Generic placeholder image

Current Drug Research Reviews

Editor-in-Chief

ISSN (Print): 2589-9775
ISSN (Online): 2589-9783

Review Article

Are Histamine H3 Antagonists the Definitive Treatment for Acute Methamphetamine Intoxication?

Author(s): Nobue Kitanaka*, F. Scott Hall, Koh-ichi Tanaka,, Kazuo Tomita, Kento Igarashi, Nobuyoshi Nishiyama, Tomoaki Sato, George R. Uhl and Junichi Kitanaka,*

Volume 14, Issue 3, 2022

Published on: 18 August, 2022

Page: [162 - 170] Pages: 9

DOI: 10.2174/2589977514666220414122847

Price: $65

Abstract

Background: Methamphetamine (METH) is classified as a Schedule II stimulant drug under the United Nations Convention on Psychotropic Substances of 1971. METH and other amphetamine analogues (AMPHs) are powerful addictive drugs. Treatments are needed to treat the symptoms of METH addiction, chronic METH use, and acute METH overdose. No effective treatment for METH abuse has been established because alterations of brain functions under the excessive intake of abused drug intake are largely irreversible due in part to brain damage that occurs in the course of chronic METH use.

Objective: Modulation of brain histamine neurotransmission is involved in several neuropsychiatric disorders, including substance use disorders. This review discusses the possible mechanisms underlying the therapeutic effects of histamine H3 receptor antagonists on symptoms of methamphetamine abuse.

Conclusion: Treatment of mice with centrally acting histamine H3 receptor antagonists increases hypothalamic histamine contents and reduces high-dose METH effects while potentiating lowdose effects via histamine H3 receptors that bind released histamine. On the basis of experimental evidence, it is hypothesized that histamine H3 receptors may be an effective target for the treatment METH use disorder or other adverse effects of chronic METH use.

Keywords: Histamine, methamphetamine abuse, histamine H3 receptor antagonist, histaminergic neurotransmission, hypothalamus, pharmacotherapy.

Graphical Abstract
[1]
National Institute on Drug Abuse. NIDA InfoFacts: Methamphetamine 2004. Available form:http://www.drugabuse.gov/publications/drugfacts/methamphetamine [cited 2012 Nov 21]
[2]
Robinson, T.E.; Berridge, K.C. The neural basis of drug craving: An incentive-sensitization theory of addiction. Brain Res. Brain Res. Rev., 1993, 18(3), 247-291.
[http://dx.doi.org/10.1016/0165-0173(93)90013-P] [PMID: 8401595]
[3]
Koob, G.F.; Le Moal, M. Drug abuse: Hedonic homeostatic dysregulation. Science, 1997, 278(5335), 52-58.
[http://dx.doi.org/10.1126/science.278.5335.52] [PMID: 9311926]
[4]
Everitt, B.J.; Robbins, T.W. Neural systems of reinforcement for drug addiction: From actions to habits to compulsion. Nat. Neurosci., 2005, 8(11), 1481-1489.
[http://dx.doi.org/10.1038/nn1579] [PMID: 16251991]
[5]
Kramer, J.C.; Fischman, V.S.; Littlefield, D.C. Amphetamine abuse. Pattern and effects of high doses taken intravenously. JAMA, 1967, 201(5), 305-309.
[http://dx.doi.org/10.1001/jama.1967.03130050039011] [PMID: 6071725]
[6]
Randrup, A.; Munkvad, I. Stereotyped activities produced by amphetamine in several animal species and man. Psychopharmacology (Berl.), 1967, 11(4), 300-310.
[http://dx.doi.org/10.1007/BF00404607] [PMID: 4968376]
[7]
Robinson, T.E.; Becker, J.B. Enduring changes in brain and behavior produced by chronic amphetamine administration: A review and evalua-tion of animal models of amphetamine psychosis. Brain Res., 1986, 396(2), 157-198.
[http://dx.doi.org/10.1016/0165-0173(86)90002-0] [PMID: 3527341]
[8]
Sato, M. A lasting vulnerability to psychosis in patients with previous methamphetamine psychosis. Ann. N. Y. Acad. Sci., 1992, 654, 160-170.
[http://dx.doi.org/10.1111/j.1749-6632.1992.tb25965.x] [PMID: 1632581]
[9]
Richards, J.R.; Derlet, R.; Duncan, D. Methamphetamine toxicity: Treatment with a benzodiazepine versus a butyrophenone. Eur. J. Emerg. Med., 1997, 4(3), 130-135.
[http://dx.doi.org/10.1097/00063110-199709000-00003]
[10]
Long, J.D.; Liu, Y.; Jiao, D.L. The neuroprotective effect of memantine on methamphetamine-induced cognitive deficits. Behav. Brain Res., 2017, 323, 133-140.
[http://dx.doi.org/10.1016/j.bbr.2017.01.042] [PMID: 28147236]
[11]
Gutierrez, A.; Regan, S.L.; Hoover, C.S.; Williams, M.T.; Vorhees, C.V. Effects of intrastriatal dopamine D1 or D2 antagonists on methampheta-mine-induced egocentric and allocentric learning and memory deficits in Sprague-Dawley rats. Psychopharmacology (Berl.), 2019, 236(7), 2243-2258.
[http://dx.doi.org/10.1007/s00213-019-05221-3] [PMID: 30919007]
[12]
Zhou, M.; Gong, X.; Ru, Q. The neuroprotective effect of L-stepholidine on methamphetamine-induced memory deficits in Mice. Neurotox. Res., 2019, 36(2), 376-386.
[http://dx.doi.org/10.1007/s12640-019-00069-z] [PMID: 31201732]
[13]
Longo, M.; Wickes, W.; Smout, M.; Harrison, S.; Cahill, S.; White, J.M. Randomized controlled trial of dexamphetamine maintenance for the treatment of methamphetamine dependence. Addiction, 2010, 105(1), 146-154.
[http://dx.doi.org/10.1111/j.1360-0443.2009.02717.x] [PMID: 19839966]
[14]
Shearer, J.; Darke, S.; Rodgers, C. A double-blind, placebo-controlled trial of modafinil (200 mg/day) for methamphetamine depend-ence. Addiction, 2009, 104(2), 224-233.
[http://dx.doi.org/10.1111/j.1360-0443.2008.02437.x] [PMID: 19149817]
[15]
Brackins, T.; Brahm, N.C.; Kissack, J.C. Treatments for methamphetamine abuse: A literature review for the clinician. J. Pharm. Pract., 2011, 24(6), 541-550.
[http://dx.doi.org/10.1177/0897190011426557] [PMID: 22095579]
[16]
Courtney, K.E.; Ray, L.A. Methamphetamine: An update on epidemiology, pharmacology, clinical phenomenology, and treatment literature. Drug Alcohol Depend., 2014, 143, 11-21.
[http://dx.doi.org/10.1016/j.drugalcdep.2014.08.003] [PMID: 25176528]
[17]
Karila, L.; Weinstein, A.; Aubin, H.J.; Benyamina, A.; Reynaud, M.; Batki, S.L. Pharmacological approaches to methamphetamine dependence: A focused review. Br. J. Clin. Pharmacol., 2010, 69(6), 578-592.
[http://dx.doi.org/10.1111/j.1365-2125.2010.03639.x] [PMID: 20565449]
[18]
Hamel, C.; Corace, K.; Hersi, M. Psychosocial and pharmacologic interventions for methamphetamine addiction: Protocol for a scoping review of the literature. Syst. Rev., 2020, 9(1), 245.
[http://dx.doi.org/10.1186/s13643-020-01499-z] [PMID: 33099314]
[19]
Brown, R.E.; Stevens, D.R.; Haas, H.L. The physiology of brain histamine. Prog. Neurobiol., 2001, 63(6), 637-672.
[http://dx.doi.org/10.1016/S0301-0082(00)00039-3] [PMID: 11164999]
[20]
Haas, H.L.; Sergeeva, O.A.; Selbach, O. Histamine in the nervous system. Physiol. Rev., 2008, 88(3), 1183-1241.
[http://dx.doi.org/10.1152/physrev.00043.2007] [PMID: 18626069]
[21]
Wada, H.; Inagaki, N.; Itowi, N.; Yamatodani, A. Histaminergic neuron system in the brain: Distribution and possible functions. Brain Res. Bull., 1991, 27(3-4), 367-370.
[http://dx.doi.org/10.1016/0361-9230(91)90126-5] [PMID: 1959031]
[22]
Thurmond, R.L. Peripheral Neuronal Mechanism of Itch: Histamine and Itch. In: Itch: Mechanisms and Treatment; Carstens, E.; Akiyama, T., Eds.; Boca Raton, FL, 2014.
[23]
White, M.V. The role of histamine in allergic diseases. J. Allergy Clin. Immunol., 1990, 86(4 Pt 2), 599-605.
[http://dx.doi.org/10.1016/S0091-6749(05)80223-4] [PMID: 1699987]
[24]
Schubert, M.L. Gastric secretion. Curr. Opin. Gastroenterol., 2010, 26(6), 598-603.
[http://dx.doi.org/10.1097/MOG.0b013e32833f2010] [PMID: 20838342]
[25]
Lieberman, P. The basics of histamine biology. Ann. Allergy Asthma Immunol., 2011, 106(2)(Suppl.), S2-S5.
[http://dx.doi.org/10.1016/j.anai.2010.08.005] [PMID: 21277530]
[26]
Watanabe, T.; Taguchi, Y.; Hayashi, H. Evidence for the presence of a histaminergic neuron system in the rat brain: An immunohisto-chemical analysis. Neurosci. Lett., 1983, 39(3), 249-254.
[http://dx.doi.org/10.1016/0304-3940(83)90308-7] [PMID: 6355911]
[27]
Panula, P.; Yang, H.Y.; Costa, E. Histamine-containing neurons in the rat hypothalamus. Proc. Natl. Acad. Sci. USA, 1984, 81(8), 2572-2576.
[http://dx.doi.org/10.1073/pnas.81.8.2572] [PMID: 6371818]
[28]
Roberts, F.; Calcutt, C.R. Histamine and the hypothalamus. Neuroscience, 1983, 9(4), 721-739.
[http://dx.doi.org/10.1016/0306-4522(83)90264-6] [PMID: 6312374]
[29]
Thakkar, M.M. Histamine in the regulation of wakefulness. Sleep Med. Rev., 2011, 15(1), 65-74.
[http://dx.doi.org/10.1016/j.smrv.2010.06.004] [PMID: 20851648]
[30]
Bähre, H.; Kaever, V. Analytical methods for the quantification of histamine and histamine metabolites. Handb. Exp. Pharmacol., 2017, 241, 3-19.
[http://dx.doi.org/10.1007/164_2017_22] [PMID: 28321587]
[31]
Arrang, J.M.; Garbarg, M.; Schwartz, J.C. Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor. Nature, 1983, 302(5911), 832-837.
[http://dx.doi.org/10.1038/302832a0] [PMID: 6188956]
[32]
Arrang, J.M.; Garbarg, M.; Schwartz, J.C. Autoregulation of histamine release in brain by presynaptic H3-receptors. Neuroscience, 1985, 15(2), 553-562.
[http://dx.doi.org/10.1016/0306-4522(85)90233-7] [PMID: 4022339]
[33]
Ogasawara, M.; Yamauchi, K.; Satoh, Y. Recent advances in molecular pharmacology of the histamine systems: Organic cation trans-porters as a histamine transporter and histamine metabolism. J. Pharmacol. Sci., 2006, 101(1), 24-30.
[http://dx.doi.org/10.1254/jphs.FMJ06001X6] [PMID: 16648665]
[34]
Naganuma, F.; Yoshikawa, T. Organic cation transporters in brain histamine clearance: physiological and psychiatric implications. Handb. Exp. Pharmacol., 2021, 266, 169-185.
[http://dx.doi.org/10.1007/164_2021_447] [PMID: 33641029]
[35]
Takemura, M.; Imamura, I.; Mizuguchi, H.; Fukui, H.; Yamatodani, A. Tissue distribution of histamine N-methyltransferase-like immunoreac-tivity in rodents. Life Sci., 1994, 54(15), 1059-1071.
[http://dx.doi.org/10.1016/0024-3205(94)00416-1] [PMID: 8152327]
[36]
Kitanaka, N.; Kitanaka, J.; Oue, T.; Tada, Y.; Tanaka, T.; Takemura, M. Genomic structure of the rat and mouse histamine N-methyltransferase gene. Jpn. J. Pharmacol., 2002, 88(1), 85-92.
[http://dx.doi.org/10.1254/jjp.88.85] [PMID: 11855681]
[37]
Kitanaka, J.; Kitanaka, N.; Tsujimura, T.; Terada, N.; Takemura, M. Expression of diamine oxidase (histaminase) in guinea-pig tissues. Eur. J. Pharmacol., 2002, 437(3), 179-185.
[http://dx.doi.org/10.1016/S0014-2999(02)01302-X] [PMID: 11890907]
[38]
Imamura, I.; Watanabe, T.; Maeyama, K.; Kubota, A.; Okada, A.; Wada, H. Effect of food intake on urinary excretions of histamine, N tau-methylhistamine, imidazole acetic acid and its conjugate(s) in humans and mice. J. Biochem., 1984, 96(6), 1931-1937.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a135028] [PMID: 6442293]
[39]
Nuutinen, S.; Panula, P. Histamine in neurotransmission and brain diseases. Adv. Exp. Med. Biol., 2010, 709, 95-107.
[http://dx.doi.org/10.1007/978-1-4419-8056-4_10] [PMID: 21618891]
[40]
Panula, P.; Nuutinen, S. The histaminergic network in the brain: Basic organization and role in disease. Nat. Rev. Neurosci., 2013, 14(7), 472-487.
[http://dx.doi.org/10.1038/nrn3526] [PMID: 23783198]
[41]
Grinchii, D.; Dremencov, E. Mechanism of action of atypical antipsychotic drugs in mood disorders. Int. J. Mol. Sci., 2020, 21(24), E9532.
[http://dx.doi.org/10.3390/ijms21249532] [PMID: 33333774]
[42]
Ribolsi, M.; Magni, V.; Rubino, I.A. Quetiapine fumarate for schizophrenia and bipolar disorder in young patients. Drugs Today (Barc), 2010, 46(8), 581-587.
[http://dx.doi.org/10.1358/dot.2010.46.8.1500050] [PMID: 20830318]
[43]
Sanford, M.; Keating, G.M. Quetiapine: A review of its use in the management of bipolar depression. CNS Drugs, 2012, 26(5), 435-460.
[http://dx.doi.org/10.2165/11203840-000000000-00000] [PMID: 22519923]
[44]
Yang, C.C.; Liang, C.S.; Chu, C.W. Combination of quetiapine immediate release and xr for h1-antihistamine-refractory chronic spontaneous urticaria comorbid with depressive disorder: A case report. Am. J. Ther., 2019, 26(6), e727-e728.
[http://dx.doi.org/10.1097/MJT.0000000000000877] [PMID: 30418225]
[45]
Mariani, J.J.; Pavlicova, M.; Jean Choi, C. Quetiapine treatment for cannabis use disorder. Drug Alcohol Depend., 2021, 218, 108366.
[http://dx.doi.org/10.1016/j.drugalcdep.2020.108366] [PMID: 33153828]
[46]
Ray, L.A.; Heydari, A.; Zorick, T. Quetiapine for the treatment of alcoholism: Scientific rationale and review of the literature. Drug Alcohol Rev., 2010, 29(5), 568-575.
[http://dx.doi.org/10.1111/j.1465-3362.2010.00185.x] [PMID: 20887583]
[47]
Vatsalya, V.; Kong, M.; Marsano, L.M. Interaction of heavy drinking patterns and depression severity predicts efficacy of quetiapine fumarate XR in lowering alcohol intake in alcohol use disorder patients. Subst. Abuse, 2020, 14, 1178221820955185.
[http://dx.doi.org/10.1177/1178221820955185] [PMID: 32963470]
[48]
Kleimaker, A.; Kleimaker, M.; Bäumer, T.; Beste, C.; Münchau, A. Gilles de la Tourette Syndrome-A disorder of action-perception integration. Front. Neurol., 2020, 11, 597898.
[http://dx.doi.org/10.3389/fneur.2020.597898] [PMID: 33324336]
[49]
Baldan, L.C.; Williams, K.A.; Gallezot, J.D. Histidine decarboxylase deficiency causes tourette syndrome: Parallel findings in humans and mice. Neuron, 2014, 81(1), 77-90.
[http://dx.doi.org/10.1016/j.neuron.2013.10.052] [PMID: 24411733]
[50]
Joshi, V.V.; Balsara, J.J.; Jadhav, J.H.; Chandorkar, A.G. Effect of L-histidine and chlorcyclizine on apomorphine-induced climbing behaviour and methamphetamine stereotypy in mice. Eur. J. Pharmacol., 1981, 69(4), 499-502.
[http://dx.doi.org/10.1016/0014-2999(81)90456-8] [PMID: 6113966]
[51]
Sakurai, E.; Sakurai, E.; Watanabe, T.; Yanai, K. Uptake of L-histidine and histamine biosynthesis at the blood-brain barrier. Inflamm. Res., 2009, 58(S1)(Suppl. 1), 34-35.
[http://dx.doi.org/10.1007/s00011-009-0656-8] [PMID: 19271124]
[52]
Kitanaka, J.; Kitanaka, N.; Tatsuta, T. Pretreatment with l-histidine produces a shift from methamphetamine-induced stereotypical biting to persistent locomotion in mice. Pharmacol. Biochem. Behav., 2010, 94(3), 464-470.
[http://dx.doi.org/10.1016/j.pbb.2009.10.009] [PMID: 19895842]
[53]
Beaven, M.A.; Shaff, R.E. New inhibitors of histamine-N-methyltransferase. Biochem. Pharmacol., 1979, 28(2), 183-188.
[http://dx.doi.org/10.1016/0006-2952(79)90500-8] [PMID: 34400]
[54]
Cavallito, J.C.; Nichol, C.A.; Brenckman, W.D., Jr Lipid-soluble inhibitors of dihydrofolate reductase. I. Kinetics, tissue distribution, and extent of metabolism of pyrimethamine, metoprine, and etoprine in the rat, dog, and man. Drug Metab. Dispos., 1978, 6(3), 329-337.
[PMID: 26555]
[55]
Nichol, C.A.; Cavallito, J.C.; Woolley, J.L.; Sigel, C.W. Lipid-soluble diaminopyrimidine inhibitors of dihydrofolate reductase. Cancer Treat. Rep., 1977, 61(4), 559-564.
[PMID: 301777]
[56]
Kitanaka, J.; Kitanaka, N.; Tatsuta, T.; Morita, Y.; Takemura, M. Blockade of brain histamine metabolism alters methamphetamine-induced expression pattern of stereotypy in mice via histamine H1 receptors. Neuroscience, 2007, 147(3), 765-777.
[http://dx.doi.org/10.1016/j.neuroscience.2007.05.006] [PMID: 17570600]
[57]
Itoh, Y.; Nishibori, M.; Oishi, R.; Saeki, K. Neuronal histamine inhibits methamphetamine-induced locomotor hyperactivity in mice. Neurosci. Lett., 1984, 48(3), 305-309.
[http://dx.doi.org/10.1016/0304-3940(84)90055-7] [PMID: 6541326]
[58]
Sakai, N.; Onodera, K.; Maeyama, K.; Yanai, K.; Watanabe, T. Effects of (S)-alpha -fluoromethylhistidine and metoprine on locomotor activity and brain histamine content in mice. Life Sci., 1992, 51(6), 397-405.
[http://dx.doi.org/10.1016/0024-3205(92)90406-F] [PMID: 1635419]
[59]
Samotaeva, I.S.; Birioukova, L.M.; Midzyanovskaya, I.S.; Kuznetsova, G.D.; Bazyan, A.S.; Tuomisto, L. Metoprine induced behavioral modifica-tions and brain regional histamine increase in WAG/Rij and Wistar rats. Epilepsy Res., 2012, 101(1-2), 148-156.
[http://dx.doi.org/10.1016/j.eplepsyres.2012.03.016] [PMID: 22503455]
[60]
Muroi, N.; Oishi, R.; Saeki, K. Effect of reserpine on histamine metabolism in the mouse brain. J. Pharmacol. Exp. Ther., 1991, 256(3), 967-972.
[PMID: 2005590]
[61]
Zawilska, J.; Nowak, J.Z. Changes in the rat brain histamine content following metoprine and other histamine-methyltransferase (HMT) in-hibitors. Pol. J. Pharmacol. Pharm., 1985, 37(6), 821-830.
[PMID: 3832018]
[62]
Kathmann, M.; Schlicker, E.; Detzner, M.; Timmerman, H. Nordimaprit, homodimaprit, clobenpropit and imetit: Affinities for H3 binding sites and potencies in a functional H3 receptor model. Naunyn Schmiedebergs Arch. Pharmacol., 1993, 348(5), 498-503.
[http://dx.doi.org/10.1007/BF00173209] [PMID: 8114949]
[63]
Braestrup, C. Changes in drug-induced stereotyped behavior after 6-OHDA lesions in noradrenaline neurons. Psychopharmacology (Berl.), 1977, 51(2), 199-204.
[http://dx.doi.org/10.1007/BF00431741] [PMID: 402674]
[64]
Arrang, J.M. Pharmacological properties of histamine receptor subtypes. Cell. Mol. Biol., 1994, 40(3), 275-281.
[PMID: 7920174]
[65]
Arrang, J.M.; Garbarg, M.; Quach, T.T.; Yeramian, E.; Schwartz, J.C. Actions of betahistine at histamine receptors in the brain. Eur. J. Pharmacol., 1985, 111(1), 73-84.
[http://dx.doi.org/10.1016/0014-2999(85)90115-3] [PMID: 2990946]
[66]
Kitanaka, J.; Kitanaka, N.; Hall, F.S. In vivo evaluation of effects of histamine H3 receptor antagonists on methamphetamine-induced hyperlocomotion in mice. Brain Res., 2020, 1740, 146873.
[http://dx.doi.org/10.1016/j.brainres.2020.146873] [PMID: 32387137]
[67]
Fox, G.B.; Esbenshade, T.A.; Pan, J.B. Pharmacological properties of ABT-239 [4-(2-2-[(2R)-2-Methylpyrrolidinyl]ethyl-benzofuran-5-yl)benzonitrile]: II. Neurophysiological characterization and broad preclinical efficacy in cognition and schizophrenia of a potent and se-lective histamine H3 receptor antagonist. J. Pharmacol. Exp. Ther., 2005, 313(1), 176-190.
[http://dx.doi.org/10.1124/jpet.104.078402] [PMID: 15608077]
[68]
Kitanaka, J.; Kitanaka, N.; Hall, F.S. Histamine H3 receptor agonists decrease hypothalamic histamine levels and increase stereotypical biting in mice challenged with methamphetamine. Neurochem. Res., 2011, 36(10), 1824-1833.
[http://dx.doi.org/10.1007/s11064-011-0500-8] [PMID: 21573995]
[69]
Kitanaka, J; Kitanaka, N; Takemura, M Methamphetamine-induced brain pathology and central histaminergic system. Nou21 (Brain21), 2015, 18(2), 83-88.
[70]
Munzar, P.; Tanda, G.; Justinova, Z.; Goldberg, S.R. Histamine h3 receptor antagonists potentiate methamphetamine self-administration and methamphetamine-induced accumbal dopamine release. Neuropsychopharmacology, 2004, 29(4), 705-717.
[http://dx.doi.org/10.1038/sj.npp.1300380] [PMID: 14735131]
[71]
Acevedo, S.F.; de Esch, I.J.; Raber, J. Sex- and histamine-dependent long-term cognitive effects of methamphetamine exposure. Neuropsychopharmacology, 2007, 32(3), 665-672.
[http://dx.doi.org/10.1038/sj.npp.1301091] [PMID: 16710318]
[72]
Medhurst, A.D.; Atkins, A.R.; Beresford, I.J. GSK189254, a novel H3 receptor antagonist that binds to histamine H3 receptors in Alz-heimer’s disease brain and improves cognitive performance in preclinical models. J. Pharmacol. Exp. Ther., 2007, 321(3), 1032-1045.
[http://dx.doi.org/10.1124/jpet.107.120311] [PMID: 17327487]
[73]
Esbenshade, T.A.; Browman, K.E.; Miller, T.R. Pharmacological properties and procognitive effects of ABT-288, a potent and selective histamine H3 receptor antagonist. J. Pharmacol. Exp. Ther., 2012, 343(1), 233-245.
[http://dx.doi.org/10.1124/jpet.112.194126] [PMID: 22815533]
[74]
Philippu, A.; Bald, M.; Kraus, A.; Dietl, H. In vivo release by histamine agonists and antagonists of endogenous catecholamines in the cat hy-pothalamus. Naunyn Schmiedebergs Arch. Pharmacol., 1984, 326(2), 116-123.
[http://dx.doi.org/10.1007/BF00517307] [PMID: 6147762]
[75]
Knigge, U.; Matzen, S.; Warberg, J. Histaminergic regulation of prolactin secretion: Involvement of tuberoinfundibular dopaminergic neurons. Neuroendocrinology, 1988, 48(2), 167-173.
[http://dx.doi.org/10.1159/000125005] [PMID: 2975768]
[76]
Aquino-Miranda, G.; Escamilla-Sánchez, J.; González-Pantoja, R.; Bueno-Nava, A.; Arias-Montaño, J.A. Histamine H3 receptor activation inhib-its dopamine synthesis but not release or uptake in rat nucleus accumbens. Neuropharmacology, 2016, 106, 91-101.
[http://dx.doi.org/10.1016/j.neuropharm.2015.07.006] [PMID: 26169221]
[77]
Prast, H.; Heistracher, M.; Philippu, A. Modulation by dopamine receptors of the histamine release in the rat hypothalamus. Naunyn Schmiedebergs Arch. Pharmacol., 1993, 347(3), 301-305.
[http://dx.doi.org/10.1007/BF00167449] [PMID: 7683115]
[78]
Schlicker, E.; Fink, K.; Detzner, M.; Göthert, M. Histamine inhibits dopamine release in the mouse striatum via presynaptic H3 receptors. J. Neural Transm. (Vienna), 1993, 93(1), 1-10.
[http://dx.doi.org/10.1007/BF01244933] [PMID: 8396945]
[79]
Ito, C.; Onodera, K.; Sakurai, E.; Sato, M.; Watanabe, T. Effects of dopamine antagonists on neuronal histamine release in the striatum of rats subjected to acute and chronic treatments with methamphetamine. J. Pharmacol. Exp. Ther., 1996, 279(1), 271-276.
[PMID: 8859003]
[80]
Alfaro-Rodriguez, A.; Alonso-Spilsbury, M.; Arch-Tirado, E.; Gonzalez-Pina, R.; Arias-Montaño, J.A.; Bueno-Nava, A. Histamine H3 receptor activation prevents dopamine D1 receptor-mediated inhibition of dopamine release in the rat striatum: A microdialysis study. Neurosci. Lett., 2013, 552, 5-9.
[http://dx.doi.org/10.1016/j.neulet.2013.07.026] [PMID: 23896530]
[81]
Morisset, S.; Pilon, C.; Tardivel-Lacombe, J. Acute and chronic effects of methamphetamine on tele-methylhistamine levels in mouse brain: Selective involvement of the D(2) and not D(3) receptor. J. Pharmacol. Exp. Ther., 2002, 300(2), 621-628.
[http://dx.doi.org/10.1124/jpet.300.2.621] [PMID: 11805225]
[82]
González, B.; Torres, O.V.; Jayanthi, S. The effects of single-dose injections of modafinil and methamphetamine on epigenetic and func-tional markers in the mouse medial prefrontal cortex: Potential role of dopamine receptors. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2019, 88, 222-234.
[http://dx.doi.org/10.1016/j.pnpbp.2018.07.019] [PMID: 30056065]
[83]
González, B.; Jayanthi, S.; Gomez, N. Repeated methamphetamine and modafinil induce differential cognitive effects and specific his-tone acetylation and DNA methylation profiles in the mouse medial prefrontal cortex. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2018, 82, 1-11.
[http://dx.doi.org/10.1016/j.pnpbp.2017.12.009] [PMID: 29247759]
[84]
Aquino-Miranda, G.; Osorio-Espinoza, A.; Escamilla-Sánchez, J.; González-Pantoja, R.; Ortiz, J.; Arias-Montaño, J.A. Histamine H-receptors modulate depolarization-evoked [3H]-noradrenaline release from rat olfactory bulb slices. Neuropharmacology, 2012, 62(2), 1127-1133.
[http://dx.doi.org/10.1016/j.neuropharm.2011.11.004] [PMID: 22115898]
[85]
Prast, H.; Tran, M.H.; Fischer, H. Histaminergic neurons modulate acetylcholine release in the ventral striatum: Role of H3 histamine receptors. Naunyn Schmiedebergs Arch. Pharmacol., 1999, 360(5), 558-564.
[http://dx.doi.org/10.1007/s002109900097] [PMID: 10598795]
[86]
Prast, H.; Tran, M.H.; Lamberti, C. Histaminergic neurons modulate acetylcholine release in the ventral striatum: Role of H1 and H2 histamine receptors. Naunyn Schmiedebergs Arch. Pharmacol., 1999, 360(5), 552-557.
[http://dx.doi.org/10.1007/s002109900098] [PMID: 10598794]
[87]
Varaschin, R.K.; Osterstock, G.; Ducrot, C. Histamine H3 receptors decrease dopamine release in the ventral striatum by reducing the activity of striatal cholinergic interneurons. Neuroscience, 2018, 376, 188-203.
[http://dx.doi.org/10.1016/j.neuroscience.2018.01.027] [PMID: 29374538]
[88]
Osorio-Espinoza, A.; Alatorre, A.; Ramos-Jiménez, J. Pre-synaptic histamine H-receptors modulate glutamatergic transmission in rat Globus pallidus. Neuroscience, 2011, 176, 20-31.
[http://dx.doi.org/10.1016/j.neuroscience.2010.12.051] [PMID: 21195747]
[89]
Arias-Montaño, J.A.; Floran, B.; Garcia, M.; Aceves, J.; Young, J.M. Histamine H(3) receptor-mediated inhibition of depolarization-induced, dopamine D(1) receptor-dependent release of [(3)H]-gamma-aminobutryic acid from rat striatal slices. Br. J. Pharmacol., 2001, 133(1), 165-171.
[http://dx.doi.org/10.1038/sj.bjp.0704053] [PMID: 11325806]
[90]
Garcia, M.; Floran, B.; Arias-Montaño, J.A.; Young, J.M.; Aceves, J. Histamine H3 receptor activation selectively inhibits dopamine D1 receptor-dependent [3H]GABA release from depolarization-stimulated slices of rat substantia nigra pars reticulata. Neuroscience, 1997, 80(1), 241-249.
[http://dx.doi.org/10.1016/S0306-4522(97)00100-0] [PMID: 9252235]
[91]
Son, L.Z.; Yanai, K.; Mobarakeh, J.I. Histamine H1 receptor-mediated inhibition of potassium-evoked release of 5-hydroxytryptamine from mouse forebrains. Behav. Brain Res., 2001, 124(2), 113-120.
[http://dx.doi.org/10.1016/S0166-4328(01)00220-0] [PMID: 11640963]
[92]
Threlfell, S.; Cragg, S.J.; Kalló, I.; Turi, G.F.; Coen, C.W.; Greenfield, S.A. Histamine H3 receptors inhibit serotonin release in substantia nigra pars reticulata. J. Neurosci., 2004, 24(40), 8704-8710.
[http://dx.doi.org/10.1523/JNEUROSCI.2690-04.2004] [PMID: 15470136]
[93]
He, G.; Hu, J.; Ma, X. Sympathetic histamine exerts different pre- and post-synaptic functions according to the frequencies of nerve stimulation in guinea pig vas deferens. J. Neurochem., 2008, 106(4), 1710-1719.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05532.x] [PMID: 18565206]
[94]
Morrey, C.; Estephan, R.; Abbott, G.W.; Levi, R. Cardioprotective effect of histamine H3-receptor activation: Pivotal role of G beta gamma-dependent inhibition of voltage-operated Ca2+ channels. J. Pharmacol. Exp. Ther., 2008, 326(3), 871-878.
[http://dx.doi.org/10.1124/jpet.108.137919] [PMID: 18523159]
[95]
Galici, R.; Rezvani, A.H.; Aluisio, L. JNJ-39220675, a novel selective histamine H3 receptor antagonist, reduces the abuse-related effects of alcohol in rats. Psychopharmacology (Berl.), 2011, 214(4), 829-841.
[http://dx.doi.org/10.1007/s00213-010-2092-4] [PMID: 21086115]
[96]
Nuutinen, S.; Mäki, T.; Rozov, S. Histamine H3 receptor antagonist decreases cue-induced alcohol reinstatement in mice. Neuropharmacology, 2016, 106, 156-163.
[http://dx.doi.org/10.1016/j.neuropharm.2015.06.006] [PMID: 26107118]
[97]
Ito, C.; Onodera, K.; Sakurai, E.; Sato, M.; Watanabe, T. The effect of methamphetamine on histamine level and histidine decarboxylase activity in the rat brain. Brain Res., 1996, 734(1-2), 98-102.
[http://dx.doi.org/10.1016/0006-8993(96)00618-X] [PMID: 8896814]
[98]
Ito, C.; Onodera, K.; Yamatodani, A.; Watanabe, T.; Sato, M. The effect of methamphetamine on histamine release in the rat hypothalamus. Psychiatry Clin. Neurosci., 1997, 51(2), 79-81.
[http://dx.doi.org/10.1111/j.1440-1819.1997.tb02911.x] [PMID: 9141145]
[99]
John, J.; Kodama, T.; Siegel, J.M. Caffeine promotes glutamate and histamine release in the posterior hypothalamus. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2014, 307(6), R704-R710.
[http://dx.doi.org/10.1152/ajpregu.00114.2014] [PMID: 25031227]
[100]
Subramanian, N.; Schinzel, W.; Mitznegg, P.; Estler, C.J. Influence of ethanol on histamine metabolism and release in the rat brain. II. Regions of the histaminergic pathway. Pharmacology, 1980, 20(1), 42-45.
[http://dx.doi.org/10.1159/000137343] [PMID: 7375501]
[101]
Muley, M.P.; Balsara, J.J.; Chandorkar, A.G. Effect of L-histidine pretreatment on methamphetamine induced sterotyped behaviour in rats. Indian J. Physiol. Pharmacol., 1979, 23(4), 291-296.
[PMID: 43281]
[102]
Lamb, Y.N. Pitolisant: A review in narcolepsy with or without cataplexy. CNS Drugs, 2020, 34(2), 207-218.
[http://dx.doi.org/10.1007/s40263-020-00703-x] [PMID: 31997137]
[103]
Li, S.; Yang, J. Pitolisant for treating patients with narcolepsy. Expert Rev. Clin. Pharmacol., 2020, 13(2), 79-84.
[http://dx.doi.org/10.1080/17512433.2020.1714435] [PMID: 31937172]
[104]
Wilmot TJ, Menon GN. Betahistine in Ménière’s disease. J. Laryngol. Otol., 1976, 90(9), 833-840.
[http://dx.doi.org/10.1017/S0022215100082785] [PMID: 787460]
[105]
Murdin, L.; Hussain, K.; Schilder, A.G. Betahistine for symptoms of vertigo. Cochrane Database Syst. Rev., 2016, (6), CD010696.
[PMID: 27327415]
[106]
Tighilet, B.; Trottier, S.; Mourre, C.; Chotard, C.; Lacour, M. Betahistine dihydrochloride interaction with the histaminergic system in the cat: Neurochemical and molecular mechanisms. Eur. J. Pharmacol., 2002, 446(1-3), 63-73.
[http://dx.doi.org/10.1016/S0014-2999(02)01795-8] [PMID: 12098586]
[107]
Kitanaka, N.; Kitanaka, J.; Hall, F.S. Psychotomimetic-like behavioral effects of memantine in the mouse. Biomed. Pharmacother., 2018, 100, 116-123.
[http://dx.doi.org/10.1016/j.biopha.2018.01.160] [PMID: 29427922]
[108]
Malmberg-Aiello, P.; Ipponi, A.; Bartolini, A.; Schunack, W. Mouse light/dark box test reveals anxiogenic-like effects by activation of hista-mine H1 receptors. Pharmacol. Biochem. Behav., 2002, 71(1-2), 313-318.
[http://dx.doi.org/10.1016/S0091-3057(01)00691-8] [PMID: 11812538]
[109]
Malmberg-Aiello, P.; Ipponi, A.; Bartolini, A.; Schunack, W. Antiamnesic effect of metoprine and of selective histamine H(1) receptor agonists in a modified mouse passive avoidance test. Neurosci. Lett., 2000, 288(1), 1-4.
[http://dx.doi.org/10.1016/S0304-3940(00)01176-9] [PMID: 10869801]
[110]
Malmberg-Aiello, P.; Lamberti, C.; Ipponi, A.; Hänninen, J.; Ghelardini, C.; Bartolini, A. Effects of two histamine-N-methyltransferase inhibitors, SKF 91488 and BW 301 U, in rodent antinociception. Naunyn Schmiedebergs Arch. Pharmacol., 1997, 355(3), 354-360.
[http://dx.doi.org/10.1007/PL00004954] [PMID: 9089666]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy