differences in macrosomic infants of diabetic and nondiabetic mothers. J Matern Fetal Med 1998; 7(6): 292-5.
[http://dx.doi.org/10.1002/(SICI)1520-6661(199811/12)7:6<292:AID-MFM7>3.0.CO;2-A] [PMID: 9848695]
[105]
Metzger BE, Lowe LP, Dyer AR, et al. The Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study: associations of higher levels of maternal glucose and BMI with macrosomia: An example of diabesity. American Diabetes Association 70th Scientific Session; 2010 Jun 25-29; Orlando, Florida, USA. Abstract No. 154- OR.
[106]
Gillberg L, Jacobsen SC, Rönn T, Brøns C, Vaag A. PPARGC1A DNA methylation in subcutaneous adipose tissue in low birth weight subjects-impact of 5 days of high-fat overfeeding. Metabolism 2014; 63(2): 263-71.
[http://dx.doi.org/10.1016/j.metabol.2013.10.003] [PMID: 24262291]
[107]
Lowe WL Jr, Lowe LP, Kuang A, et al. Maternal glucose levels during pregnancy and childhood adiposity in the hyperglycemia and adverse pregnancy outcome follow-up study. Diabetologia 2019; 62(4): 598-610.
[http://dx.doi.org/10.1007/s00125-018-4809-6] [PMID: 30648193]
[108]
Brasacchio D, Okabe J, Tikellis C, et al. Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes 2009; 58(5): 1229-36.
[http://dx.doi.org/10.2337/db08-1666] [PMID: 19208907]
[109]
Wang J, Hevi S, Kurash JK, et al. The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat Genet 2009; 41(1): 125-9.
[http://dx.doi.org/10.1038/ng.268] [PMID: 19098913]
[110]
Kundakovic M, Jaric I. The epigenetic link between prenatal adverse environments and neurodevelopmental disorders. Genes (Basel) 2017; 8(3): 104.
[http://dx.doi.org/10.3390/genes8030104] [PMID: 28335457]
[111]
Ren J, Cheng Y, Ming ZH, et al. Intrauterine hyperglycemia exposure results in intergenerational inheritance via DNA methylation reprogramming on F1 PGCs. Epigenetics Chromatin 2018; 11(1): 20.
[http://dx.doi.org/10.1186/s13072-018-0192-2] [PMID: 29801514]
[112]
Luan J, Wang Y, Lee HM, et al. Differentially methylated regions in offspring exposed to maternal hyperglycaemia. In: Keystone Symposia on molecular and cellular biology, epigenetic programming and inheritance; 2014 Apr 6-10; Boston.
[113]
Calderari S, Gangnerau MN, Thibault M, et al. Defective IGF2 and IGF1R protein production in embryonic pancreas precedes beta cell mass anomaly in the Goto-Kakizaki rat model of type 2 diabetes. Diabetologia 2007; 50(7): 1463-71.
[http://dx.doi.org/10.1007/s00125-007-0676-2] [PMID: 17476475]
[114]
Hark AT, Schoenherr CJ, Katz DJ, Ingram RS, Levorse JM, Tilghman SM. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 2000; 405(6785): 486-9.
[http://dx.doi.org/10.1038/35013106] [PMID: 10839547]
[115]
Gloyn AL, Mackay DJ, Weedon MN, et al. Assessment of the role of common genetic variation in the Transient Neonatal Diabetes Mellitus (TNDM) region in type 2 diabetes: A comparative genomic and tagging single nucleotide polymorphism approach. Diabetes 2006; 55(8): 2272-6.
[http://dx.doi.org/10.2337/db06-0216] [PMID: 16873690]
[116]
Ravelli GP, Stein ZA, Susser MW. Obesity in young men after famine exposure in utero and early infancy. N Engl J Med 1976; 295(7): 349-53.
[http://dx.doi.org/10.1056/NEJM197608122950701] [PMID: 934222]
[117]
Barker DJ, Gluckman PD, Godfrey KM, Harding JE, Owens JA, Robinson JS. Fetal nutrition and cardiovascular disease in adult life. Lancet 1993; 341(8850): 938-41.
[http://dx.doi.org/10.1016/0140-6736(93)91224-A] [PMID: 8096277]
[118]
García AP, Palou M, Sánchez J, Priego T, Palou A, Picó C. Moderate caloric restriction during gestation in rats alters adipose tissue sympathetic innervation and later adiposity in offspring. PLoS One 2011; 6(2): e17313.
[http://dx.doi.org/10.1371/journal.pone.0017313] [PMID: 21364997]
[119]
Wang J, Wu Z, Li D, et al. Nutrition, epigenetics, and metabolic syndrome. Antioxid Redox Signal 2012; 17(2): 282-301.
[http://dx.doi.org/10.1089/ars.2011.4381] [PMID: 22044276]
[120]
Zimmet P, Shi Z, El-Osta A, Ji L. Epidemic T2DM, early development and epigenetics: Implications of the Chinese Famine. Nat Rev Endocrinol 2018; 14(12): 738-46.
[http://dx.doi.org/10.1038/s41574-018-0106-1] [PMID: 30310152]
[121]
Xia Q, Cai H, Xiang YB, et al. Prospective cohort studies of birth weight and risk of obesity, diabetes, and hypertension in adulthood among the Chinese population. J Diabetes 2019; 11(1): 55-64.
[http://dx.doi.org/10.1111/1753-0407.12800] [PMID: 29893042]
[122]
de Lauzon-Guillain B, Balkau B, Charles MA, Romieu I, Boutron-Ruault MC, Clavel-Chapelon F. Birth weight, body silhouette over the life course, and incident diabetes in 91,453 middle-aged women from the French Etude Epidemiologique de Femmes de la Mutuelle Generale de l’Education Nationale (E3N). Cohort Cohort Diabetes Care 2010; 33(2): 298-303.
[http://dx.doi.org/10.2337/dc09-1304] [PMID: 19918011]
[123]
Katanoda K, Noda M, Goto A, Mizunuma H, Lee JS, Hayashi K. Impact of birth weight on adult-onset diabetes mellitus in relation to current body mass index: The Japan Nurses’ Health Study. J Epidemiol 2017; 27(9): 428-34.
[http://dx.doi.org/10.1016/j.je.2016.08.016] [PMID: 28645520]
[124]
Barker DJ, Forsén T, Eriksson JG, Osmond C. Growth and living conditions in childhood and hypertension in adult life: A longitudinal study. J Hypertens 2002; 20(10): 1951-6.
[http://dx.doi.org/10.1097/00004872-200210000-00013] [PMID: 12359972]
[125]
Forsén T, Eriksson JG, Tuomilehto J, Osmond C, Barker DJ. Growth in utero and during childhood among women who develop coronary heart disease: Longitudinal study. BMJ 1999; 319(7222): 1403-7.
[http://dx.doi.org/10.1136/bmj.319.7222.1403] [PMID: 10574856]
[126]
Lee HS. Impact of maternal diet on the epigenome during in utero life and the developmental programming of diseases in childhood and adulthood. Nutrients 2015; 7(11): 9492-507.
[http://dx.doi.org/10.3390/nu7115467] [PMID: 26593940]
[127]
Torrens C, Poston L, Hanson MA. Transmission of raised blood pressure and endothelial dysfunction to the F2 generation induced by maternal protein restriction in the F0, in the absence of dietary challenge in the F1 generation. Br J Nutr 2008; 100(4): 760-6.
[http://dx.doi.org/10.1017/S0007114508921747] [PMID: 18304387]
[128]
Heijmans BT, Tobi EW, Stein AD, et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA 2008; 105(44): 17046-9.
[http://dx.doi.org/10.1073/pnas.0806560105] [PMID: 18955703]
[129]
Hernández-Valero MA, Rother J, Gorlov I, Frazier M, Gorlova O. Interplay between polymorphisms and methylation in the H19/IGF2 gene region may contribute to obesity in Mexican-American children. J Dev Orig Health Dis 2013; 4(6): 499-506.
[http://dx.doi.org/10.1017/S204017441300041X] [PMID: 24575294]
[130]
Sinclair KD, Allegrucci C, Singh R, et al. DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc Natl Acad Sci USA 2007; 104(49): 19351-6.
[http://dx.doi.org/10.1073/pnas.0707258104] [PMID: 18042717]
[131]
Krishnaveni GV, Veena SR, Karat SC, Yajnik CS, Fall CH. Association between maternal folate concentrations during pregnancy and insulin resistance in Indian children. Diabetologia 2014; 57(1): 110-21.
[http://dx.doi.org/10.1007/s00125-013-3086-7] [PMID: 24162586]
[132]
McCullough LE, Miller EE, Mendez MA, Murtha AP, Murphy SK, Hoyo C. Maternal B vitamins: Effects on offspring weight and DNA methylation at genomically imprinted domains. Clin Epigenetics 2016; 8(1): 8.
[http://dx.doi.org/10.1186/s13148-016-0174-9] [PMID: 26807160]
[133]
Guéant JL, Elakoum R, Ziegler O, et al. Nutritional models of foetal programming and nutrigenomic and epigenomic dysregulations of fatty acid metabolism in the liver and heart. Pflugers Arch 2014; 466(5): 833-50.
[http://dx.doi.org/10.1007/s00424-013-1339-4] [PMID: 23999818]
[134]
Zhu X, Li H, Wu Y, Zhou J, Yang G, Wang W. lncRNA MEG3 promotes hepatic insulin resistance by serving as a competing endogenous RNA of miR-214 to regulate ATF4 expression. Int J Mol Med 2019; 43(1): 345-57.
[PMID: 30431065]
[135]
Choi SW, Claycombe KJ, Martinez JA, Friso S, Schalinske KL. Nutritional epigenomics: A portal to disease prevention. Adv Nutr 2013; 4(5): 530-2.
[http://dx.doi.org/10.3945/an.113.004168] [PMID: 24038247]
[136]
Salbaum JM, Kappen C. Responses of the embryonic epigenome to maternal diabetes. Birth Defects Res A Clin Mol Teratol 2012; 94(10): 770-81.
[http://dx.doi.org/10.1002/bdra.23035] [PMID: 22786762]
[137]
Zhang L, Han L, Ma R, et al. Sirt3 prevents maternal obesity-associated oxidative stress and meiotic defects in mouse oocytes. Cell Cycle 2015; 14(18): 2959-68.
[http://dx.doi.org/10.1080/15384101.2015.1026517] [PMID: 25790176]
[138]
Park JH, Yoo Y, Cho M, Lim J, Lindroth AM, Park YJ. Diet-induced obesity leads to metabolic dysregulation in offspring via endoplasmic reticulum stress in a sex-specific manner. Int J Obes 2018; 42(2): 244-51.
[http://dx.doi.org/10.1038/ijo.2017.203] [PMID: 28811650]
[139]
Ng SF, Lin RC, Laybutt DR, Barres R, Owens JA, Morris MJ. Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring. Nature 2010; 467(7318): 963-6.
[http://dx.doi.org/10.1038/nature09491] [PMID: 20962845]
[140]
Fullston T, Ohlsson Teague EM, Palmer NO, et al. Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J 2013; 27(10): 4226-43.
[http://dx.doi.org/10.1096/fj.12-224048] [PMID: 23845863]
[141]
Gaucher J, Reynoird N, Montellier E, Boussouar F, Rousseaux S, Khochbin S. From meiosis to postmeiotic events: The secrets of histone disappearance. FEBS J 2010; 277(3): 599-604.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07504.x] [PMID: 20015078]
[142]
Palmer NO, Fullston T, Mitchell M, Setchell BP, Lane M. SIRT6 in mouse spermatogenesis is modulated by diet-induced obesity. Reprod Fertil Dev 2011; 23(7): 929-39.
[http://dx.doi.org/10.1071/RD10326] [PMID: 21871212]
[143]
Awe S, Renkawitz-Pohl R. Histone H4 acetylation is essential to proceed from a histone- to a protamine-based chromatin structure in spermatid nuclei of Drosophila melanogaster. Syst Biol Reprod Med 2010; 56(1): 44-61.
[http://dx.doi.org/10.3109/19396360903490790] [PMID: 20170286]
[144]
Marcon L, Boissonneault G. Transient DNA strand breaks during mouse and human spermiogenesis new insights in stage specificity and link to chromatin remodeling. Biol Reprod 2004; 70(4): 910-8.
[http://dx.doi.org/10.1095/biolreprod.103.022541] [PMID: 14645105]
[145]
Du Plessis SS, Cabler S, McAlister DA, Sabanegh E, Agarwal A. The effect of obesity on sperm disorders and male infertility. Nat Rev Urol 2010; 7(3): 153-61.
[http://dx.doi.org/10.1038/nrurol.2010.6] [PMID: 20157305]
[146]
Indrio F, Martini S, Francavilla R, et al. Epigenetic matters: The link between early nutrition, microbiome, and long-term health development. Front Pediatr 2017; 5: 178.
[http://dx.doi.org/10.3389/fped.2017.00178] [PMID: 28879172]
[147]
Celluzzi A, Masotti A. How our other genome controls our epi-genome. Trends Microbiol 2016; 24(10): 777-87.
[http://dx.doi.org/10.1016/j.tim.2016.05.005] [PMID: 27289569]
[148]
Miller CB, Benny P, Riel J, et al. Adherence to Mediterranean diet impacts gastrointestinal microbial diversity throughout pregnancy. BMC Pregnancy Childbirth 2021; 21(1): 558.
[http://dx.doi.org/10.1186/s12884-021-04033-8] [PMID: 34399704]
[149]
Fernandez-Twinn DS, Hjort L, Novakovic B, Ozanne SE, Saffery R. Intrauterine programming of obesity and type 2 diabetes. Diabetologia 2019; 62(10): 1789-801.
[http://dx.doi.org/10.1007/s00125-019-4951-9] [PMID: 31451874]
[150]
Dancause KN, Veru F, Andersen RE, Laplante DP, King S. Prenatal stress due to a natural disaster predicts insulin secretion in adolescence. Early Hum Dev 2013; 89(9): 773-6.
[http://dx.doi.org/10.1016/j.earlhumdev.2013.06.006] [PMID: 23830724]
[151]
Virk J, Li J, Vestergaard M, Obel C, Kristensen JK, Olsen J. Prenatal exposure to bereavement and type-2 diabetes: A Danish longitudinal population based study. PLoS One 2012; 7(8): e43508.
[http://dx.doi.org/10.1371/journal.pone.0043508] [PMID: 22952698]
[152]
Trzepizur W, Khalyfa A, Qiao Z, Popko B, Gozal D. Integrated stress response activation by sleep fragmentation during late gestation in mice leads to emergence of adverse metabolic phenotype in offspring. Metabolism 2017; 69: 188-98.
[http://dx.doi.org/10.1016/j.metabol.2017.01.026] [PMID: 28139216]
[153]
Kassi E. HPA axis abnormalities and metabolic syndrome Endocr Abstr 2016; 41: S4.1.
[http://dx.doi.org/10.1530/endoabs.41.S4.1]
[154]
Palma-Gudiel H, Córdova-Palomera A, Eixarch E, Deuschle M, Fañanás L. Maternal psychosocial stress during pregnancy alters the epigenetic signature of the glucocorticoid receptor gene promoter in their offspring: A meta-analysis. Epigenetics 2015; 10(10): 893-902.
[http://dx.doi.org/10.1080/15592294.2015.1088630] [PMID: 26327302]
[155]
Sosnowski DW, Booth C, York TP, Amstadter AB, Kliewer W. Maternal prenatal stress and infant DNA methylation: A systematic review. Dev Psychobiol 2018; 60(2): 127-39.
[http://dx.doi.org/10.1002/dev.21604] [PMID: 29344930]
[156]
Perroud N, Paoloni-Giacobino A, Prada P, et al. Increased methylation of glucocorticoid receptor gene (NR3C1) in adults with a history of childhood maltreatment: A link with the severity and type of trauma. Transl Psychiatry 2011; 1(12): e59.
[http://dx.doi.org/10.1038/tp.2011.60] [PMID: 22832351]
[157]
Braithwaite EC, Kundakovic M, Ramchandani PG, Murphy SE, Champagne FA. Maternal prenatal depressive symptoms predict infant NR3C1 1F and BDNF IV DNA methylation. Epigenetics 2015; 10(5): 408-17.
[http://dx.doi.org/10.1080/15592294.2015.1039221] [PMID: 25875334]
[158]
Rogers JM. Smoking and pregnancy: Epigenetics and developmental origins of the metabolic syndrome. Birth Defects Res 2019; 111(17): 1259-69.
[http://dx.doi.org/10.1002/bdr2.1550] [PMID: 31313499]
[159]
U.S. Department of health, education, and welfare. Smoking and health: Report of the advisory committee to the surgeon general of the public health service. Washington: U.S. Department of health, education, and welfare, public health service, center for disease control, 1964. PHS Publication No. 1103. Available from: https://www.govinfo.gov/content/pkg/GPO-SMOKINGANDHEALTH/pdf/GPO-SMOKINGANDHEALTH.pdf
[160]
Hackshaw A, Rodeck C, Boniface S. Maternal smoking in pregnancy and birth defects: A systematic review based on 173 687 malformed cases and 11.7 million controls. Hum Reprod Update 2011; 17(5): 589-604.
[http://dx.doi.org/10.1093/humupd/dmr022] [PMID: 21747128]
[161]
Oken E, Levitan EB, Gillman MW. Maternal smoking during pregnancy and child overweight: Systematic review and meta-analysis. Int J Obes 2008; 32(2): 201-10.
[http://dx.doi.org/10.1038/sj.ijo.0803760] [PMID: 18278059]
[162]
Rayfield S, Plugge E. Systematic review and meta-analysis of the association between maternal smoking in pregnancy and childhood overweight and obesity. J Epidemiol Community Health 2017; 71(2): 162-73.
[http://dx.doi.org/10.1136/jech-2016-207376] [PMID: 27480843]
[163]
Timmermans SH, Mommers M, Gubbels JS, et al. Maternal smoking during pregnancy and childhood overweight and fat distribution: The KOALA Birth Cohort Study. Pediatr Obes 2014; 9(1): e14-25.
[http://dx.doi.org/10.1111/j.2047-6310.2012.00141.x] [PMID: 23362054]
[164]
La Merrill MA, Cirillo PM, Krigbaum NY, Cohn BA. The impact of prenatal parental tobacco smoking on risk of diabetes mellitus in middle-aged women. J Dev Orig Health Dis 2015; 6(3): 242-9.
[http://dx.doi.org/10.1017/S2040174415000045] [PMID: 25665487]
[165]
Jaddoe VW, de Jonge LL, van Dam RM, et al. Fetal exposure to parental smoking and the risk of type 2 diabetes in adult women. Diabetes Care 2014; 37(11): 2966-73.
[http://dx.doi.org/10.2337/dc13-1679] [PMID: 25092685]
[166]
Laufer BI, Chater-Diehl EJ, Kapalanga J, Singh SM. Long-term alterations to DNA methylation as a biomarker of prenatal alcohol exposure: From mouse models to human children with fetal alcohol spectrum disorders. Alcohol 2017; 60: 67-75.
[http://dx.doi.org/10.1016/j.alcohol.2016.11.009] [PMID: 28187949]
[167]
Hayashi S, Takeichi M. Emerging roles of protocadherins: From self-avoidance to enhancement of motility. J Cell Sci 2015; 128(8): 1455-64.
[http://dx.doi.org/10.1242/jcs.166306] [PMID: 25749861]
[168]
Haycock PC, Ramsay M. Exposure of mouse embryos to ethanol during preimplantation development: Effect on DNA methylation in the h19 imprinting control region. Biol Reprod 2009; 81(4): 618-27.
[http://dx.doi.org/10.1095/biolreprod.108.074682] [PMID: 19279321]
[169]
Mancilla VJ, Peeri NC, Silzer T, et al. Understanding the interplay between health disparities and epigenomics. Front Genet 2020; 11: 903.
[http://dx.doi.org/10.3389/fgene.2020.00903] [PMID: 32973872]
[170]
Liu Y, Balaraman Y, Wang G, Nephew KP, Zhou FC. Alcohol exposure alters DNA methylation profiles in mouse embryos at early neurulation. Epigenetics 2009; 4(7): 500-11.
[http://dx.doi.org/10.4161/epi.4.7.9925] [PMID: 20009564]
[171]
Kaminen-Ahola N, Ahola A, Maga M, et al. Maternal ethanol consumption alters the epigenotype and the phenotype of offspring in a mouse model. PLoS Genet 2010; 6(1): e1000811.
[http://dx.doi.org/10.1371/journal.pgen.1000811] [PMID: 20084100]
[172]
Drake P, Driscoll AK, Mathews TJ. Cigarette Smoking during pregnancy: United States, 2016. NCHS Data Brief 2018; 305: 1-8.
[PMID: 29528282]
[173]
Breton CV, Byun HM, Wenten M, Pan F, Yang A, Gilliland FD. Prenatal tobacco smoke exposure affects global and gene-specific DNA methylation. Am J Respir Crit Care Med 2009; 180(5): 462-7.
[http://dx.doi.org/10.1164/rccm.200901-0135OC] [PMID: 19498054]
[174]
Maccani JZ, Maccani MA. Altered placental DNA methylation patterns associated with maternal smoking: Current perspectives. Adv Genomics Genet 2015; 2015(5): 205-14.
[http://dx.doi.org/10.2147/AGG.S61518] [PMID: 26203295]
[175]
Joubert BR, Håberg SE, Nilsen RM, et al. 450K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ Health Perspect 2012; 120(10): 1425-31.
[http://dx.doi.org/10.1289/ehp.1205412] [PMID: 22851337]
[176]
Joubert BR, Felix JF, Yousefi P, et al. DNA methylation in newborns and maternal smoking in pregnancy: Genome-wide consortium meta-analysis. Am J Hum Genet 2016; 98(4): 680-96.
[http://dx.doi.org/10.1016/j.ajhg.2016.02.019] [PMID: 27040690]
[177]
Lee KW, Richmond R, Hu P, et al. Prenatal exposure to maternal cigarette smoking and DNA methylation: Epigenome-wide association in a discovery sample of adolescents and replication in an independent cohort at birth through 17 years of age. Environ Health Perspect 2015; 123(2): 193-9.
[http://dx.doi.org/10.1289/ehp.1408614] [PMID: 25325234]
[178]
Murphy SK, Adigun A, Huang Z, et al. Gender-specific methylation differences in relation to prenatal exposure to cigarette smoke. Gene 2012; 494(1): 36-43.
[http://dx.doi.org/10.1016/j.gene.2011.11.062] [PMID: 22202639]
[179]
Maccani MA, Avissar-Whiting M, Banister CE, McGonnigal B, Padbury JF, Marsit CJ. Maternal cigarette smoking during pregnancy is associated with downregulation of miR-16, miR-21, and miR-146a in the placenta. Epigenetics 2010; 5(7): 583-9.
[http://dx.doi.org/10.4161/epi.5.7.12762] [PMID: 20647767]
[180]
Pandey SC, Kyzar EJ, Zhang H. Epigenetic basis of the dark side of alcohol addiction. Neuropharmacology 2017; 122: 74-84.
[http://dx.doi.org/10.1016/j.neuropharm.2017.02.002] [PMID: 28174112]
[181]
Kyzar EJ, Floreani C, Teppen TL, Pandey SC. Adolescent alcohol exposure: Burden of epigenetic reprogramming, synaptic remodeling, and adult psychopathology. Front Neurosci 2016; 10: 222.
[http://dx.doi.org/10.3389/fnins.2016.00222] [PMID: 27303256]
[182]
Rubin BS, Bisphenol A. An endocrine disruptor with widespread exposure and multiple effects. J Steroid Biochem Mol Biol 2011; 127(1-2): 27-34.
[http://dx.doi.org/10.1016/j.jsbmb.2011.05.002] [PMID: 21605673]
[183]
Manikkam M, Tracey R, Guerrero-Bosagna C, Skinner MK. Plastics derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. PLoS One 2013; 8(1): e55387.
[http://dx.doi.org/10.1371/journal.pone.0055387] [PMID: 23359474]
[184]
Skinner MK, Manikkam M, Tracey R, Guerrero-Bosagna C, Haque M, Nilsson EE. Ancestral dichlorodiphenyltrichloroethane (DDT) exposure promotes epigenetic transgenerational inheritance of obesity. BMC Med 2013; 11(1): 228.
[http://dx.doi.org/10.1186/1741-7015-11-228] [PMID: 24228800]
[185]
Sandrini L, Di Minno A, Amadio P, Ieraci A, Tremoli E, Barbieri SS. Association between obesity and circulating Brain-Derived Neurotrophic Factor (BDNF) levels: Systematic review of literature and meta-analysis. Int J Mol Sci 2018; 19(8): 2281.
[http://dx.doi.org/10.3390/ijms19082281] [PMID: 30081509]
[186]
Martinowich K, Hattori D, Wu H, et al. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 2003; 302(5646): 890-3.
[http://dx.doi.org/10.1126/science.1090842] [PMID: 14593184]
[187]
Bansal A, Simmons RA. Epigenetics and developmental origins of diabetes: Correlation or causation? Am J Physiol Endocrinol Metab 2018; 315(1): E15-28.
[http://dx.doi.org/10.1152/ajpendo.00424.2017] [PMID: 29406781]
[188]
Susiarjo M, Xin F, Bansal A, et al. Bisphenol a exposure disrupts metabolic health across multiple generations in the mouse. Endocrinology 2015; 156(6): 2049-58.
[http://dx.doi.org/10.1210/en.2014-2027] [PMID: 25807043]
[189]
Ma Y, Xia W, Wang DQ, et al. Hepatic DNA methylation modifications in early development of rats resulting from perinatal BPA exposure contribute to insulin resistance in adulthood. Diabetologia 2013; 56(9): 2059-67.
[http://dx.doi.org/10.1007/s00125-013-2944-7] [PMID: 23748860]
[190]
Grindler NM, Vanderlinden L, Karthikraj R, et al. Exposure to phthalate, an endocrine disrupting chemical, alters the first trimester placental methylome and transcriptome in women. Sci Rep 2018; 8(1): 6086.
[http://dx.doi.org/10.1038/s41598-018-24505-w] [PMID: 29666409]
[191]
Zhao Y, Shi HJ, Xie CM, Chen J, Laue H, Zhang YH. Prenatal phthalate exposure, infant growth, and global DNA methylation of human placenta. Environ Mol Mutagen 2015; 56(3): 286-92.
[http://dx.doi.org/10.1002/em.21916] [PMID: 25327576]
[192]
Kim S, Thapar I, Brooks BW. Epigenetic changes by per- and polyfluoroalkyl substances (PFAS). Environ Pollut 2021; 279: 116929.
[http://dx.doi.org/10.1016/j.envpol.2021.116929] [PMID: 33751946]
[193]
Strycharz J, Rygielska Z, Swiderska E, et al. SIRT1 as a therapeutic target in diabetic complications. Curr Med Chem 2018; 25(9): 1002-35.
[http://dx.doi.org/10.2174/0929867324666171107103114] [PMID: 29110598]
[194]
Reddy MA, Sumanth P, Lanting L, et al. Losartan reverses permissive epigenetic changes in renal glomeruli of diabetic db/db mice. Kidney Int 2014; 85(2): 362-73.
[http://dx.doi.org/10.1038/ki.2013.387] [PMID: 24088954]
[195]
Malek V, Gaikwad AB. Telmisartan and thiorphan combination treatment attenuates fibrosis and apoptosis in preventing diabetic cardiomyopathy. Cardiovasc Res 2019; 115(2): 373-84.
[http://dx.doi.org/10.1093/cvr/cvy226] [PMID: 30184174]
[196]
De Vries N, Prestes P, Rana I, Harrap SB, Charchar FJ. YIA 03-04 epigenetic changes after acute treatment with acute angiotensin converting enzyme inhibitors (ACEi). J Hypertens 2016; 34 (Suppl. 1): e204-5.
[http://dx.doi.org/10.1097/01.hjh.0000500443.76719.d5]
[197]
Kaneko M, Satomi T, Fujiwara S, Uchiyama H, Kusumoto K, Nishimoto T. AT1 receptor blocker azilsartan medoxomil normalizes plasma miR-146a and miR-342-3p in a murine heart failure model. Biomarkers 2017; 22(3-4): 253-60.
[http://dx.doi.org/10.1080/1354750X.2016.1204001] [PMID: 27321284]
[198]
Trajkovski M, Hausser J, Soutschek J, et al. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 2011; 474(7353): 649-53.
[http://dx.doi.org/10.1038/nature10112] [PMID: 21654750]
[199]
Choi SE, Fu T, Seok S, et al. Elevated microRNA-34a in obesity reduces NAD+ levels and SIRT1 activity by directly targeting NAMPT. Aging Cell 2013; 12(6): 1062-72.
[http://dx.doi.org/10.1111/acel.12135] [PMID: 23834033]
[200]
Mimouni NEH, Paiva I, Barbotin AL, et al. Polycystic ovary syndrome is transmitted via a transgenerational epigenetic process. Cell Metab 2021; 33(3): 513-530.e8.
[http://dx.doi.org/10.1016/j.cmet.2021.01.004] [PMID: 33539777]
[201]
Dumesic DA, Oberfield SE, Stener-Victorin E, Marshall JC, Laven JS, Legro RS. Scientific statement on the diagnostic criteria, epidemiology, pathophysiology, and molecular genetics of polycystic ovary syndrome. Endocr Rev 2015; 36(5): 487-525.
[http://dx.doi.org/10.1210/er.2015-1018] [PMID: 26426951]
[202]
Azoulay L, Bouvattier C, Christin-Maitre S. Impact of intra-uterine life on future health Ann Endocrinol (Paris) 2021; S0003- 4266(21): 01105-7.
[203]
Risal S, Pei Y, Lu H, et al. Prenatal androgen exposure and transgenerational susceptibility to polycystic ovary syndrome. Nat Med 2019; 25(12): 1894-904.
[http://dx.doi.org/10.1038/s41591-019-0666-1] [PMID: 31792459]
[204]
Stener-Victorin E, Deng Q. Transmission of polycystic ovary syndrome via epigenetic inheritance. Trends Mol Med 2021; 27(8): 723-4.
[http://dx.doi.org/10.1016/j.molmed.2021.05.005] [PMID: 34127396]
[205]
Jiang S, Teague AM, Tryggestad JB, Jensen ME, Chernausek SD. Role of metformin in epigenetic regulation of placental mitochondrial biogenesis in maternal diabetes. Sci Rep 2020; 10(1): 8314.
[http://dx.doi.org/10.1038/s41598-020-65415-0] [PMID: 32433500]
[206]
Owen MD, Baker BC, Scott EM, Forbes K. Interaction between metformin, folate and vitamin B12 and the potential impact on fetal growth and long-term metabolic health in diabetic pregnancies. Int J Mol Sci 2021; 22(11): 5759.
[http://dx.doi.org/10.3390/ijms22115759] [PMID: 34071182]
[207]
Rönn T, Volkov P, Davegårdh C, et al. A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue. PLoS Genet 2013; 9(6): e1003572.
[http://dx.doi.org/10.1371/journal.pgen.1003572] [PMID: 23825961]
[208]
Aggarwal BB. Targeting inflammation-induced obesity and metabolic diseases by curcumin and other nutraceuticals. Annu Rev Nutr 2010; 30(1): 173-99.
[http://dx.doi.org/10.1146/annurev.nutr.012809.104755] [PMID: 20420526]
[209]
Hassan FU, Rehman MS, Khan MS, et al. Curcumin as an alternative epigenetic modulator: Mechanism of action and potential effects. Front Genet 2019; 10: 514.
[http://dx.doi.org/10.3389/fgene.2019.00514] [PMID: 31214247]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy