Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Letter Article

Sample Processing Considerations for Protein Stability Studies of Low Concentration Biofluid Samples using Differential Scanning Calorimetry

Author(s): Gabriela Schneider and Nichola C. Garbett*

Volume 29, Issue 6, 2022

Published on: 02 June, 2022

Page: [485 - 495] Pages: 11

DOI: 10.2174/0929866529666220416164305

Price: $65

Abstract

Background: The analysis of biofluid samples with low protein content (e.g., urine or saliva) can be challenging for downstream analysis methods with limited sensitivity. To circumvent this problem, sample processing methods are employed to increase the protein concentration in analyzed samples. However, for some techniques, like differential scanning calorimetry (DSC) that characterizes thermally-induced unfolding of biomolecules, sample processing must not affect native protein structure and stability.

Methods: We evaluated centrifugal concentration and stirred cell ultrafiltration, two common methods of sample concentration characterized by a low risk of protein denaturation, with the goal of establishing a protocol for DSC analysis of low concentration biospecimens.

Results: Our studies indicate that both methods can affect protein stability assessed by DSC and, even after optimization of several parameters, the obtained DSC profile (thermogram) suggested that sample processing affects the structure or intermolecular interactions of component proteins contributing to altered thermal stability detectable by DSC. We also found a relationship between changes in thermograms and low protein concentration, indicating that diluting biospecimens to concentrations below 0.1 mg/mL can perturb the intermolecular environment and affect the structure of proteins present in the solution.

Conclusion: Dilution of samples below 0.1 mg/mL, as well as concentration of samples with low protein content, resulted in affected thermogram shapes suggesting changes in protein stability. This should be taken into account when concentrating dilute samples or employing techniques that lower the protein concentration (e.g., fractionation), when downstream applications include techniques, such as DSC, that require the preservation of native protein forms.

Keywords: Sample concentration, sample processing, stirred cell ultrafiltration, centrifugal concentrators, native protein, stability studies, low protein biofluid samples, differential scanning calorimetry.

Next »
Graphical Abstract
[1]
Garbett, N.C.; Miller, J.J.; Jenson, A.B.; Chaires, J.B. Calorimetric analysis of the plasma proteome. Semin. Nephrol., 2007, 27(6), 621-626.
[http://dx.doi.org/10.1016/j.semnephrol.2007.09.004] [PMID: 18061844]
[2]
Garbett, N.C.; Miller, J.J.; Jenson, A.B.; Chaires, J.B. Ligand binding alters the calorimetric thermogram of albumin. J Clin Ligand Assay., 2006, 29(4), 194-197.
[3]
Garbett, N.C.; Merchant, M.L.; Helm, C.W.; Jenson, A.B.; Klein, J.B.; Chaires, J.B. Detection of cervical cancer biomarker patterns in blood plasma and urine by differential scanning calorimetry and mass spectrometry. PLoS One, 2014, 9(1)e84710
[http://dx.doi.org/10.1371/journal.pone.0084710] [PMID: 24416269]
[4]
Velazquez-Campoy, A.; Vega, S.; Sanchez-Gracia, O.; Lanas, A.; Rodrigo, A.; Kaliappan, A.; Hall, M.B.; Nguyen, T.Q.; Brock, G.N.; Chesney, J.A.; Garbett, N.C.; Abian, O. Thermal liquid biopsy for monitoring melanoma patients under surveillance during treatment: A pilot study. Biochim. Biophys. Acta, Gen. Subj., 2018, 1862(8), 1701-1710.
[http://dx.doi.org/10.1016/j.bbagen.2018.04.020] [PMID: 29705200]
[5]
Todinova, S.; Krumova, S.; Gartcheva, L.; Robeerst, C.; Taneva, S.G. Microcalorimetry of blood serum proteome: A modified interaction network in the multiple myeloma case. Anal. Chem., 2011, 83(20), 7992-7998.
[http://dx.doi.org/10.1021/ac202055m] [PMID: 21928840]
[6]
Garbett, N.C.; Mekmaysy, C.S.; Helm, C.W.; Jenson, A.B.; Chaires, J.B. Differential scanning calorimetry of blood plasma for clinical diagnosis and monitoring. Exp. Mol. Pathol., 2009, 86(3), 186-191.
[http://dx.doi.org/10.1016/j.yexmp.2008.12.001] [PMID: 19146849]
[7]
Faroongsarng, D.; Sunpaweravong, S.; Raksawong, A. Thermally induced denaturing energetics of human blood plasma albumin by differential scanning calorimetry (DSC) as an indicator for breast cancer diagnosis in female patients. AAPS PharmSciTech, 2019, 20(4), 146.
[http://dx.doi.org/10.1208/s12249-019-1356-5] [PMID: 30887400]
[8]
Todinova, S.; Krumova, S.; Kurtev, P.; Dimitrov, V.; Djongov, L.; Dudunkov, Z.; Taneva, S.G. Calorimetry-based profiling of blood plasma from colorectal cancer patients. Biochim. Biophys. Acta, 2012, 1820(12), 1879-1885.
[http://dx.doi.org/10.1016/j.bbagen.2012.08.001] [PMID: 22903026]
[9]
Chagovetz, A.A.; Quinn, C.; Damarse, N.; Hansen, L.D.; Chagovetz, A.M.; Jensen, R.L. Differential scanning calorimetry of gliomas: A new tool in brain cancer diagnostics? Neurosurgery, 2013, 73(2), 289-295.
[http://dx.doi.org/10.1227/01.neu.0000430296.23799.cd] [PMID: 23624408]
[10]
Schneider, G.; Kaliappan, A.; Nguyen, T.Q.; Buscaglia, R.; Brock, G.N.; Hall, M.B.; DeSpirito, C.; Wilkey, D.W.; Merchant, M.L.; Klein, J.B.; Wiese, T.A.; Rivas-Perez, H.L.; Kloecker, G.H.; Garbett, N.C. The utility of differential scanning calorimetry curves of blood plasma for diagnosis, subtype differentiation and predicted survival in lung cancer. Cancers (Basel), 2021, 13(21), 5326.
[http://dx.doi.org/10.3390/cancers13215326] [PMID: 34771491]
[11]
Mehdi, M.; Fekecs, T.; Zapf, I.; Ferencz, A.; Lőrinczy, D. Differential scanning calorimetry (DSC) analysis of human plasma in different psoriasis stages. J. Therm., 2013, 111(3), 1801-1804.
[http://dx.doi.org/10.1007/s10973-012-2468-2]
[12]
Garbett, N.C.; Miller, J.J.; Jenson, A.B.; Chaires, J.B. Calorimetry outside the box: A new window into the plasma proteome. Biophys. J., 2008, 94(4), 1377-1383.
[http://dx.doi.org/10.1529/biophysj.107.119453] [PMID: 17951300]
[13]
Michnik, A.; Lőrinczy, D. Thermal Analysis in Medical Application; Akademiai Kiado: Budapest, Hungary, 2011.
[14]
