Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Synthesis and Characterization of Curcumin Incorporated Multi Component Nano-Scaffold with Enhanced Anti‐bacterial and Wound Healing Properties

Author(s): Yi-Ying Wu, Ramya Kumar, Chi-Cheng Wong, Desu Naveen Kumar Reddy* and Fu-Yung Huang*

Volume 20, Issue 4, 2023

Published on: 01 August, 2022

Page: [400 - 413] Pages: 14

DOI: 10.2174/1567201819666220414092342

Price: $65

Abstract

Background: Wound healing is one of the major challenges in chronic diseases; the current treatment options are less effective with undesirable side effects and are expensive. Extensive research is carried out to develop cost-effective, natural, biodegradable wound dressings that can reduce oxidative stress and inflammation and prevent bacterial infections. Curcumin has a plethora of therapeutic applications; however, its low solubility limits its clinical use.

Objective: In this study, curcumin nanoparticles (Cur NP) and curcumin-chitosan nanoparticles (CCNP) were incorporated into the chitosan collagen vanillin scaffold, characterized, and investigated their potential wound healing properties.

Methods: The nano-scaffolds were prepared by freeze-drying method and were characterized using Fourier transform infrared spectroscopy, X-ray diffraction, nanoparticle tracking analysis, and scanning electron microscopy. The drug release, antioxidant, antibacterial, and wound healing properties were assessed by in vitro assays.

Results: Cur nano-scaffolds showed particle sizes of 195.9 nm and 110.6 nm for Cur NP+VC and CCNP+VC, respectively. The curcumin encapsulated in the Cur NP+VC and CC+VC nano-scaffolds showed a release profile of > 60% and an improved antioxidant activity of greater than 80%. The nanoscaffolds were antagonistic against Escherichia coli and Staphylococcus aureus and enhanced wound healing capacity of 85.62 % and 77.05% in the murine cell line.

Conclusion: The curcumin nano-scaffold is a biodegradable and effective drug delivery system for topical use that can act as an antioxidant, facilitate wound healing, as well as prevent bacterial infections.

Keywords: Curcumin, vanillin, collagen, nanoparticle, NIH/3T3, S. aureus, E. coli.

Graphical Abstract
[1]
Järbrink, K.; Ni, G.; Sönnergren, H.; Schmidtchen, A.; Pang, C.; Bajpai, R.; Car, J. The humanistic and economic burden of chronic wounds: A protocol for a systematic review. Syst. Rev., 2017, 6(1), 15.
[http://dx.doi.org/10.1186/s13643-016-0400-8] [PMID: 28118847]
[2]
Boateng, J.S.; Matthews, K.H.; Stevens, H.N.; Eccleston, G.M. Wound healing dressings and drug delivery systems: A review. J. Pharm. Sci., 2008, 97(8), 2892-2923.
[http://dx.doi.org/10.1002/jps.21210] [PMID: 17963217]
[3]
Han, G.; Ceilley, R. Chronic wound healing: A review of current management and treatments. Adv. Ther., 2017, 34(3), 599-610.
[http://dx.doi.org/10.1007/s12325-017-0478-y] [PMID: 28108895]
[4]
Ashtikar, M.; Wacker, M.G. Nanopharmaceuticals for wound healing - Lost in translation? Adv. Drug Deliv. Rev., 2018, 129, 194-218.
[http://dx.doi.org/10.1016/j.addr.2018.03.005] [PMID: 29567397]
[5]
Braiman-Wiksman, L.; Solomonik, I.; Spira, R.; Tennenbaum, T. Novel insights into wound healing sequence of events. Toxicol. Pathol., 2007, 35(6), 767-779.
[http://dx.doi.org/10.1080/01926230701584189] [PMID: 17943650]
[6]
Gurtner, G.C.; Werner, S.; Barrandon, Y.; Longaker, M.T. Wound repair and regeneration. Nature, 2008, 453(7193), 314-321.
[http://dx.doi.org/10.1038/nature07039] [PMID: 18480812]
[7]
Kulac, M.; Aktas, C.; Tulubas, F.; Uygur, R.; Kanter, M.; Erboga, M.; Ceber, M.; Topcu, B.; Ozen, O.A. The effects of topical treatment with curcumin on burn wound healing in rats. J. Mol. Histol., 2013, 44(1), 83-90.
[http://dx.doi.org/10.1007/s10735-012-9452-9] [PMID: 23054142]
[8]
Raduly, M.; Raditoiu, V.; Raditoiu, A.; Purcar, V. Curcumin: Modern applications for a versatile additive. Coatings, 2021, 11(5), 519.
[http://dx.doi.org/10.3390/coatings11050519]
[9]
Facchi, S.P.; Scariot, D.B.; Bueno, P.V.; Souza, P.R.; Figueiredo, L.C.; Follmann, H.D.; Nunes, C.S.; Monteiro, J.P.; Bonafé, E.G.; Nakamura, C.V.; Muniz, E.C.; Martins, A.F. Preparation and cytotoxicity of N-modified chitosan nanoparticles applied in curcumin delivery. Int. J. Biol. Macromol., 2016, 87, 237-245.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.02.063] [PMID: 26930578]
[10]
Sarika, P.R.; James, N.R. Polyelectrolyte complex nanoparticles from cationised gelatin and sodium alginate for curcumin delivery. Carbohydr. Polym., 2016, 148, 354-361.
[http://dx.doi.org/10.1016/j.carbpol.2016.04.073] [PMID: 27185149]
[11]
Krausz, A.E.; Adler, B.L.; Cabral, V.; Navati, M.; Doerner, J.; Charafeddine, R.A.; Chandra, D.; Liang, H.; Gunther, L.; Clendaniel, A.; Harper, S.; Friedman, J.M.; Nosanchuk, J.D.; Friedman, A.J. Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent. Nanomedicine, 2015, 11(1), 195-206.
[http://dx.doi.org/10.1016/j.nano.2014.09.004] [PMID: 25240595]
[12]
Ranjbar Mohammadi, M.; Rabbani, S.; HajirBahrami, S.; Joghataei, M.T.; Moayer, F. Antibacterial performance and in vivo diabetic wound healing of curcumin loaded gum tragacanth/poly(ε-caprolactone) electrospunnanofibers. Mater. Sci. Eng. C, 2016, 69, 1183-1191.
[http://dx.doi.org/10.1016/j.msec.2016.08.032] [PMID: 27612816]
[13]
Liu, Y.; Cai, Y.; Jiang, X.; Wu, J.; Le, X. Molecular interactions, characterization and antimicrobial activity of curcumin-chitosan blend films. Food Hydrocoll., 2016, 52, 564-572.
[http://dx.doi.org/10.1016/j.foodhyd.2015.08.005]
[14]
El Khoury, E.; Abiad, M.; Kassaify, Z.G.; Patra, D. Green synthesis of curcumin conjugated nanosilver for the applications in nucleic acid sensing and anti-bacterial activity. Colloids Surf. B Biointerfaces, 2015, 127, 274-280.
[http://dx.doi.org/10.1016/j.colsurfb.2015.01.050] [PMID: 25687098]
[15]
Akbik, D.; Ghadiri, M.; Chrzanowski, W.; Rohanizadeh, R. Curcumin as a wound healing agent. Life Sci., 2014, 116(1), 1-7.
[http://dx.doi.org/10.1016/j.lfs.2014.08.016] [PMID: 25200875]
[16]
Tejada, S.; Manayi, A.; Daglia, M.; Nabavi, S.F.; Sureda, A.; Hajheydari, Z.; Gortzi, O.; Pazoki-Toroudi, H.; Nabavi, S.M. Wound healing effects of curcumin: A short review. Curr. Pharm. Biotechnol., 2016, 17(11), 1002-1007.
[http://dx.doi.org/10.2174/1389201017666160721123109] [PMID: 27640646]
[17]
Schneider, C.; Gordon, O.N.; Edwards, R.L.; Luis, P.B. Degradation of curcumin: From mechanism to biological implications. J. Agric. Food Chem., 2015, 63(35), 7606-7614.
[http://dx.doi.org/10.1021/acs.jafc.5b00244] [PMID: 25817068]
[18]
Karri, V.V.S.R.; Kuppusamy, G.; Talluri, S.V.; Mannemala, S.S.; Kollipara, R.; Wadhwani, A.D.; Mulukutla, S.; Raju, K.R.S.; Malayandi, R. Curcumin loaded chitosan nanoparticles impregnated into collagen-alginate scaffolds for diabetic wound healing. Int. J. Biol. Macromol., 2016, 93(Pt B), 1519-1529.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.05.038] [PMID: 27180291]
[19]
Manca, M.L.; Castangia, I.; Zaru, M.; Nácher, A.; Valenti, D.; Fernàndez-Busquets, X.; Fadda, A.M.; Manconi, M. Development of curcumin loaded sodium hyaluronate immobilized vesicles (hyalurosomes) and their potential on skin inflammation and wound restoring. Biomaterials, 2015, 71, 100-109.
[http://dx.doi.org/10.1016/j.biomaterials.2015.08.034] [PMID: 26321058]
[20]
Gong, C.; Wu, Q.; Wang, Y.; Zhang, D.; Luo, F.; Zhao, X.; Wei, Y.; Qian, Z. A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing. Biomaterials, 2013, 34(27), 6377-6387.
[http://dx.doi.org/10.1016/j.biomaterials.2013.05.005] [PMID: 23726229]
[21]
Shankar, S.; Rhim, J-W. Preparation of sulfur nanoparticle-incorporated antimicrobial chitosan films. Food Hydrocoll., 2018, 82, 116-123.
[http://dx.doi.org/10.1016/j.foodhyd.2018.03.054]
[22]
Yaşayan, G.; Karaca, G.; Akgüner, Z.P.; Öztürk, A.B. Chitosan/collagen composite films as wound dressings encapsulating allantoin and lidocaine hydrochloride. Int. J. Polym. Mater., 2020, 70(9), 623-635.
[http://dx.doi.org/10.1080/00914037.2020.1740993]
[23]
Aramwit, P. Introduction to biomaterials for wound healing. Wound healing biomaterials; , 2016, pp. 3-38.
[http://dx.doi.org/10.1016/B978-1-78242-456-7.00001-5]
[24]
Lopes, T.D.; Riegel-Vidotti, I.C.; Grein, A.; Tischer, C.A.; Faria-Tischer, P.C.S. Bacterial cellulose and hyaluronic acid hybrid membranes: Production and characterization. Int. J. Biol. Macromol., 2014, 67, 401-408.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.03.047]
[25]
Akturk, O.; Tezcaner, A.; Bilgili, H.; Deveci, M.S.; Gecit, M.R.; Keskin, D. Evaluation of sericin/collagen membranes as prospective wound dressing biomaterial. J. Biosci. Bioeng., 2011, 112(3), 279-288.
[http://dx.doi.org/10.1016/j.jbiosc.2011.05.014] [PMID: 21697006]
[26]
López Angulo, D.E.; do Amaral Sobral, P.J. Characterization of gelatin/chitosan scaffold blended with aloe vera and snail mucus for biomedical purpose. Int. J. Biol. Macromol., 2016, 92, 645-653.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.07.029] [PMID: 27453523]
[27]
Saheb, M.; Fereydouni, N.; Nemati, S.; Barreto, G.E.; Johnston, T.P.; Sahebkar, A. Chitosan-based delivery systems for curcumin: A review of pharmacodynamic and pharmacokinetic aspects. J. Cell. Physiol., 2019, 234(8), 12325-12340.
[http://dx.doi.org/10.1002/jcp.28024] [PMID: 30697728]
[28]
Kumirska, J.; Weinhold, M.X.; Thöming, J.; Stepnowski, P. Biomedical activity of chitin/chitosan based materials-influence of physicochemical properties apart from molecular weight and degree of N-acetylation. Polymers (Basel), 2011, 3(4), 1875-1901.
[http://dx.doi.org/10.3390/polym3041875]
[29]
Martins, A.F.; Bueno, P.V.; Almeida, E.A.; Rodrigues, F.H.; Rubira, A.F.; Muniz, E.C. Characterization of N-trimethyl chitosan/alginate complexes and curcumin release. Int. J. Biol. Macromol., 2013, 57, 174-184.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.03.029] [PMID: 23511054]
[30]
Ueno, H.; Mori, T.; Fujinaga, T. Topical formulations and wound healing applications of chitosan. Adv. Drug Deliv. Rev., 2001, 52(2), 105-115.
[http://dx.doi.org/10.1016/S0169-409X(01)00189-2] [PMID: 11718934]
[31]
Dai, T.; Tanaka, M.; Huang, Y-Y.; Hamblin, M.R. Chitosan preparations for wounds and burns: Antimicrobial and wound-healing effects. Expert Rev. Anti Infect. Ther., 2011, 9(7), 857-879.
[http://dx.doi.org/10.1586/eri.11.59] [PMID: 21810057]
[32]
Jayakumar, R.; Prabaharan, M.; Sudheesh Kumar, P.T.; Nair, S.V.; Tamura, H. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol. Adv., 2011, 29(3), 322-337.
[http://dx.doi.org/10.1016/j.biotechadv.2011.01.005] [PMID: 21262336]
[33]
Barton, M.J.; Morley, J.W.; Mahns, D.A.; Mawad, D.; Wuhrer, R.; Fania, D.; Frost, S.J.; Loebbe, C.; Lauto, A. Tissue repair strength using chitosan adhesives with different physical-chemical characteristics. J. Biophotonics, 2014, 7(11-12), 948-955.
[http://dx.doi.org/10.1002/jbio.201300148] [PMID: 24395818]
[34]
Mokhames, Z.; Rezaie, Z.; Ardeshirylajimi, A.; Basiri, A.; Taheri, M.; Omrani, M.D. Efficient smooth muscle cell differentiation of iPS cells on curcumin-incorporated chitosan/collagen/polyvinyl-alcohol nanofibers. In vitro Cell. Dev. Biol. Anim., 2020, 56(4), 313-321.
[http://dx.doi.org/10.1007/s11626-020-00445-6] [PMID: 32307668]
[35]
Chen, Y.; Lee, K.; Yang, Y.; Kawazoe, N.; Chen, G. PLGA-collagen-ECM hybrid meshes mimicking stepwise osteogenesis and their influence on the osteogenic differentiation of hMSCs. Biofabrication, 2020, 12(2), 025027.
[http://dx.doi.org/10.1088/1758-5090/ab782b] [PMID: 32078579]
[36]
Chattopadhyay, S.; Raines, R.T. Review collagen-based biomaterials for wound healing. Biopolymers, 2014, 101(8), 821-833.
[http://dx.doi.org/10.1002/bip.22486] [PMID: 24633807]
[37]
Fleck, C.A.; Simman, R. Modern collagen wound dressings: Function and purpose. J. Am. Col. Certif. Wound Spec., 2011, 2(3), 50-54.
[http://dx.doi.org/10.1016/j.jcws.2010.12.003] [PMID: 24527149]
[38]
Fatemi, M.J.; Garahgheshlagh, S.N.; Ghadimi, T.; Jamili, S.; Nourani, M.R.; Sharifi, A.M.; Saberi, M.; Amini, N.; Sarmadi, V.H.; Yazdi-Amirkhiz, S.Y. Investigating the impact of collagen-chitosan derived from Scomberomorus Guttatus and shrimp skin on second-degree burn in rats model. Regen. Ther., 2021, 18, 12-20.
[http://dx.doi.org/10.1016/j.reth.2021.03.001] [PMID: 33816722]
[39]
Zhang, M-X.; Zhao, W-Y.; Fang, Q-Q.; Wang, X-F.; Chen, C-Y.; Shi, B-H.; Zheng, B.; Wang, S-J.; Tan, W-Q.; Wu, L-H. Effects of chitosan-collagen dressing on wound healing in vitro and in vivo assays. J. Appl. Biomater. Funct. Mater., 2021, 19, 2280800021989698.
[http://dx.doi.org/10.1177/2280800021989698] [PMID: 33560909]
[40]
Arya, S.S.; Sharma, M.M.; Das, R.K.; Rookes, J.; Cahill, D.; Lenka, S.K. Vanillin mediated green synthesis and application of gold nanoparticles for reversal of antimicrobial resistance in Pseudomonas aeruginosa clinical isolates. Heliyon, 2019, 5(7), e02021.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02021] [PMID: 31312733]
[41]
Arya, S.S.; Sharma, M.M.; Rookes, J.E.; Cahill, D.M.; Lenka, S.K. Vanilla modulates the activity of antibiotics and inhibits efflux pumps in drug-resistant Pseudomonas aeruginosa. Biologia (Bratisl.), 2021, 76(2), 781-791.
[http://dx.doi.org/10.2478/s11756-020-00617-5]
[42]
de Aragão Tavares, E.; de Medeiros, W.M.T.Q.; de Assis Pontes, T.P.; Barbosa, M.M.; de Araújo, A.A.; de Araújo, R.F., Jr; Figueiredo, J.G.; Leitão, R.C.; da Silva Martins, C.; da Silva, F.O.N.; de Brito Pontes, A.C.F.; de Lima Pontes, D.; de Medeiros, C.A.C.X. Chitosan membrane modified with a new zinc(II)-vanillin complex improves skin wound healing in diabetic rats. Front. Pharmacol., 2019, 9, 1511.
[http://dx.doi.org/10.3389/fphar.2018.01511] [PMID: 30670966]
[43]
Rezaei, M.; Oryan, S.; Nourani, M.R.; Mofid, M.; Mozafari, M. Curcumin nanoparticle-incorporated collagen/chitosan scaffolds for enhanced wound healing. Bioinspired. Biomim. Nanobiomaterials, 2018, 7(3), 159-166.
[http://dx.doi.org/10.1680/jbibn.17.00036]
[44]
Rezaii, M.; Oryan, S.; Javeri, A. Curcumin nanoparticles incorporated collagen-chitosan scaffold promotes cutaneous wound healing through regulation of TGF-β1/Smad7 gene expression. Mater. Sci. Eng. C, 2019, 98, 347-357.
[http://dx.doi.org/10.1016/j.msec.2018.12.143] [PMID: 30813036]
[45]
Reddy, D.N.K.; Huang, F-Y.; Wang, S-P.; Kumar, R. Synergistic antioxidant and antibacterial activity of curcumin-C3 encapsulated chitosan nanoparticles. Curr. Pharm. Des., 2020, 26(39), 5021-5029.
[http://dx.doi.org/10.2174/1381612826666200609164830] [PMID: 32516096]
[46]
Nair, R.S.; Morris, A.; Billa, N.; Leong, C-O. An evaluation of curcumin-encapsulated chitosan nanoparticles for transdermal delivery. AAPS PharmSciTech, 2019, 20(2), 69.
[http://dx.doi.org/10.1208/s12249-018-1279-6] [PMID: 30631984]
[47]
Bhoopathy, S.; Inbakandan, D.; Rajendran, T.; Chandrasekaran, K.; Kasilingam, R.; Gopal, D. Curcumin loaded chitosan nanoparticles fortify shrimp feed pellets with enhanced antioxidant activity. Mater. Sci. Eng. C, 2021, 120, 111737.
[http://dx.doi.org/10.1016/j.msec.2020.111737] [PMID: 33545880]
[48]
Das, R.K.; Kasoju, N.; Bora, U. Encapsulation of curcumin in alginate-chitosan-pluronic composite nanoparticles for delivery to cancer cells. Nanomedicine, 2010, 6(1), 153-160.
[http://dx.doi.org/10.1016/j.nano.2009.05.009] [PMID: 19616123]
[49]
Singh, P.K.; Wani, K.; Kaul-Ghanekar, R.; Prabhune, A.; Ogale, S. From micron to nano-curcumin by sophorolipid co-processing: Highly enhanced bioavailability, fluorescence, and anti-cancer efficacy. RSC Advances, 2014, 4(104), 60334-60341.
[http://dx.doi.org/10.1039/C4RA07300B]
[50]
Bomdyal, R.S.; Shah, M.U.; Doshi, Y.S.; Shah, V.A.; Khirade, S.P. Antibacterial activity of curcumin (turmeric) against periopathogens - An in vitro evaluation. J Adv Clin Res Insights, 2017, 4(6), 175-180.
[http://dx.doi.org/10.15713/ins.jcri.188]
[51]
Li, F.; Shi, Y.; Liang, J.; Zhao, L. Curcumin-loaded chitosan nanoparticles promote diabetic wound healing via attenuating inflammation in a diabetic rat model. J. Biomater. Appl., 2019, 34(4), 476-486.
[http://dx.doi.org/10.1177/0885328219860929] [PMID: 31280635]
[52]
Martinotti, S.; Pellavio, G.; Laforenza, U.; Ranzato, E. Propolis induces AQP3 expression: A possible way of action in wound healing. Molecules, 2019, 24(8), 1544.
[http://dx.doi.org/10.3390/molecules24081544] [PMID: 31010117]
[53]
Abbas, M.; Hussain, T.; Arshad, M.; Ansari, A.R.; Irshad, A.; Nisar, J.; Hussain, F.; Masood, N.; Nazir, A.; Iqbal, M. Wound healing potential of curcumin cross-linked chitosan/polyvinyl alcohol. Int. J. Biol. Macromol., 2019, 140, 871-876.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.153] [PMID: 31437503]
[54]
Mohanty, C.; Sahoo, S.K. Curcumin and its topical formulations for wound healing applications. Drug Discov. Today, 2017, 22(10), 1582-1592.
[http://dx.doi.org/10.1016/j.drudis.2017.07.001] [PMID: 28711364]
[55]
Jithendra, P.; Rajam, A.M.; Kalaivani, T.; Mandal, A.B.; Rose, C. Preparation and characterization of aloe vera blended collagen-chitosan composite scaffold for tissue engineering applications. ACS Appl. Mater. Interfaces, 2013, 5(15), 7291-7298.
[http://dx.doi.org/10.1021/am401637c] [PMID: 23838342]
[56]
Perez-Puyana, V.; Jiménez-Rosado, M.; Romero, A.; Guerrero, A. Crosslinking of hybrid scaffolds produced from collagen and chitosan. Int. J. Biol. Macromol., 2019, 139, 262-269.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.07.198] [PMID: 31374271]
[57]
Ma, L.; Gao, C.; Mao, Z.; Zhou, J.; Shen, J.; Hu, X.; Han, C. Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials, 2003, 24(26), 4833-4841.
[http://dx.doi.org/10.1016/S0142-9612(03)00374-0] [PMID: 14530080]
[58]
Xu, H.; Li, J.; Yang, X.; Li, J.; Cai, J. A novel approach of curcumin loaded chitosan/dextran nanocomposite for the management of complicated abdominal wound dehiscence. J. Cluster Sci., 2020, 31(4), 823-830.
[http://dx.doi.org/10.1007/s10876-019-01689-3]
[59]
R, N.; M, K.; J, P.; K S, V.; Arpana, C.; Balashanmugam, P.; Venkatasubbu, G.D. Enhanced wound healing by PVA/Chitosan/Curcumin patches: In vitro and in vivo study. Colloids Surf. B Biointerfaces, 2019, 182, 110339.
[http://dx.doi.org/10.1016/j.colsurfb.2019.06.068] [PMID: 31284147]
[60]
Ramasamy, P.; Subhapradha, N.; Shanmugam, V.; Shanmugam, A. Protective effect of chitosan from Sepia kobiensis (Hoyle 1885) cuttlebone against CCl4 induced hepatic injury. Int. J. Biol. Macromol., 2014, 65, 559-563.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.02.009] [PMID: 24530330]
[61]
Deka, C.; Aidew, L.; Devi, N.; Buragohain, A.K.; Kakati, D.K. Synthesis of curcumin-loaded chitosan phosphate nanoparticle and study of its cytotoxicity and antimicrobial activity. J. Biomater. Sci. Polym. Ed., 2016, 27(16), 1659-1673.
[http://dx.doi.org/10.1080/09205063.2016.1226051] [PMID: 27564239]
[62]
Riaz, T.; Zeeshan, R.; Zarif, F.; Ilyas, K.; Muhammad, N.; Safi, S.Z.; Rahim, A.; Rizvi, S.A.A.; Rehman, I.U. FTIR analysis of natural and synthetic collagen. Appl. Spectrosc. Rev., 2018, 53(9), 703-746.
[http://dx.doi.org/10.1080/05704928.2018.1426595]
[63]
Fatoni, A.; Hariani, P.L.; Hermansyah, H.; Lesbani, A. Synthesis and characterization of chitosan linked by methylene bridge and Schiff base of 4,4-diaminodiphenyl ether-vanillin. Indones. J. Chem., 2018, 18(1), 92-101.
[http://dx.doi.org/10.22146/ijc.25866]
[64]
Jirofti, N.; Golandi, M.; Movaffagh, J.; Ahmadi, F.S.; Kalalinia, F. Improvement of the wound-healing process by curcumin-loaded chitosan/collagen blend electrospun nanofibers: In vitro and in vivo studies. ACS Biomater. Sci. Eng., 2021, 7(8), 3886-3897.
[http://dx.doi.org/10.1021/acsbiomaterials.1c00131] [PMID: 34256564]
[65]
Fernandes, L.L.; Resende, C.X.; Tavares, D.S.; Soares, G.A.; Castro, L.O.; Granjeiro, J.M. Cytocompatibility of chitosan and collagen-chitosan scaffolds for tissue engineering. Polímeros, 2011, 21(1), 1-6.
[http://dx.doi.org/10.1590/S0104-14282011005000008]
[66]
Chaubey, P.; Patel, R.R.; Mishra, B. Development and optimization of curcumin-loaded mannosylated chitosan nanoparticles using response surface methodology in the treatment of visceral leishmaniasis. Expert Opin. Drug Deliv., 2014, 11(8), 1163-1181.
[http://dx.doi.org/10.1517/17425247.2014.917076] [PMID: 24875148]
[67]
Gonzalez-Mira, E.; Egea, M.A.; Souto, E.B.; Calpena, A.C.; García, M.L. Optimizing flurbiprofen-loaded NLC by central composite factorial design for ocular delivery. Nanotechnology, 2011, 22(4), 045101.
[http://dx.doi.org/10.1088/0957-4484/22/4/045101] [PMID: 21169662]
[68]
Karri, V.V.S.R.; Kuppusamy, G.; Wadhwani, A.D.; Malayandi, R. Nanohybrid scaffolds for the treatment of diabetic wounds. Pressure Injury, Diabetes and Negative Pressure Wound Therapy. Recent Clinical Techniques, Results, and Research in Wounds; Shiffman, M.; Low, M., Eds.; Springer: Cham, 2017, Vol. 3, .
[http://dx.doi.org/10.1007/15695_2017_46]
[69]
Kim, Y.; Kim, G. Collagen/alginate scaffolds comprising core (PCL)-shell (collagen/alginate) struts for hard tissue regeneration: Fabrication, characterisation, and cellular activities. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(25), 3185-3194.
[http://dx.doi.org/10.1039/c3tb20485e] [PMID: 32260919]
[70]
Li, D.; Kaner, R.B. Shape and aggregation control of nanoparticles: Not shaken, not stirred. J. Am. Chem. Soc., 2006, 128(3), 968-975.
[http://dx.doi.org/10.1021/ja056609n] [PMID: 16417388]
[71]
Zhang, W.; Chen, J.; Chen, Y.; Xia, W.; Xiong, Y.L.; Wang, H. Enhanced physicochemical properties of chitosan/whey protein isolate composite film by sodium laurate-modified TiO2 nanoparticles. Carbohydr. Polym., 2016, 138, 59-65.
[http://dx.doi.org/10.1016/j.carbpol.2015.11.031] [PMID: 26794738]
[72]
Kumari, S.; Kumar Annamareddy, S.H.; Abanti, S.; Kumar Rath, P. Physicochemical properties and characterization of chitosan synthesized from fish scales, crab and shrimp shells. Int. J. Biol. Macromol., 2017, 104, 1697-1705.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.04.119]
[73]
Nguyen, K.T.; Tran, P.H.L.; Ngo, H.V.; Tran, T.T.D. Filmforming nanogels: Effects of nanocarriers and film-forming gel on the sustained release of curcumin. Anticancer. Agents Med. Chem., 2020, 20.
[http://dx.doi.org/10.2174/1871520620666200407124020] [PMID: 32264815]
[74]
Mohanty, C.; Pradhan, J. A human epidermal growth factor-curcumin bandage bioconjugate loaded with mesenchymal stem cell for in vivo diabetic wound healing. Mater. Sci. Eng. C, 2020, 111, 110751.
[http://dx.doi.org/10.1016/j.msec.2020.110751] [PMID: 32279771]
[75]
Kong, M.; Chen, X.G.; Xing, K.; Park, H.J. Antimicrobial properties of chitosan and mode of action: A state of the art review. Int. J. Food Microbiol., 2010, 144(1), 51-63.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2010.09.012] [PMID: 20951455]
[76]
Tyagi, P.; Singh, M.; Kumari, H.; Kumari, A.; Mukhopadhyay, K. Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. PLoS One, 2015, 10(3), e0121313.
[http://dx.doi.org/10.1371/journal.pone.0121313] [PMID: 25811596]
[77]
Adamczak, A.; Ożarowski, M.; Karpiński, T.M. Curcumin, a natural antimicrobial agent with strain-specific activity. Pharmaceuticals (Basel), 2020, 13(7), 153.
[http://dx.doi.org/10.3390/ph13070153] [PMID: 32708619]
[78]
Agel, M.R.; Baghdan, E.; Pinnapireddy, S.R.; Lehmann, J.; Schäfer, J.; Bakowsky, U. Curcumin loaded nanoparticles as efficient photoactive formulations against gram-positive and gram-negative bacteria. Colloids Surf. B Biointerfaces, 2019, 178, 460-468.
[http://dx.doi.org/10.1016/j.colsurfb.2019.03.027] [PMID: 30921681]
[79]
Chereddy, K.K.; Coco, R.; Memvanga, P.B.; Ucakar, B.; des Rieux, A.; Vandermeulen, G.; Préat, V. Combined effect of PLGA and curcumin on wound healing activity. J. Control. Release, 2013, 171(2), 208-215.
[http://dx.doi.org/10.1016/j.jconrel.2013.07.015] [PMID: 23891622]
[80]
Ghaffari, S.; Alihosseini, F.; Rezayat Sorkhabadi, S.M.; Arbabi Bidgoli, S.; Mousavi, S.E.; Haghighat, S.; Afshar Nasab, A.; Kianvash, N. Nanotechnology in wound healing; semisolid dosage forms containing curcumin ampicillin solid lipid nanoparticles, in-vitro, ex-vivo and in-vivo characteristics. Adv. Pharm. Bull., 2018, 8(3), 395-400.
[http://dx.doi.org/10.15171/apb.2018.046] [PMID: 30276135]
[81]
Sharma, S.; Rai, V.K.; Narang, R.K.; Markandeywar, T.S. Collagen-based formulations for wound healing: A literature review. Life Sci., 2022, 290(120096), 120096.
[http://dx.doi.org/10.1016/j.lfs.2021.120096] [PMID: 34715138]
[82]
Hunger, M.; Domalik-Pyzik, P.; Chłopek, J. Double crosslinking of chitosan/vanillin as a basis to mechanically strong gradient hydrogel scaffolds for cartilage tissue engineering. Eng Biomater, 2022, 155, 2-11.
[http://dx.doi.org/10.34821/eng.biomat.155.2020.2-11]
[83]
Amidi, M.; Mastrobattista, E.; Jiskoot, W.; Hennink, W.E. Chitosan-based delivery systems for protein therapeutics and antigens. Adv. Drug Deliv. Rev., 2010, 62(1), 59-82.
[http://dx.doi.org/10.1016/j.addr.2009.11.009] [PMID: 19925837]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy