Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Mini-Review Article

1,2,3-Triazole Derivatives with Anti-breast Cancer Potential

Author(s): Xinyi Wu, Jun Wang*, Shiqi Xia, Shishuo Cheng and Yumin Shi

Volume 22, Issue 17, 2022

Published on: 31 May, 2022

Page: [1406 - 1425] Pages: 20

DOI: 10.2174/1568026622666220415225334

Price: $65

Abstract

Breast cancer is one of the most prevalent malignant diseases, and one of the main causes of mortality among women across the world. Despite advances in chemotherapy, drug resistance remains a major clinical concern, creating an urgent need to explore novel anti-breast cancer drugs. 1,2,3-triazole is a privileged moiety, and its derivatives could inhibit cancer cell proliferation and induce cell cycle arrest and apoptosis. Accordingly, 1,2,3-triazole derivatives possess profound activity against various cancers, including breast cancer. This review summarizes the latest progress related to the anti-breast cancer potential of 1,2,3-triazole derivatives, covering articles published from January 2017 to December 2021. The mechanisms of action and structure-activity relationships (SARs) are also discussed for the further rational design of more effective candidates.

Keywords: 1, 2, 3-Triazole, Breast cancer, Mechanisms of action, Structure-activity relationship, Heterogeneous disease, Chemotherapy.

Graphical Abstract
[1]
Ehab, M.; Elbaz, M. Profile of palbociclib in the treatment of metastatic breast cancer. Breast Cancer (Dove Med. Press), 2016, 8, 83-91.
[PMID: 27274308]
[2]
Toppmeyer, D.L.; Press, M.F. Testing considerations for phosphatidylinositol-3-kinase catalytic subunit alpha as an emerging biomarker in advanced breast cancer. Cancer Med., 2020, 9(18), 6463-6472.
[http://dx.doi.org/10.1002/cam4.3278 ] [PMID: 32697890]
[3]
Loibl, S.; Poortmans, P.; Morrow, M.; Denkert, C.; Curigliano, G. Breast cancer. Lancet, 2021, 397(10286), 1750-1769.
[http://dx.doi.org/10.1016/S0140-6736(20)32381-3 ] [PMID: 33812473]
[4]
Soguel, L.; Durocher, F.; Tchernof, A.; Diorio, C. Adiposity, breast density, and breast cancer risk: Epidemiological and biological con-siderations. Eur. J. Cancer Prev., 2017, 26(6), 511-520.
[http://dx.doi.org/10.1097/CEJ.0000000000000310 ] [PMID: 27571214]
[5]
International Agency for Research on Cancer. Breast 2020. Available from: https://gco.iarc.fr/today/data/factsheets/cancers/20-Breast-fact-sheet.pdf (Accessed on: October 2021).
[6]
Wang, J.; Seebacher, N.; Shi, H.; Kan, Q.; Duan, Z. Novel strategies to prevent the development of multidrug resistance (MDR) in cancer. Oncotarget, 2017, 8(48), 84559-84571.
[http://dx.doi.org/10.18632/oncotarget.19187 ] [PMID: 29137448]
[7]
Shankaraiah, N.; Nekkanti, S.; Ommi, O.; Lakshmi Soukya, P.S. Diverse targeted approaches to battle multidrug resistance in cancer. Curr. Med. Chem., 2019, 26(39), 7059-7080.
[http://dx.doi.org/10.2174/0929867325666180410110729 ] [PMID: 29637849]
[8]
Xu, Z. 1,2,3-Triazole-containing hybrids with potential antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). Eur. J. Med. Chem., 2020, 206, 112686.
[http://dx.doi.org/10.1016/j.ejmech.2020.112686 ] [PMID: 32795773]
[9]
Feng, L.S.; Zheng, M.J.; Zhao, F.; Liu, D. 1,2,3-Triazole hybrids with anti-HIV-1 activity. Arch. Pharm. (Weinheim), 2021, 354(1), e2000163.
[http://dx.doi.org/10.1002/ardp.202000163 ] [PMID: 32960467]
[10]
Xu, Z.; Zhao, S.J.; Liu, Y. 1,2,3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships. Eur. J. Med. Chem., 2019, 183, 111700.
[http://dx.doi.org/10.1016/j.ejmech.2019.111700 ] [PMID: 31546197]
[11]
Liang, T.; Sun, X.; Li, W.; Hou, G.; Gao, F. 1,2,3-Triazole-containing compounds as anti-lung cancer agents: Current developments, mechanisms of action, and structure-activity relationship. Front. Pharmacol., 2021, 12, 661173.
[http://dx.doi.org/10.3389/fphar.2021.661173 ] [PMID: 34177578]
[12]
Ferreira, V.F.; da Rocha, D.R.; da Silva, F.C.; Ferreira, P.G.; Boechat, N.A.; Magalhães, J.L. Novel 1H-1,2,3-, 2H-1,2,3-, 1H-1,2,4- and 4H-1,2,4-triazole derivatives: A patent review (2008 - 2011). Expert Opin. Ther. Pat., 2013, 23(3), 319-331.
[http://dx.doi.org/10.1517/13543776.2013.749862 ] [PMID: 23289412]
[13]
Zhuang, C.; Guan, X.; Ma, H.; Cong, H.; Zhang, W.; Miao, Z. Small molecule-drug conjugates: A novel strategy for cancer-targeted treat-ment. Eur. J. Med. Chem., 2019, 163, 883-895.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.035 ] [PMID: 30580240]
[14]
Slavova, K.I.; Todorov, L.T.; Belskaya, N.P.; Palafox, M.A.; Kostova, I.P. Developments in the application of 1,2,3-triazoles in cancer treatment. Recent Pat. Anticancer Drug Des., 2020, 15(2), 92-112.
[PMID: 32679022]
[15]
Tu, Y. Artemisinin-A gift from traditional Chinese medicine to the world (Nobel lecture). Angew. Chem. Int. Ed. Engl., 2016, 55(35), 10210-10226.
[http://dx.doi.org/10.1002/anie.201601967 ] [PMID: 27488942]
[16]
Wong, Y.K.; Xu, C.; Kalesh, K.A.; He, Y.; Lin, Q.; Wong, W.S.F.; Shen, H.M.; Wang, J. Artemisinin as an anticancer drug: Recent ad-vances in target profiling and mechanisms of action. Med. Chem. Res., 2017, 37(6), 1492-1517.