Michnik, A.; Drzazga, Z.; Michalik, K.; Barczyk, A.; Santura, I.; Sozańska, E.; Pierzchała, W. Differential scanning calorimetry study of blood serum in chronic obstructive pulmonary disease. J. Therm. Anal. Calorim., 2010, 102(1), 57-60.
[http://dx.doi.org/10.1007/s10973-009-0602-6]
[15]
Garbett, N.C.; Merchant, M.L.; Chaires, J.B.; Klein, J.B. Calorimetric analysis of the plasma proteome: Identification of type 1 diabetes patients with early renal function decline. Biochim. Biophys. Acta, 2013, 1830(10), 4675-4680.
[http://dx.doi.org/10.1016/j.bbagen.2013.05.007] [PMID: 23665587]
[16]
Rai, S.N.; Srivastava, S.; Pan, J.; Wu, X.; Rai, S.P.; Mekmaysy, C.S.; DeLeeuw, L.; Chaires, J.B.; Garbett, N.C. Multi-group diagnostic classification of high-dimensional data using differential scanning calorimetry plasma thermograms. PLoS One, 2019, 14(8)e0220765
[http://dx.doi.org/10.1371/journal.pone.0220765] [PMID: 31430304]
[17]
Kendrick, S.K.; Zheng, Q.; Garbett, N.C.; Brock, G.N. Application and interpretation of functional data analysis techniques to differential scanning calorimetry data from lupus patients. PLoS One, 2017, 12(11)e0186232
[http://dx.doi.org/10.1371/journal.pone.0186232] [PMID: 29121669]
[18]
Zapf, I.; Fekecs, T.; Ferencz, A.; Tizedes, G.; Pavlovics, G.; Kálmán, E.; Lőrinczy, D. DSC analysis of human plasma in breast cancer patients. Thermochim. Acta, 2011, 524(1-2), 88-91.
[http://dx.doi.org/10.1016/j.tca.2011.06.019]
[19]
Wisniewski, M.; Garbett, N.; Fish, D.; Brewood, G.; Miller, J.; Chaires, J.; Benight, A. Error! Hyperlink reference not valid. IVD Technol., 2011, 17, 29-34.
[20]
Chagovetz, A.A.; Jensen, R.L.; Recht, L.; Glantz, M.; Chagovetz, A.M. Preliminary use of differential scanning calorimetry of cerebrospinal fluid for the diagnosis of glioblastoma multiforme. J. Neurooncol., 2011, 105(3), 499-506.
[http://dx.doi.org/10.1007/s11060-011-0630-5] [PMID: 21720810]
[21]
Harpole, M.; Davis, J.; Espina, V. Current state of the art for enhancing urine biomarker discovery. Expert Rev. Proteomics, 2016, 13(6), 609-626.
[http://dx.doi.org/10.1080/14789450.2016.1190651] [PMID: 27232439]
[22]
Kalantari, S.; Jafari, A.; Moradpoor, R.; Ghasemi, E.; Khalkhal, E. Human urine proteomics: Analytical techniques and clinical applications in renal diseases. Int. J. Proteomics, 2015, 2015782798
[http://dx.doi.org/10.1155/2015/782798] [PMID: 26693351]
[23]
Zhang, A.; Sun, H.; Wu, X.; Wang, X. Urine metabolomics. Clin. Chim. Acta, 2012, 414, 65-69.
[http://dx.doi.org/10.1016/j.cca.2012.08.016] [PMID: 22971357]
[24]
Bouatra, S.; Aziat, F.; Mandal, R.; Guo, A.C.; Wilson, M.R.; Knox, C.; Bjorndahl, T.C.; Krishnamurthy, R.; Saleem, F.; Liu, P.; Dame, Z.T.; Poelzer, J.; Huynh, J.; Yallou, F.S.; Psychogios, N.; Dong, E.; Bogumil, R.; Roehring, C.; Wishart, D.S. The human urine metabolome. PLoS One, 2013, 8(9)e73076
[http://dx.doi.org/10.1371/journal.pone.0073076] [PMID: 24023812]
[25]
Frantzi, M.; Latosinska, A.; Merseburger, A.S.; Mischak, H. Recent progress in urinary proteome analysis for prostate cancer diagnosis and management. Expert Rev. Mol. Diagn., 2015, 15(12), 1539-1554.
[http://dx.doi.org/10.1586/14737159.2015.1104248] [PMID: 26491818]
[26]
Brown, C.E.; McCarthy, N.S.; Hughes, A.D.; Sever, P.; Stalmach, A.; Mullen, W.; Dominiczak, A.F.; Sattar, N.; Mischak, H.; Thom, S.; Mayet, J.; Stanton, A.V.; Delles, C. Urinary proteomic biomarkers to predict cardiovascular events. Proteomics Clin. Appl., 2015, 9(5-6), 610-617.
[http://dx.doi.org/10.1002/prca.201400195] [PMID: 25786980]
[27]
Wu, J.; Gao, Y. Physiological conditions can be reflected in human urine proteome and metabolome. Expert Rev. Proteomics, 2015, 12(6), 623-636.
[http://dx.doi.org/10.1586/14789450.2015.1094380] [PMID: 26472227]
[28]
Spahr, C.S.; Davis, M.T.; McGinley, M.D.; Robinson, J.H.; Bures, E.J.; Beierle, J.; Mort, J.; Courchesne, P.L.; Chen, K.; Wahl, R.C.; Yu, W.; Luethy, R.; Patterson, S.D. Towards defining the urinary proteome using liquid chromatography-tandem mass spectrometry. I. Profiling an unfractionated tryptic digest. Proteomics, 2001, 1(1), 93-107. http://dx.doi.org/10.1002/1615-9861(200101)1:1 3.0.CO;2-3 PMID: 11680902
[29]
Marimuthu, A.; O’Meally, R.N.; Chaerkady, R.; Subbannayya, Y.; Nanjappa, V.; Kumar, P.; Kelkar, D.S.; Pinto, S.M.; Sharma, R.; Renuse, S.; Goel, R.; Christopher, R.; Delanghe, B.; Cole, R.N.; Harsha, H.C.; Pandey, A. A comprehensive map of the human urinary proteome. J. Proteome Res., 2011, 10(6), 2734-2743.
[http://dx.doi.org/10.1021/pr2003038] [PMID: 21500864]
[30]
Chebotareva, N.A.; Roman, S.G.; Kurganov, B.I. Dissociative mechanism for irreversible thermal denaturation of oligomeric proteins. Biophys. Rev., 2016, 8(4), 397-407.
[http://dx.doi.org/10.1007/s12551-016-0220-z] [PMID: 28510015]
[31]
Roy, I.; Gupta, M.N. Freeze-drying of proteins: Some emerging concerns. Biotechnol. Appl. Biochem., 2004, 39(Pt 2), 165-177.
[http://dx.doi.org/10.1042/BA20030133] [PMID: 15032737]
[32]
Dwivedi, R.C.; Navarrete, M.; Choi, N.; Spicer, V.; Rigatto, C.; Arora, R.C.; Krokhin, O.; Ho, J.; Wilkins, J.A. A proteomic evaluation of urinary changes associated with cardiopulmonary bypass. Clin. Proteomics, 2016, 13, 17.
[http://dx.doi.org/10.1186/s12014-016-9118-9] [PMID: 27528862]
[33]
Baumgarten, R.; van de Pol, M.H.; Deen, P.M.; van Os, C.H.; Wetzels, J.F. Dissociation between urine osmolality and urinary excretion of aquaporin-2 in healthy volunteers. Nephrol. Dial. Transplant., 2000, 15(8), 1155-1161.
[http://dx.doi.org/10.1093/ndt/15.8.1155] [PMID: 10910438]
[34]
Garbett, N.C.; Mekmaysy, C.S.; DeLeeuw, L.; Chaires, J.B. Clinical application of plasma thermograms. Utility, practical approaches and considerations. Methods, 2015, 76, 41-50.
[http://dx.doi.org/10.1016/j.ymeth.2014.10.030] [PMID: 25448297]
[35]
Chevallet, M.; Diemer, H.; Van Dorssealer, A.; Villiers, C.; Rabilloud, T. Toward a better analysis of secreted proteins: The example of the myeloid cells secretome. Proteomics, 2007, 7(11), 1757-1770.
[http://dx.doi.org/10.1002/pmic.200601024] [PMID: 17464941]
[36]
Sauvé, D.M.; Ho, D.T.; Roberge, M. Concentration of dilute protein for gel electrophoresis. Anal. Biochem., 1995, 226(2), 382-383.
[http://dx.doi.org/10.1006/abio.1995.1242] [PMID: 7793643]
[37]
Arnold, U.; Ulbrich-Hofmann, R. Quantitative protein precipitation from guanidine hydrochloride-containing solutions by sodium deoxycholate/trichloroacetic acid. Anal. Biochem., 1999, 271(2), 197-199.
[http://dx.doi.org/10.1006/abio.1999.4149] [PMID: 10419639]
[38]
Aguilar, R.M.; Bustamante, J.J.; Hernandez, P.G.; Martinez, A.O.; Haro, L.S. Precipitation of dilute chromatographic samples (ng/ml) containing interfering substances for SDS-PAGE. Anal. Biochem., 1999, 267(2), 344-350.
[http://dx.doi.org/10.1006/abio.1998.3018] [PMID: 10036140]
[39]
Marshall, T.; Williams, K. Two-dimensional electrophoresis of human urinary proteins following concentration by dye precipitation. Electrophoresis, 1996, 17(7), 1265-1272.
[http://dx.doi.org/10.1002/elps.1150170716] [PMID: 8855415]
[40]
Brudar, S.; Černigoj, U.; Podgornik, H.; Kržan, M.; Prislan, I. Use of differential scanning calorimetry and immunoaffinity chromatography to identify disease induced changes in human blood plasma proteome. Acta Chim. Slov., 2017, 64(3), 564-570.
[http://dx.doi.org/10.17344/acsi.2016.2970] [PMID: 28862287]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy