Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Research Article Section: Applied Materials

Crystal Clamping in (Ba, Sr)TiO3 Borosilicate Glass Ceramics

Author(s): Avadhesh Kumar Yadav* and C.R. Gautam

Volume 2, Issue 5, 2022

Published on: 28 June, 2022

Page: [344 - 353] Pages: 10

DOI: 10.2174/2210298102666220416211616

Abstract

Background: Perovskite glass-ceramics have attracted the attention of researchers and scientists due to their wide range of applications in energy storage devices, solar cells, photovoltaic cells, etc. Barium titanate is the first discovered perovskite glass-ceramics. After the discovery of barium titanate, several perovskite glass-ceramics have been discovered. Several substitutions have also been attempted for the progress of perovskites. Barium strontium titanate is one of the perovskite glass-ceramics in which few barium ions are replaced by strontium ions. The crystal clamping is also found in a few perovskite glass-ceramics, e.g., PbTiO3.

Aims: In the present investigation, our focus is on the synthesis and crystallization behavior of barium strontium titanate borosilicate glass-ceramics in glass system 64[(Ba1-xSrx).TiO3]- 30[2SiO2.B2O3]-5[K2O]-1[La2O3] (0.0 ≤ x ≤ 1.0).

Methods: Synthesized glasses were characterized by differential thermal analysis, X-ray diffraction, and scanning electron microscopy.

Results: The crystallization behavior showed the formation of major crystalline phase of BaTiO3/ BaSrTiO3/ Ba1.91Sr0.09TiO4/ SrTiO3 along with some pyrochlore phase of Ba2TiSi2O8/ Sr2TiSi2O8/ Ba2Ti2B2O9/ Sr2B2O5. The crystalline phase formation depends upon both composition and the crystallization process. The crystal clamping was attributed to synthesizing glass-ceramics samples during the crystallization.

Conclusion: Bulk barium strontium titanate glass-ceramics were successfully prepared by the melt quench method. X-ray diffraction studies confirmed the formation of the major perovskite phase. During the crystallization of glasses, crystal clamping is attributed to the barium strontium titanate glass-ceramics.

Keywords: Barium strontium titanate, X-ray diffraction, crystal clamping, scanning electron microscopy, (Ba, Sr)TO3, glass ceramics.

Graphical Abstract
[1]
Yadav, A.K.; Gautam, C.R. A review on crystallisation behaviour of perovskite glass ceramics. Adv. Appl. Ceramics, 2014, 113(4), 193-207.
[http://dx.doi.org/10.1179/1743676113Y.0000000134]
[2]
Lakshimi, S.; Rao, S.; Ramadevudu, G.; Shareefuddin, M.; Hameed, A.; Chary, N.M.; Rao, M.L. Int. Trans. J. Eng. Manage. Appl. Sci. Technol., 2012, 4, 25-35.
[3]
Yadav, A.K.; Singh, P. A review of the structures of oxide glasses by Raman spectroscopy. RSC Advances, 2015, 5(83), 67583-67609.
[http://dx.doi.org/10.1039/C5RA13043C]
[4]
Zhao, Z.; Song, X.; Zhang, T.; Hu, K.; Liang, X.; Li, S.; Zhang, Y.; Baturin, I.; Shur, V. Influence of lanthanum substitution on microstruc-ture and impedance behavior of barium strontium titanate glass-ceramics. J. Appl. Phys., 2019, 126(7), 074101.
[http://dx.doi.org/10.1063/1.5093609]
[5]
Tumarkin, A.; Tyurnina, N.; Tyurnina, Z.; Mukhin, N.; Sinelshchikova, O.; Gagarin, A.; Sviridov, S.; Drozdovsky, A.; Sapego, E.; Mylni-kov, I. Barium-strontium titanate/porous glass structures for microwave applications. Materials (Basel), 2020, 13(24), 5639.
[http://dx.doi.org/10.3390/ma13245639] [PMID: 33321860]
[6]
Gao, F.; Zhang, K.; Guo, Y.; Xu, J.; Szafran, M. (Ba, Sr)TiO3/polymer dielectric composites-progress and perspective. Prog. Mater. Sci., 2021, 121, 100813.
[http://dx.doi.org/10.1016/j.pmatsci.2021.100813]
[7]
Dewanjee, S.; Das, R.; Miah, M. Preparation and Characterization of La2O3 Doped Ba0.3Sr0.7TiO3 Perovskite ceramics of varied sintering temperature and doping. Adv Mater Phys Chem, 2020, 10, 253-262.
[http://dx.doi.org/10.4236/ampc.2020.1011019]
[8]
Shen, Z.Y.; Wang, Y.; Tang, Y.; Yu, Y.; Luo, W.Q.; Wang, X.; Li, Y.; Wang, Z.; Song, F. Glass modified barium strontium titanate ceram-ics for energy storage capacitor at elevated temperatures. J. Materiomics, 2019, 5(4), 641-648.
[http://dx.doi.org/10.1016/j.jmat.2019.06.003]
[9]
Chen, J. La doping effect on the dielectric property of barium strontium titanate glass–ceramics. J. Mater. Sci. Technol., 2014, 30(3), 295-298.
[http://dx.doi.org/10.1016/j.jmst.2013.07.007]
[10]
Zhao, Z.; Liang, X.; Zhang, T.; Hu, K.; Li, S.; Zhang, Y. Effects of cerium doping on dielectric properties and defect mechanism of barium strontium titanate glass-ceramics. J. Eur. Ceram. Soc., 2020, 40(3), 712-719.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2019.10.023]
[11]
Tomar, V.; Jha, P.K.; Sinha, A.S.K.; Jha, P.A.; Singh, P. Enhancement in pyroelectricity of polar Ba0.9Sr0.1TiO3 –TeO2 glass-ceramics. J. Non-Cryst. Solids, 2020, 535, 119964.
[http://dx.doi.org/10.1016/j.jnoncrysol.2020.119964]
[12]
Wang, J.; Xia, Z.; Pan, Y.; Bai, X.; Chen, Y.; Xu, Z. Enhanced room-temperature electrocaloric effect in B and Mn modified Ba0.7Sr0.3TiO3 ceramics. Mater. Lett., 2022, 307, 131039.
[http://dx.doi.org/10.1016/j.matlet.2021.131039]
[13]
Lynch, S.M.; Shelby, J.E. Crystal clamping in lead titanate glass-ceramics. J. Am. Ceram. Soc., 1984, 67(6), 424-427.
[http://dx.doi.org/10.1111/j.1151-2916.1984.tb19729.x]
[14]
Grossman, D.G.; Isard, J.O. Crystal clamping in PbTiO3 glass-ceramics. J. Mater. Sci., 1969, 4(12), 1059-1063.
[http://dx.doi.org/10.1007/BF00549844]
[15]
Bergeron, C.G.; Russell, C.K. Nucleation and growth of lead titanate from a glass. J. Am. Ceram. Soc., 1965, 48(3), 115-118.
[http://dx.doi.org/10.1111/j.1151-2916.1965.tb16043.x]
[16]
Yadav, A.K.; Gautam, C.R.; Singh, P. Dielectric behavior of lanthanum added barium strontium titanate borosilicate glass ceramics. J. Mater. Sci. Mater. Electron., 2015, 26(7), 5001-5008.
[http://dx.doi.org/10.1007/s10854-015-3013-4]
[17]
Yadav, A.K.; Gautam, C.R.; Mishra, A. Mechanical and dielectric behaviors of perovskite (Ba,Sr)TiO3 borosilicate glass ceramics. J. Adv. Ceram., 2014, 3(2), 137-146.
[http://dx.doi.org/10.1007/s40145-014-0104-2]
[18]
Patterson, A.L. The scherrer formula for x-ray particle size determination. Phys. Rev., 1939, 56(10), 978-982.
[http://dx.doi.org/10.1103/PhysRev.56.978]
[19]
Cullity, B.D. Elements of X-ray diffraction, 2nd ed; Addison-Wesley Publishing Company: California, 1978.
[20]
Yadav, A.K.; Gautam, C.R.; Gautam, A.; Mishra, V.K. Structural and crystallization behavior of (Ba,Sr)TiO3 borosilicate glasses. Phase Transitions: (A Multinational Journal), 2013, 86(10), 1000-1016.
[21]
Nelmes, R.J.; Meyer, G.M.; Hutton, J. Thermal motion in SrTiO3 at room temperature: Anharmonic or disordered? Ferroelectrics, 1978, 21(1), 461-462.
[http://dx.doi.org/10.1080/00150197808237297]
[22]
Kwestroo, W.; Paping, H.A.M. The systems BaO-SrO-TiO2, BaO-CaO-TiO2, and SrO-CaO-TiO2. J. Am. Ceram. Soc., 1959, 42(6), 292-299.
[http://dx.doi.org/10.1111/j.1151-2916.1959.tb12957.x]
[23]
Markgraf, S.A.; Halliyal, A.; Bhalla, A.S.; Newnham, R.E.; Prewitt, C.T. X-ray structure refinement and pyroelectric investigation of fres-noite, Ba2TiSi2O8. Ferroelectrics, 1985, 62(1), 17-26.
[http://dx.doi.org/10.1080/00150198508017914]
[24]
Lin, Q.S.; Cheng, W.D.; Chen, J.T.; Huang, J.S. Crystal and electronic structures and linear optics of strontium pyroborate. J. Solid State Chem., 1999, 144(1), 30-34.
[http://dx.doi.org/10.1006/jssc.1998.8100]
[25]
Joseph, J.; Vimala, T.M.; Raju, J.; Murthy, V.R.K. Structural investigations on the (Ba,Sr)(Zr,Ti)O3 system. J. Phys. D Appl. Phys., 1999, 32(9), 1049-1057.
[http://dx.doi.org/10.1088/0022-3727/32/9/317]
[26]
Sahu, A.K.; Kumar, D.; Parkash, O. Lead-strontium titanate glass ceramics: I- crystallization and microstructure. J. Mater. Sci., 2006, 41(7), 2075-2085.
[http://dx.doi.org/10.1007/s10853-006-3642-3]
[27]
Gautam, C.R.; Yadav, A.K.; Singh, P. Crystallization kinematics and dielectric behavior of (Ba,Sr)TiO3 borosilicate glass ceramics. New J Glass Ceram, 2012, 2(3), 126-131.
[http://dx.doi.org/10.4236/njgc.2012.23018]

© 2024 Bentham Science Publishers | Privacy Policy