[http://dx.doi.org/10.1002/med.21446 ] [PMID: 28643446]
[17]
Fröhlich, T.; Çapcı Karagöz, A.; Reiter, C.; Tsogoeva, S.B. Artemisinin-derived dimers: Potent antimalarial and anti-cancer agents. J. Med. Chem., 2016, 59(16), 7360-7388.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01380 ] [PMID: 27010926]
[18]
Dai, Y.F.; Zhou, W.W.; Meng, J.; Du, X.L.; Sui, Y.P.; Dai, L.; Wang, P.Q.; Huo, H.R.; Sui, F. The pharmacological activities and mecha-nisms of artemisinin and its derivatives: A systematic review. Med. Chem. Res., 2017, 26(5), 867-880.
[http://dx.doi.org/10.1007/s00044-016-1778-5]
[19]
Bräutigam, M.; Teusch, N.; Schenk, T.; Sheikh, M.; Aricioglu, R.Z.; Borowski, S.H.; Neudörfl, J.M.; Baumann, U.; Griesbeck, A.G.; Pietsch, M. Selective inhibitors of glutathione transferase P1 with trioxane structure as anticancer agents. ChemMedChem, 2015, 10(4), 629-639.
[http://dx.doi.org/10.1002/cmdc.201402553 ] [PMID: 25694385]
[20]
Reiter, C.; Fröhlich, T.; Zeino, M.; Marschall, M.; Bahsi, H.; Leidenberger, M.; Friedrich, O.; Kappes, B.; Hampel, F.; Efferth, T.; Tsogoeva, S.B. New efficient artemisinin derived agents against human leukemia cells, human cytomegalovirus and Plasmodium falcipa-rum: 2nd generation 1,2,4-trioxane-ferrocene hybrids. Eur. J. Med. Chem., 2015, 97, 164-172.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.053 ] [PMID: 25965779]
[21]
Kapkoti, D.S.; Singh, S.; Luqman, S.; Bhakuni, R.S. Synthesis of novel 1,2,3-triazole based artemisinin derivatives and their antiprolifer-ative activity. New J. Chem., 2018, 42(8), 5978-5995.
[http://dx.doi.org/10.1039/C7NJ04271J]
[22]
An, R.; Lin, B.; Zhao, S.; Cao, C.; Wang, Y.; Cheng, X.; Liu, Y.; Guo, M.; Xu, H.; Wang, Y.; Hou, Z.; Guo, C. Discovery of novel arte-misinin-sulfonamidehybrids as potential carbonicanhydraseIX inhibitors with improved antiproliferative activities. Bioorg. Chem., 2020, 104, 104347.
[http://dx.doi.org/10.1016/j.bioorg.2020.104347 ] [PMID: 33142414]
[23]
Yu, H.; Hou, Z.; Yang, X.; Mou, Y.; Guo, C. Design, synthesis, and mechanism of dihydroartemisinin-coumarin hybrids as potential anti-neuroinflammatory agents. Molecules, 2019, 24(9), e1672.
[http://dx.doi.org/10.3390/molecules24091672 ] [PMID: 31035404]
[24]
Yu, H.; Hou, Z.; Tian, Y.; Mou, Y.; Guo, C. Design, synthesis, cytotoxicity and mechanism of novel dihydroartemisinin-coumarin hy-brids as potential anti-cancer agents. Eur. J. Med. Chem., 2018, 151, 434-449.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.005 ] [PMID: 29649740]
[25]
Fröhlich, T.; Kiss, A.; Wölfling, J.; Mernyák, E.; Kulmány, A.E.; Minorics, R.; Zupkó, I.; Leidenberger, M.; Friedrich, O.; Kappes, B.; Hahn, F.; Marschall, M.; Schneider, G.; Tsogoeva, S.B. Synthesis of artemisinin-estrogen hybrids highly active against HCMV, P. falci-parum, and cervical and breast cancer. ACS Med. Chem. Lett., 2018, 9(11), 1128-1133.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00381 ] [PMID: 30429957]
[26]
Khongsti, K.; Pasupuleti, B.G.; Das, B.; Bez, G. 1,2,3-Triazole tethered 1,2,4 trioxane trimer induces apoptosis in metastatic cancer cells and inhibits their proliferation, migration and invasion. Bioorg. Chem., 2021, 112, 104952.
[http://dx.doi.org/10.1016/j.bioorg.2021.104952 ] [PMID: 33971565]
[27]
Pasupuleti, B.G.; Khongsti, K.; Das, B.; Bez, G. 1,2,3-Triazole tethered 1,2,4-trioxanes: Studies on their synthesis and effect on osteo-pontin expression in MDA-MB-435 breast cancer cells. Eur. J. Med. Chem., 2020, 186, 111908.
[http://dx.doi.org/10.1016/j.ejmech.2019.111908 ] [PMID: 31791643]
[28]
Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: A privileged structure in medicinal chemistry. Chem. Rev., 2017, 117(12), 7762-7810.
[http://dx.doi.org/10.1021/acs.chemrev.7b00020 ] [PMID: 28488435]
[29]
Alman, A.A.; Daniel, K.; Killedar, S.G. Chalcone-promising entity for anticancer activity: An overview. Int. J. Pharm. Sci. Res., 2020, 11(5), 2027-2041.
[30]
Xiao, J.; Gao, M.; Diao, Q.; Gao, F. Chalcone derivatives and their activities against drug-resistant cancers: An overview. Curr. Top. Med. Chem., 2021, 21(5), 348-362.
[http://dx.doi.org/10.2174/1568026620666201022143236 ] [PMID: 33092509]
[31]
Gao, F.; Huang, G.; Xiao, J. Chalcone hybrids as potential anticancer agents: Current development, mechanism of action, and structure-activity relationship. Med. Res. Rev., 2020, 40(5), 2049-2084.
[http://dx.doi.org/10.1002/med.21698 ] [PMID: 32525247]
[32]
Ashour, H.F.; Abou-Zeid, L.A.; El-Sayed, M.A.A.; Selim, K.B. 1,2,3-Triazole-Chalcone hybrids: Synthesis, in vitro cytotoxic activity and mechanistic investigation of apoptosis induction in multiple myeloma RPMI-8226. Eur. J. Med. Chem., 2020, 189, 112062.
[http://dx.doi.org/10.1016/j.ejmech.2020.112062 ] [PMID: 31986406]
[33]
Yadav, P.; Lal, K.; Kumar, A.; Guru, S.K.; Jaglan, S.; Bhushan, S. Green synthesis and anticancer potential of chalcone linked-1,2,3-triazoles. Eur. J. Med. Chem., 2017, 126, 944-953.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.030 ] [PMID: 28011424]
[34]
Gurrapu, N.; Kolluri, P.K.; Praveen Kumar, E.; Putta, S.; Sivan, S.K.; Subhashini, N.J.P. Synthesis, biological evaluation and molecular docking studies of novel 1,2,3-triazole tethered chalcone hybrids as potential anticancer agents. J. Mol. Struct., 2020, 1217, e128356.
[http://dx.doi.org/10.1016/j.molstruc.2020.128356]
[35]
Latif, A.D.; Jernei, T.; Podolski-Renić, A.; Kuo, C.Y.; Vágvölgyi, M.; Girst, G.; Zupkó, I.; Develi, S.; Ulukaya, E.; Wang, H.C.; Pešić, M.; Csámpai, A.; Hunyadi, A. Protoflavone-chalcone hybrids exhibit enhanced antitumor action through modulating redox balance, depolar-izing the mitochondrial membrane, and inhibiting atr-dependent signaling. Antioxidants, 2020, 9(6), e519.
[http://dx.doi.org/10.3390/antiox9060519 ] [PMID: 32545536]
[36]
Sharma, B.; Gu, L.; Pillay, R.P.; Cele, N.; Awolade, P.; Singh, P.; Maur, M.; Kumar, V. Design, synthesis, and anti-proliferative evalua-tion of 1H-1,2,3-triazole grafted tetrahydro-bcarboline-chalcone/ferrocenylchalcone conjugates in estrogen responsive and triple negative breast cancer cells. New J. Chem., 2020, 44(26), 11137-11147.
[http://dx.doi.org/10.1039/D0NJ00879F]
[37]
Patil, V.M.; Masand, N.; Verma, S.; Masand, V. Chromones: Privileged scaffold in anticancer drug discovery. Chem. Biol. Drug Des., 2021, 98(5), 943-953.
[http://dx.doi.org/10.1111/cbdd.13951 ] [PMID: 34519163]
[38]
Song, X.F.; Fan, J.; Liu, L.; Liu, X.F.; Gao, F. Coumarin derivatives with anticancer activities: An update. Arch. Pharm. (Weinheim), 2020, 353(8), e2000025.
[http://dx.doi.org/10.1002/ardp.202000025 ] [PMID: 32383190]
[39]
Sowjanya, T.; Rao, Y.J.; Murthy, N.Y.S. Synthesis and antiproliferative activity of new 1,2,3-triazole/flavone hybrid heterocycles against human cancer cell lines. Russ. J. Gen. Chem., 2017, 87(8), 1864-1871.
[http://dx.doi.org/10.1134/S1070363217080357]
[40]
Joolakanti, H.B.; Battu, S.; Kamepalli, R.; Kolanupaka, H.R.; Bobbili, H.R. Synthesis, docking and biological activities of novel chromone linked [1,2,3]-triazole derivatives. Chemical Data Collections, 2021, 32, e100651.
[http://dx.doi.org/10.1016/j.cdc.2021.100651]
[41]
Yerrabelly, J.R.; Gogula, T.; Erukala, Y.G.; Yerrabelly, H.; Gabriella, S. Synthesis and antiproliferative activity of daidzein bridged bis-[1,2,3]-triazole derivatives: Double click strategy. Chemical Data Collections, 2020, 29, e100523.
[http://dx.doi.org/10.1016/j.cdc.2020.100523]
[42]
Zhu, X.; Wong, I.L.K.; Chan, K.F.; Cui, J.; Law, M.C.; Chong, T.C.; Hu, X.; Chow, L.M.C.; Chan, T.H. Triazole bridged flavonoid dimers as potent, nontoxic, and highly selective breast cancer resistance protein (BCRP/ABCG2) inhibitors. J. Med. Chem., 2019, 62(18), 8578-8608.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00963 ] [PMID: 31465686]
[43]
Rao, Y.J.; Sowjanya, T.; Thirupathi, G.; Murthy, N.Y.S.; Kotapalli, S.S. Synthesis and biological evaluation of novel flavone/] triazole/benzimidazole hybrids and flavone/isoxazole-annulated heterocycles as antiproliferative and antimycobacterial agents. Mol. Divers., 2018, 22(4), 803-814.
[http://dx.doi.org/10.1007/s11030-018-9833-4 ] [PMID: 29869169]
[44]
Narsimha, S.; Nukala, S.K.; Ravinder, M.; Savitha Jyostna, T.; Srinivasa Rao, M.; Vasudeva Reddy, N. One-pot synthesis and biological evaluation of novel 4-[3-fluoro-4-(morpholin-4-yl)]phenyl-1H-1,2,3-triazole derivatives as potent antibacterial and anticancer agents. J. Heterocycl. Chem., 2020, 57(4), 1655-1665.
[http://dx.doi.org/10.1002/jhet.3890]
[45]
An, R.; Hou, Z.; Li, J.T.; Yu, H.N.; Mou, Y.H.; Guo, C. Design, synthesis and biological evaluation of novel 4-substituted coumarin derivatives as antitumor agents. Molecules, 2018, 23(9), e2281.
[http://dx.doi.org/10.3390/molecules23092281 ] [PMID: 30200625]
[46]
Raj, P.J.; Bahulayan, D. “MCR-Click” synthesis of coumarin-tagged macrocycles with large Stokes shift values and cytotoxicity against human breast cancer cell line MCF-7. Tetrahedron Lett., 2017, 58(22), 2122-2126.
[http://dx.doi.org/10.1016/j.tetlet.2017.04.052]
[47]
Thasnim, P.; Bahulayan, D. Click-on fluorescent triazolyl coumarin peptidomimetics as inhibitors of human breast cancer cell line MCF-7. New J. Chem., 2017, 41(22), 13483-13489.
[http://dx.doi.org/10.1039/C7NJ02712E]
[48]
Diao, Q.P.; Guo, H.; Wang, G.Q. Design, synthesis, and in vitro anticancer activities of diethylene glycol tethered isatin-1,2,3-triazole-coumarin hybrids. J. Heterocycl. Chem., 2019, 56(5), 1667-1671.
[http://dx.doi.org/10.1002/jhet.3538]
[49]
Pathoor, R.; Bahulayan, D. MCR-click synthesis, molecular docking and cytotoxicity evaluation of a new series of indole-triazole-coumarin hybrid peptidomimetics. New J. Chem., 2018, 42(9), 6810-6816.
[http://dx.doi.org/10.1039/C8NJ00032H]
[50]
Mohammadi-Khanaposhtani, M.; Fahimi, K.; Karimpour-Razkenari, E.; Safavi, M.; Mahdavi, M.; Saeedi, M.; Akbarzadeh, T. Design, synthesis and cytotoxicity of novel coumarin-1,2,3-triazole-1,2,4-oxadiazole hybrids as potent anti-breast cancer agents. Lett. Drug Des. Discov., 2019, 16(7), 818-824.
[http://dx.doi.org/10.2174/1570180815666180627121006]
[51]
Sanduja, M.; Gupta, J.; Singh, H.; Pagare, P.P.; Rana, A. Uracil-coumarin based hybrid molecules as potent anti-cancer and anti-bacterial agents. J. Saudi Chem. Soc., 2020, 24(2), 251-266.
[http://dx.doi.org/10.1016/j.jscs.2019.12.001]
[52]
Li, L.; Ma, L.; Sun, J. The antiproliferative activity of ferrocene derivatives against drug-resistant cancer cell lines: A mini review. Curr. Top. Med. Chem., 2021, 21(19), 1756-1772.
[http://dx.doi.org/10.2174/1568026621666210728093527 ] [PMID: 34323188]
[53]
Wang, R.; Chen, H.; Yan, W.; Zheng, M.; Zhang, T.; Zhang, Y. Ferrocene-containing hybrids as potential anticancer agents: Current de-velopments, mechanisms of action and structure-activity relationships. Eur. J. Med. Chem., 2020, 190, 112109.
[http://dx.doi.org/10.1016/j.ejmech.2020.112109 ] [PMID: 32032851]
[54]
Prabhakaran, P.; Subaraja, M.; Rajakumar, P. Synthesis, electrochemical, antibacterial and anticancer studies on triazole-bridged pyrroli-dine-grafted macrocycles via [3+2] cycloaddition of azomethin ylide. ChemistrySelect, 2018, 3(17), 4687-4693.
[http://dx.doi.org/10.1002/slct.201800033]
[55]
Shalini, A.; Pankaj, A.; Saha, S.T.; Kaur, M.; Oluwakemi, E.; Awolade, P.; Singh, P.; Kumar, V. Synthesis and in vitro anti-proliferative evaluation of naphthalimide-chalcone/pyrazoline conjugates as potential SERMs with computational validation. RSC Advances, 2020, 10(27), 15836-15845.
[http://dx.doi.org/10.1039/D0RA01822H]
[56]
Rani, A.; Singh, G.I.; Kaur, R.; Palma, G.; Perumal, S.; Kaur, M.; Ebenezer, O.; Awolade, P.; Singh, P.; Kumar, V. Azide-alkyne cycload-dition en route to ferrocenyl-methoxy-methylisatin- conjugates: Synthesis, anti-breast cancer activities and molecular docking studies. J. Organomet. Chem., 2020, 907, e121072.
[http://dx.doi.org/10.1016/j.jorganchem.2019.121072]
[57]
Guk, D.A.; Krasnovskaya, O.O.; Dashkova, N.S.; Skvortsov, D.A.; Rubtsova, M.P.; Dyadchenko, V.P.; Yudina, E.S.; Kosarev, M.A.; Soldatov, A.V.; Shapovalov, V.V.; Semkina, A.S.; Vlasova, K.Y.; Pergushov, V.I.; Shafikov, R.R. Moiseeva; Andreeva; Andreeva, A.A.; Melnikov, M.Y.; Zyk, N.V.; Majouga, A.G.; Beloglazkina, E.K. New ferrocene-based 2-thio-imidazol-4-ones and their copper complexes. Synthesis and cytotoxicity. Dalton Trans., 2018, 47(48), 17357-17366.
[http://dx.doi.org/10.1039/C8DT03164A ] [PMID: 30480670]
[58]
Teli, G.; Chawla, P.A. Hybridization of imidazole with various heterocycles in targeting cancer: A decade’s work. ChemistrySelect, 2021, 6(19), 4803-4836.
[http://dx.doi.org/10.1002/slct.202101038]
[59]
Yadav, S.; Narasimhan, B.; Kaur, H. Perspectives of benzimidazole derivatives as anticancer agents in the new era. Anticancer. Agents Med. Chem., 2016, 16(11), 1403-1425.
[http://dx.doi.org/10.2174/1871520616666151103113412 ] [PMID: 26526461]
[60]
Sridhar Goud, N.; Pooladanda, V.; Muni Chandra, K.; Lakshmi Soukya, P.S.; Alvala, R.; Kumar, P.; Nagaraj, C.; Dawn Bharath, R.; Qureshi, I.A.; Godugu, C.; Alvala, M. Novel benzimidazole-triazole hybrids as apoptosis inducing agents in lung cancer: Design, synthe-sis, 18F-radiolabeling & galectin-1 inhibition studies. Bioorg. Chem., 2020, 102, 104125.
[http://dx.doi.org/10.1016/j.bioorg.2020.104125 ] [PMID: 32738568]
[61]
Sayeed, I.B.; Vishnuvardhan, M.V.P.S.; Nagarajan, A.; Kantevari, S.; Kamal, A. Imidazopyridine linked triazoles as tubulin inhibitors, effectively triggering apoptosis in lung cancer cell line. Bioorg. Chem., 2018, 80, 714-720.
[http://dx.doi.org/10.1016/j.bioorg.2018.07.026 ] [PMID: 30075408]
[62]
Shaik, S.P.; Nayak, V.L.; Sultana, F.; Rao, A.V.S.; Shaik, A.B.; Babu, K.S.; Kamal, A. Design and synthesis of imidazo[2,1-b]thiazole linked triazole conjugates: Microtubule-destabilizing agents. Eur. J. Med. Chem., 2017, 126, 36-51.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.060 ] [PMID: 27744185]
[63]
Abdellatif, K.R.A.; Bakr, R.B. Pyrimidine and fused pyrimidine derivatives as promising protein kinase inhibitors for cancer treatment. Med. Chem. Res., 2021, 30(1), 31-49.
[http://dx.doi.org/10.1007/s00044-020-02656-8]
[64]
Abbas, N.; Matada, G.S.P.; Dhiwar, P.S.; Patel, S.; Devasahayam, G. Fused and substituted pyrimidine derivatives as profound anti-cancer agents. Anticancer. Agents Med. Chem., 2021, 21(7), 861-893.
[http://dx.doi.org/10.2174/1871520620666200721104431 ] [PMID: 32698738]
[65]
Amanlou, M.; Amini, M.; Boumi, S.; Moghimirad, J.; Ostad, S.N.; Tavajohi, S. Synthesis, evaluation of biological activity, docking and molecular dynamic studies of pyrimidine derivatives. Lett. Org. Chem., 2021, 18(3), 212-225.
[http://dx.doi.org/10.2174/1570178617999200706005824]
[66]
Bhaskar, P.; Tholappanavara, S.K.; Kalal, B.S.; Kumar, V.; Siddegowda, A.K.C.; Vijaykumar, S.H.B.; Pai, V.R.; Ganapathy, S. Pyrimidi-none associated triazole carboxamides: Synthesis, characterization, cytotoxicity and dna binding studies. Curr. Bioact. Compd., 2020, 16(6), 911-923.
[http://dx.doi.org/10.2174/1573407215666190328222350]
[67]
Burke, A.J.; Carreiro, E.P.; Sena, A.M.; Padrón, J.M.; Puerta, A. Synthesis of novel 1,2,3-triazole-dihydropyrimidinone hybrids using multicomponent 1,3-dipolar cycloaddition (click)-Biginelli reactions: Anticancer activity. Synlett, 2020, 31(6), 615-621.
[http://dx.doi.org/10.1055/s-0039-1690781]
[68]
Rahman, A.; Sharma, P.; Kaur, N.; Shanavas, A.; Neelakandan, P.P. Synthesis and anti-proliferative activity of a triazole-fused thymidine analogue. ChemistrySelect, 2020, 5(18), 5473-5478.
[http://dx.doi.org/10.1002/slct.202001013]
[69]
Al-Hujaj, H.H.; Al-Masoudi, N.A.; Faeza, A.K.A.; Jassem, A.M. A click synthesis, molecular docking, cytotoxicity on breast cancer (MDA-MB 231) and anti-HIV activities of new 1,4-disubstituted-1,2,3-triazole thymine derivatives. Russ. J. Bioorganic Chem., 2020, 46(3), 360-370.
[http://dx.doi.org/10.1134/S1068162020030024]
[70]
Wang, L.; Xu, S.; Liu, X.; Chen, X.; Xiong, H.; Hou, S.; Zou, W.; Tang, Q.; Zheng, P.; Zhu, W. Discovery of thinopyrimidine-triazole conjugates as c-Met targeting and apoptosis inducing agents. Bioorg. Chem., 2018, 77, 370-380.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.037 ] [PMID: 29421713]
[71]
Thiriveedhi, A.; Nadh, R.V.; Srinivasu, N.; Bobde, Y.; Ghosh, B.; Sekhar, K.V.G.C. Design, synthesis and anti-tumour activity of new pyrimidine-pyrrole appended triazoles. Toxicol. In Vitro, 2019, 60, 87-96.
[http://dx.doi.org/10.1016/j.tiv.2019.05.009 ] [PMID: 31100376]
[72]
Vadla, B.; Betala, S. Novel 1,2,3-triazole-functionalized pyrido[3′,2′:4,5]furo[3,2-d]pyrimidin-4(3H)-one derivatives: Synthesis, anti-cancer activity, CoMFA and CoMSIA studies. Lett. Org. Chem., 2020, 17(12), 969-978.
[http://dx.doi.org/10.2174/1570178617666200319124017]
[73]
Man, R.J.; Jeelani, N.; Zhou, C.; Yang, Y.S. Recent progress in the development of quinoline derivatives for the exploitation of anti-cancer agents. Anticancer. Agents Med. Chem., 2021, 21(7), 825-838.
[http://dx.doi.org/10.2174/1871520620666200516150345 ] [PMID: 32416703]
[74]
Gao, F.; Zhang, X.; Wang, T.; Xiao, J. Quinolone hybrids and their anti-cancer activities: An overview. Eur. J. Med. Chem., 2019, 165, 59-79.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.017 ] [PMID: 30660827]
[75]
Begnini, K.R.; Duarte, W.R.; da Silva, L.P.; Buss, J.H.; Goldani, B.S.; Fronza, M.; Segatto, N.V.; Alves, D.; Savegnago, L.; Seixas, F.K.; Collares, T. Apoptosis induction by 7-chloroquinoline-1,2,3-triazoyl carboxamides in triple negative breast cancer cells. Biomed. Pharmacother., 2017, 91, 510-516.
[http://dx.doi.org/10.1016/j.biopha.2017.04.098 ] [PMID: 28482288]
[76]
Venkata, S.R.G.; Narkhede, U.C.; Jadhav, V.D.; Naidu, C.G.; Addada, R.R.; Pulya, S.; Ghosh, B. Quinoline consists of 1H-1,2,3-triazole hybrids: Design, synthesis and anticancer evaluation. ChemistrySelect, 2019, 4(48), 14184-14190.
[http://dx.doi.org/10.1002/slct.201903938]
[77]
Boratynski, P.J.; Galezowska, J.; Turkowiak, K.; Anisiewicz, A.; Kowalczyk, R.; Wietrzyk, J. Triazole biheterocycles from Cinchona alkaloids: Coordination and antiproliferative properties. ChemistrySelect, 2018, 3(32), 9368-9373.
[http://dx.doi.org/10.1002/slct.201801810]
[78]
Othman, D.I.A.; Selim, K.B.; El-Sayed, M.A.A.; Tantawy, A.S.; Amen, Y.; Shimizu, K.; Okauchi, T.; Kitamura, M. Design, synthesis and anticancer evaluation of new substituted thiophene-quinoline derivatives. Bioorg. Med. Chem., 2019, 27(19), 115026.
[http://dx.doi.org/10.1016/j.bmc.2019.07.042 ] [PMID: 31416740]
[79]
Awolade, P.; Cele, N.; Ebenezer, O.; Kerru, N.; Gummidi, L.; Gu, L.; Palma, G.; Kaur, M.; Singh, P. Synthesis of 1H-1,2,3-triazole-linked quinoline-isatin molecular hybrids as anti-breast cancer and anti-methicillin-resistant Staphylococcus aureus (MRSA) agents. Anticancer. Agents Med. Chem., 2021, 21(10), 1228-1239.
[http://dx.doi.org/10.2174/1871520620666200929153138 ] [PMID: 32990543]
[80]
Yang, M.; Liu, H.; Zhang, Y.; Wang, X.; Xu, Z. Moxifloxacin-isatin hybrids tethered by 1,2,3-triazole and their anticancer activities. Curr. Top. Med. Chem., 2020, 20(16), 1461-1467.
[http://dx.doi.org/10.2174/1568026620666200128144825 ] [PMID: 31994464]
[81]
Branco, J.R.; Oliveira, V.G.; Esteves, A.M.; Chipoline, I.C.; Lima, M.F.O.; Boechat, F.C.S.; da Silva, F.C.; Ferreira, V.F.; Sola-Penna, M.; de Souza, M.C.B.V.; Zancan, P. A novel naphthotriazolyl-4-oxoquinoline derivative that selectively controls breast cancer cells survival through the induction of apoptosis. Curr. Top. Med. Chem., 2018, 18(17), 1465-1474.
[http://dx.doi.org/10.2174/1568026618666180821142458 ] [PMID: 30129412]
[82]
Neighbors, J.D. The mevalonate pathway and terpenes: A diversity of chemopreventatives. Curr. Pharmacol. Rep., 2018, 4(2), 157-169.
[http://dx.doi.org/10.1007/s40495-018-0128-3]
[83]
Braz, J.V.C.; Nascimento Júnior, J.A.C.; Serafini, M.R. Terpenes with antitumor activity: A patent review. Recent Pat. Anti-Cancer Drug Discov., 2020, 15(4), 321-328.
[84]
Dangroo, N.A.; Singh, J.; Rath, S.K.; Gupta, N.; Qayum, A.; Singh, S.; Sangwan, P.L. A convergent synthesis of novel alkyne-azide cy-cloaddition congeners of betulinic acid as potent cytotoxic agent. Steroids, 2017, 123, 1-12.
[http://dx.doi.org/10.1016/j.steroids.2017.04.002 ] [PMID: 28435038]
[85]
Suman, P.; Patel, A.; Solano, L.; Jampana, G.; Gardner, Z.S.; Holt, C.M.; Jonnalagadda, S.C. Synthesis and cytotoxicity of Baylis-Hillman template derived betulinic acid-triazole conjugates. Tetrahedron, 2017, 73(29), 4214-4226.
[http://dx.doi.org/10.1016/j.tet.2016.11.056]
[86]
Kadela-Tomanek, M.; Jastrzębska, M.; Marciniec, K.; Chrobak, E.; Bębenek, E.; Latocha, M.; Kuśmierz, D.; Boryczka, S. Design, syn-thesis and biological activity of 1,4-quinone moiety attached to betulin derivatives as potent DT-diaphorase substrate. Bioorg. Chem., 2021, 106, 104478.
[http://dx.doi.org/10.1016/j.bioorg.2020.104478 ] [PMID: 33272711]
[87]
Masood-Ur-Rahman Mohammad, Y.; Fazili, K.M.; Bhat, K.A.; Ara, T. Synthesis and biological evaluation of novel 3-O-tethered tria-zoles of diosgenin as potent antiproliferative agents. Steroids, 2017, 118, 1-8.
[http://dx.doi.org/10.1016/j.steroids.2016.11.003 ] [PMID: 27864018]
[88]
Mironov, M.E.; Oleshko, O.S.; Pokrovskii, M.A.; Rybalova, T.V.; Pechurov, V.K.; Pokrovskii, A.G.; Cheresis, S.V.; Mishinov, S.V.; Stupak, V.V.; Shults, E.E. 6-(4′-Aryl-1′,2′,3′-triazolyl)-spirostan-3,5-diols and 6-(4′-Aryl-1′,2′,3′-triazolyl)-7-hydroxyspirosta-1,4-dien-3-ones: Synthesis and analysis of their cytotoxicity. Steroids, 2019, 151, 108460.
[http://dx.doi.org/10.1016/j.steroids.2019.108460 ] [PMID: 31344410]
[89]
Kiss, A.; Wölfling, J.; Mernyák, E.; Frank, É.; Benke, Z.; Ashkan Senobar Tahaei, S.; Zupkó, I.; Mahó, S.; Schneider, G. Stereocontrolled synthesis of the four possible 3-methoxy and 3-benzyloxy-16-triazolyl-methyl-estra-17-ol hybrids and their antiproliferative activities. Steroids, 2019, 152, 108500.
[http://dx.doi.org/10.1016/j.steroids.2019.108500 ] [PMID: 31536732]
[90]
Kiss, A.; Wölfling, J.; Mernyák, E.; Frank, É.; Gyovai, A.; Kulmány, Á.; Zupkó, I.; Schneider, G. Stereoselective synthesis of new type of estradiol hybrid molecules and their antiproliferative activities. Steroids, 2019, 148, 63-72.
[http://dx.doi.org/10.1016/j.steroids.2019.02.016 ] [PMID: 31085213]
[91]
Mustafa, M.; El-Kardocy, A.; Mostafa, Y.A. Development of new hetero-steroid hybrids with antiproliferative activity against MCF-7 breast cancer cells. Monatsh. Chem., 2021, 152(1), 137-149.
[http://dx.doi.org/10.1007/s00706-020-02716-0]
[92]
Pattnaik, B.; Lakshmi, J.K.; Kavitha, R.; Jagadeesh, B.; Bhattacharjee, D.; Jain, N.; Mallavadhani, U.V. Synthesis, structural studies, and cytotoxic evaluation of novel ursolic acid hybrids with capabilities to arrest breast cancer cells in mitosis. J. Asian Nat. Prod. Res., 2017, 19(3), 260-271.
[http://dx.doi.org/10.1080/10286020.2016.1240169 ] [PMID: 27762142]
[93]
Karabulut, H.R.F.; Karatavuk, A.O.; Ozyildirim, H.; Doğanlar, O.; Doğanlar, Z.B. Synthesis of novel dimeric compounds containing triazole using click method and their selective antiproliferative and proapoptotic potential via mitochondrial apoptosis signaling. Med. Chem. Res., 2020, 29(4), 643-655.
[http://dx.doi.org/10.1007/s00044-020-02510-x]
[94]
Humphries-Bickley, T.; Castillo-Pichardo, L.; Hernandez-O’Farrill, E.; Borrero-Garcia, L.D.; Forestier-Roman, I.; Gerena, Y.; Blanco, M.; Rivera-Robles, M.J.; Rodriguez-Medina, J.R.; Cubano, L.A.; Vlaar, C.P.; Dharmawardhane, S. Characterization of a dual Rac/Cdc42 inhibitor MBQ-167 in metastatic cancer. Mol. Cancer Ther., 2017, 16(5), 805-818.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0442 ] [PMID: 28450422]
[95]
Yele, V.; Pindiprolu, S.K.S.S.; Sana, S.; Ramamurty, D.S.V.N.M.; Madasi, J.R.K.; Vadlamani, S. Synthesis and preclinical evaluation of indole triazole conjugates as microtubule targeting agents that are effective against MCF-7 breast cancer cell lines. Anticancer. Agents Med. Chem., 2021, 21(8), 1047-1055.
[http://dx.doi.org/10.2174/1871520620666200925102940 ] [PMID: 32981511]
[96]
Jain, R.; Gahlyan, P.; Dwivedi, S.; Konwar, R.; Kumar, S.; Bhandari, M.; Arora, R.; Kakkar, R.; Kumar, R.; Prasad, A.K. Design, synthe-sis and evaluation of 1H-1,2,3-triazol-4-yl-methyl tethered 3-pyrrolylisatins as potent anti-breast cancer agents. ChemistrySelect, 2018, 3(19), 5263-5268.
[http://dx.doi.org/10.1002/slct.201800420]
[97]
Kumar, S.; Saha, S.T.; Gu, L.; Palma, G.; Perumal, S.; Singh-Pillay, A.; Singh, P.; Anand, A.; Kaur, M.; Kumar, V. 1H-1,2,3-Triazole tethered nitroimidazole-isatin conjugates: Synthesis, docking, and anti-proliferative evaluation against breast cancer. ACS Omega, 2018, 3(9), 12106-12113.
[http://dx.doi.org/10.1021/acsomega.8b01513 ] [PMID: 30320289]
[98]
Mohan, G.; Sridhar, G.; Laxminarayana, A.; Chary, M.T. Synthesis and biological evaluation of 1,2,4-oxadiazole incorporated 1,2,3-triazole-pyrazole derivatives as anticancer agents. Chemical Data Collections, 2021, 34, e100735.
[http://dx.doi.org/10.1016/j.cdc.2021.100735]
[99]
Qader, K.A.A.; Naser, A.W.; Farhan, M.S.; Salih, S.J. Synthesis, characterization and cytotoxic activity of some new 1,2,3-triazole, oxadiazole and aza-β-lactam derivatives. Orient. J. Chem., 2018, 34(5), 2350-2360.
[http://dx.doi.org/10.13005/ojc/340516]
[100]
Murthy, M.; Sreenivasulu, S.; Alluraiah, B.; Ramesh, R. Design, synthesis, and anticancer activity of 1,2,3-triazole linked 1,2-isoxazole-imidazo[4,5-b]pyridine derivatives. Russ. J. Gen. Chem., 2019, 89(8), 1718-1723.
[http://dx.doi.org/10.1134/S1070363219080279]
[101]
Sharma, A.; Talimarada, D.; Yadav, U.P.; Singh, N.; Reddy, A.S.; Bag, D.; Biswas, K.; Singh, S.; Holla, H. Design and synthesis of new tubulin polymerization inhibitors inspired from combretastatin A-4: An anticancer agent. ChemistrySelect, 2020, 5(37), 11560-11572.
[http://dx.doi.org/10.1002/slct.202003170]
[102]
Shi, Y.H.; Zhang, W.; Li, L.; Tong, Z.S.; Bai, C.G. Design and synthesis of novel triazolo-lapatinib hybrids as inhibitors of breast cancer cells. Med. Chem. Res., 2018, 27(11-12), 2437-2445.
[http://dx.doi.org/10.1007/s00044-018-2247-0]
[103]
Safavi, M.; Ashtari, A.; Khalili, F.; Mirfazli, S.S.; Saeedi, M.; Ardestani, S.K.; Rashidi Ranjbar, P.; Barazandeh Tehrani, M.; Larijani, B.; Mahdavi, M. Novel quinazolin-4(3H)-one linked to 1,2,3-triazoles: Synthesis and anticancer activity. Chem. Biol. Drug Des., 2018, 92(1), 1373-1381.
[http://dx.doi.org/10.1111/cbdd.13203 ] [PMID: 29637699]
[104]
Nunes, P.S.G.; da Silva, G.; Nascimento, S.; Mantoani, S.P.; de Andrade, P.; Bernardes, E.S.; Kawano, D.F.; Leopoldino, A.M.; Carvalho, I. Synthesis, biological evaluation and molecular docking studies of novel 1,2,3-triazole-quinazolines as antiproliferative agents display-ing ERK inhibitory activity. Bioorg. Chem., 2021, 113, 104982.
[http://dx.doi.org/10.1016/j.bioorg.2021.104982 ] [PMID: 34020277]
[105]
Vasua, K.K.; Ingawale, H.D.; Sagar, S.R.; Sharma, J.A.; Pandya, D.H.; Agarwal, M. 2-((1H-1,2,3-triazol-1-yl)methyl)-3-phenylquinazolin-4(3H)-ones: Design, synthesis and evaluation as anti-cancer agents. Curr. Bioact. Compd., 2018, 14(3), 254-263.
[http://dx.doi.org/10.2174/1573407213666170329131557]
[106]
Shaik, S.P.; Vishnuvardhan, M.V.P.S.; Sultana, F.; Subba Rao, A.V.; Bagul, C.; Bhattacharjee, D.; Kapure, J.S.; Jain, N.; Kamal, A. Design and synthesis of 1,2,3-triazolo linked benzo[d]imidazo[2,1-b]thiazole conjugates as tubulin polymerization inhibitors. Bioorg. Med. Chem., 2017, 25(13), 3285-3297.
[http://dx.doi.org/10.1016/j.bmc.2017.04.013 ] [PMID: 28462842]
[107]
Elzahhar, P.A.; Abd El Wahab, S.M.; Elagawany, M.; Daabees, H.; Belal, A.S.F.; El-Yazbi, A.F.; Eid, A.H.; Alaaeddine, R.; Hegazy, R.R.; Allam, R.M.; Helmy, M.W.; Elgendy, B.; Angeli, A.; El-Hawash, S.A.; Supuran, C.T. Expanding the anticancer potential of 1,2,3-triazoles via simultaneously targeting Cyclooxygenase-2, 15-lipoxygenase and tumor-associated carbonic anhydrases. Eur. J. Med. Chem., 2020, 200, 112439.
[http://dx.doi.org/10.1016/j.ejmech.2020.112439 ] [PMID: 32485532]
[108]
Shahinshavali, S.; Poojith, N.; Guttikonda, V.R.; Sreenivasulu, R.; Rao, M.V.B. Design, synthesis and anticancer evaluation of acetam-ides comprising 1,2,3-triazole, 1,3,4-thiadiazole and isothiazolo[4,3-b]pyridine rings. Lett. Org. Chem., 2020, 17(11), 864-871.
[http://dx.doi.org/10.2174/1570178617666200225102939]
[109]
Filho, R.I.; Gonzaga, D.T.G.; Demaria, T.M.; Leandro, J.G.B.; Costa, D.C.S.; Ferreira, V.F.; Sola-Penna, M. de C da Silva, F.; Zancan, P. A novel triazole derivative drug presenting in vitro and in vivo anticancer properties. Curr. Top. Med. Chem., 2018, 18(17), 1483-1493.
[http://dx.doi.org/10.2174/1568026618666180917100640 ] [PMID: 30221602]
[110]
Macan, A.M.; Harej, A.; Cazin, I.; Klobučar, M.; Stepanić, V.; Pavelić, K.; Pavelić, S.K.; Schols, D.; Snoeck, R.; Andrei, G.; Raić-Malić, S. Antitumor and antiviral activities of 4-substituted 1,2,3-triazolyl-2,3-dibenzyl-L-ascorbic acid derivatives. Eur. J. Med. Chem., 2019, 184, 111739.
[http://dx.doi.org/10.1016/j.ejmech.2019.111739 ] [PMID: 31586832]
[111]
Saini, K.S.; Hamidullah, A.; Ashraf, R.; Mandalapu, D.; Das, S.; Siddiqui, M.Q.; Dwivedi, S.; Sarkar, J.; Sharma, V.L.; Konwar, R. New orally active DNA minor groove binding small molecule CT-1 acts against breast cancer by targeting tumor DNA damage leading to p53-dependent apoptosis. Mol. Carcinog., 2017, 56(4), 1266-1280.
[http://dx.doi.org/10.1002/mc.22588 ] [PMID: 27813185]
[112]
Kumar, N.P.; Nekkanti, S.; Sujana Kumari, S.; Sharma, P.; Shankaraiah, N. Design and synthesis of 1,2,3-triazolo-phenanthrene hybrids as cytotoxic agents. Bioorg. Med. Chem. Lett., 2017, 27(11), 2369-2376.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.022 ] [PMID: 28431881]
[113]
Huang, M.; Deng, Z.; Tian, J.; Liu, T. Synthesis and biological evaluation of salinomycin triazole analogues as anticancer agents. Eur. J. Med. Chem., 2017, 127, 900-908.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.067 ] [PMID: 27876192]
[114]
Janganati, V.; Ponder, J.; Balasubramaniam, M.; Bhat-Nakshatri, P.; Bar, E.E.; Nakshatri, H.; Jordan, C.T.; Crooks, P.A. MMB triazole analogs are potent NF-κB inhibitors and anti-cancer agents against both hematological and solid tumor cells. Eur. J. Med. Chem., 2018, 157, 562-581.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.010 ] [PMID: 30121494]
[115]
Zhang, J.X.; Guo, J.M.; Zhang, T.T.; Lin, H.J.; Qi, N.S.; Li, Z.G.; Zhou, J.C.; Zhang, Z.Z. Antiproliferative phenothiazine hybrids as novel apoptosis inducers against MCF-7 breast cancer. Molecules, 2018, 23(6), e1288.
[http://dx.doi.org/10.3390/molecules23061288 ] [PMID: 29843370]
[116]
Yakantham, C.; Sreenivasulu, M.; Alluraiah, S.; Tej, J.; Raju, R. Design, synthesis, and anticancer activity of 1,2,3-triazole linked thia-zole-1,2-isoxazole derivatives. Russ. J. Gen. Chem., 2019, 89(12), 2522-2527.
[http://dx.doi.org/10.1134/S1070363219120314]
[117]
Murugavel, S.; Ravikumar, C.; Jaabil, G.; Alagusundaram, P. Synthesis, computational quantum chemical study, in silico ADMET and molecular docking analysis, in vitro biological evaluation of a novel sulfur heterocyclic thiophene derivative containing 1,2,3-triazole and pyridine moieties as a potential human topoisomerase IIα inhibiting anticancer agent. Comput. Biol. Chem., 2019, 79, 73-82.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.01.013 ] [PMID: 30731361]
[118]
Ottoni, F.M.; Gomes, E.R.; Pádua, R.M.; Oliveira, M.C.; Silva, I.T.; Alves, R.J. Synthesis and cytotoxicity evaluation of glycosidic deriv-atives of lawsone against breast cancer cell lines. Bioorg. Med. Chem. Lett., 2020, 30(2), 126817.
[http://dx.doi.org/10.1016/j.bmcl.2019.126817 ] [PMID: 31810778]
[119]
Kassem, A.F.; Abbas, E.M.H.; El-Kady, D.S.; Awad, H.M.; El-Sayed, W.A. Design, synthesis and anticancer activity of new thiazole-tetrazole or triazole hybrid glycosides targeting CDK-2 via structure-based virtual screening. Mini Rev. Med. Chem., 2019, 19(11), 933-948.
[http://dx.doi.org/10.2174/1389557519666181231121217 ] [PMID: 30599108]
[120]
Kumari, P.; Dubey, S.; Venkatachalapathy, S.; Narayana, C.; Gupta, A.; Sagar, R. Synthesis of new triazole linked carbohybrids with ROS-mediated toxicity in breast cancer. New J. Chem., 2019, 43(47), 18590-18600.
[http://dx.doi.org/10.1039/C9NJ03288F]
[121]
Tsai, Y.H.; Borini Etichetti, C.M.; Cicetti, S.; Girardini, J.E.; Spanevello, R.A.; Suárez, A.G.; Sarotti, A.M. Design, synthesis and evalua-tion of novel levoglucosenone derivatives as promising anticancer agents. Bioorg. Med. Chem. Lett., 2020, 30(14), 127247.
[http://dx.doi.org/10.1016/j.bmcl.2020.127247 ] [PMID: 32527547]
[122]
Tsai, Y.H.; Borini Etichetti, C.M.; Di Benedetto, C.; Girardini, J.E.; Martins, F.T.; Spanevello, R.A.; Suárez, A.G.; Sarotti, A.M. Synthesis of triazole derivatives of levoglucosenone as promising anticancer agents: Effective exploration of the chemical space through retro-za-michael//aza-michael isomerizations. J. Org. Chem., 2018, 83(7), 3516-3528.
[http://dx.doi.org/10.1021/acs.joc.7b03141 ] [PMID: 29481076]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy