Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Biocompatible Nanomaterials for Burns

Author(s): Mayank Handa, Sandeep Kr Maharana, Kamlesh Pal and Rahul Shukla*

Volume 23, Issue 12, 2022

Published on: 27 July, 2022

Page: [1514 - 1526] Pages: 13

DOI: 10.2174/1389201023666220413091055

Price: $65

Abstract

The skin being the largest organ, protects our body against harmful chemicals, pathogens, and physical agents. It constitutes primarily three layers: epidermis, dermis, and subcutaneous layers. Injuries occurring due to burning remain localized to the skin or other organic tissues caused by flame, extreme heat, and close contact with chemicals or heated objects. Conventional treatments are available for the treatment of burns; however, they are expensive and might completely replace autologous tissue transfer. Nanotechnology-based approaches include organic nanoparticles, dendrimers, hydrogels, etc. Biocompatibility usually refers to the ability of biomaterials to perform their respective functions centered on medical therapy without causing any systemic or local effects. Polymeric materials like a natural (chitosan and hyaluronic acid) and synthetic (polylactic acid and polycaprolactone) materials are employed as biomaterials. Various preclinical and clinical studies were performed in animal models. In this review, the authors have discussed elaborately the biocompatible polymers, which are used in the treatment of burn wounds. Afterwards, a brief discussion on the polymers, pre-clinical and clinical studies, and regulatory concerns related to nanomaterials have also been covered.

Keywords: Nanotechnology, topical delivery, biocompatible, nanomaterial, burns, wound healing.

« Previous
Graphical Abstract
[1]
Ita, K. Anatomy of the human skin. In: Transdermal Drug Deliv; Academic Press, 2020; pp. 9-18.
[http://dx.doi.org/10.1016/B978-0-12-822550-9.00002-8]
[2]
Ambrosio, L. The role of biomaterials in burn treatment, Burn. Trauma, 2014, 2(4), 150-152.
[http://dx.doi.org/10.4103/2321-3868.143608]
[3]
Kordestani, S.S. Atlas Wound Heal. In: Burn Wound; Elsevier, 2019; pp. 101-114.
[http://dx.doi.org/10.1016/B978-0-323-67968-8.00009-4]
[4]
Souto, E.B.; Ribeiro, A.F.; Ferreira, M.I.; Teixeira, M.C.; Shimojo, A.A.M.; Soriano, J.L.; Naveros, B.C.; Durazzo, A.; Lucarini, M.; Souto, S.B.; Santini, A. New nanotechnologies for the treatment and repair of skin burns infections. Int. J. Mol. Sci., 2020, 21(2)E393
[http://dx.doi.org/10.3390/ijms21020393] [PMID: 31936277]
[5]
Sando, I.C.; Chung, K.C. The use of dermal skin substitutes for the treatment of the burned hand. Hand Clin., 2017, 33(2), 269-276.
[http://dx.doi.org/10.1016/j.hcl.2016.12.008]
[6]
Cambiaso-Daniel, J.; Gallagher, J.J.; Norbury, W.B.; Finnerty, C.C.; Herndon, D.N.; Culnan, D.M. Treatment of infection in burn patients, 5th ed; Elsevier Inc., 2018.
[http://dx.doi.org/10.1016/B978-0-323-47661-4.00011-3]
[7]
Shukla, R.; Kumar, J.; Dwivedi, P.; Gatla, P.; Mishra, P.R. Microparticles of diethylcarbamazine citrate for the treatment of lymphatic filariasis. Asian J. Chem., 2013, 25, S302-S304.
[8]
Mohamed, A.; Xing, M.M. Nanomaterials and nanotechnology for skin tissue engineering. Int. J. Burns Trauma, 2012, 2(1), 29-41.
[PMID: 22928165]
[9]
Handa, M.; Sharma, A.; Verma, R.K.; Shukla, R. Polycaprolactone based nano-carrier for co-administration of moxifloxacin and rutin and its in vitro evaluation for sepsis. J. Drug Deliv. Sci. Technol., 2019, 54101286
[http://dx.doi.org/10.1016/j.jddst.2019.101286]
[10]
Sharma, S.; Sinha, V.R.; Sarwal, A.; Shukla, R. Chitosan-Based Nanocarriers. In: NanoAgroceuticals & NanoPhytoChemicals, 1st ed; CRC Press, 2019.
[http://dx.doi.org/10.1201/9781351139281-13]
[11]
Shukla, R.; Handa, M.; Pardhi, V.P. Introduction to pharmaceutical product development. In: Pharm. Drug Prod. Dev. Process Optim; Apple Academic Press, 2020; pp. 1-32.
[http://dx.doi.org/10.1201/9780367821678-1]
[12]
Shukla, R.; Sethi, A.; Handa, M.; Mohan, M.; Tripathi, P.K.; Kesharwani, P. Dendrimer-based drug delivery systems for tuberculosis treatment. Nanotechnol. Based Approaches Tuberc. Treat; Academia Press, 2020, pp. 163-174.
[http://dx.doi.org/10.1016/B978-0-12-819811-7.00010-2]
[13]
Tabarzad, M.; Ghorbani-Bidkorbeh, F. Dendrimers formulations to enhance skin drug delivery. Dendrimer-Based Nanotherapeutics; Elsevier, 2021, pp. 399-416.
[http://dx.doi.org/10.1016/B978-0-12-821250-9.00011-1]
[14]
Mishra, P.; Handa, M.; Ujjwal, R.R.; Singh, V.; Kesharwani, P.; Shukla, R. Potential of nanoparticulate based delivery systems for effective management of alopecia. Colloids Surf. B Biointerfaces, 2021, 208112050
[http://dx.doi.org/10.1016/j.colsurfb.2021.112050] [PMID: 34418723]
[15]
Hajimiri, M.; Shahverdi, S.; Esfandiari, M.A.; Larijani, B.; Atyabi, F.; Rajabiani, A.; Dehpour, A.R.; Amini, M.; Dinarvand, R. Preparation of hydrogel embedded polymer-growth factor conjugated nanoparticles as a diabetic wound dressing. Drug Dev. Ind. Pharm., 2016, 42(5), 707-719.
[http://dx.doi.org/10.3109/03639045.2015.1075030]
[16]
Stoica, A.E.; Chircov, C.; Grumezescu, A.M. Hydrogel dressings for the treatment of burn wounds: An up-to-date overview. Materials (Basel), 2020, 13(12)E2853
[http://dx.doi.org/10.3390/ma13122853] [PMID: 32630503]
[17]
Zadeh, B.S.M.; Barati, N.; Hassani, M.H.; Rahim, F. Development of solid lipid nanoparticles as eschar delivery system for nitrofurazone using Taguchi design approach. Int. J. Res. Pharm. Sci., 2010, 1, 466-472.
[18]
Lee, J.; Kim, J.; Go, J.; Lee, J.H.; Han, D.W.; Hwang, D.; Lee, J. Transdermal treatment of the surgical and burned wound skin via phytochemical-capped gold nanoparticles. Colloids Surf. B Biointerfaces, 2015, 135, 166-174.
[http://dx.doi.org/10.1016/j.colsurfb.2015.07.058] [PMID: 26263209]
[19]
Oliveira, A.; Simões, S.; Ascenso, A.; Reis, C.P. Therapeutic advances in wound healing. J. Dermatolog. Treat., 2020, 1-21.
[http://dx.doi.org/10.1080/09546634.2020.1730296] [PMID: 32056472]
[20]
Karimi, M.; Solati, N.; Ghasemi, A.; Estiar, M.A.; Hashemkhani, M.; Kiani, P.; Mohamed, E.; Saeidi, A.; Taheri, M.; Avci, P.; Aref, A.R.; Amiri, M.; Baniasadi, F.; Hamblin, M.R. Carbon nanotubes part II: A remarkable carrier for drug and gene delivery. Expert Opin. Drug Deliv., 2015, 12(7), 1089-1105.
[http://dx.doi.org/10.1517/17425247.2015.1004309] [PMID: 25613837]
[21]
Ashfaq, M.; Verma, N.; Khan, S. Copper/zinc bimetal nanoparticles-dispersed carbon nanofibers: A novel potential antibiotic material. Mater. Sci. Eng. C, 2016, 59, 938-947.
[http://dx.doi.org/10.1016/j.msec.2015.10.079] [PMID: 26652451]
[22]
Tiwari, R.; Tiwari, G.; Lahiri, A.R.V.; Rai, A.K. Localized delivery of drugs through medical textiles for treatment of burns: A perspective approach. Adv. Pharm. Bull., 2020.
[http://dx.doi.org/10.34172/apb.2021.030] [PMID: 33880346]
[23]
Jain, K.; Shukla, R.; Yadav, A.; Ujjwal, R.R.; Flora, S.J.S. 3d printing in development of nanomedicines. Nanomaterials (Basel), 2021, 11(2), 420.
[http://dx.doi.org/10.3390/nano11020420] [PMID: 33562310]
[24]
Zhao, X.; Wu, H.; Guo, B.; Dong, R.; Qiu, Y.; Ma, P.X. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials, 2017, 122, 34-47.
[http://dx.doi.org/10.1016/j.biomaterials.2017.01.011] [PMID: 28107663]
[25]
Chouhan, D.; Chakraborty, B.; Nandi, S.K.; Mandal, B.B. Role of non-mulberry silk fibroin in deposition and regulation of extracellular matrix towards accelerated wound healing. Acta Biomater., 2017, 48, 157-174.
[http://dx.doi.org/10.1016/j.actbio.2016.10.019] [PMID: 27746359]
[26]
Memic, A.; Abudula, T.; Mohammed, H.S.; Joshi Navare, K.; Colombani, T.; Bencherif, S.A. Latest progress in electrospun nanofibers for wound healing applications. ACS Appl. Bio Mater., 2019, 2(3), 952-969.
[http://dx.doi.org/10.1021/acsabm.8b00637] [PMID: 35021385]
[27]
Ali, K.S.E.; Daffalla, H.M. Physicochemical and functional properties of the gum arabic from acacia senegal. Ann. Food Sci. Technol. (Valahia Univ. Târgoviste), 2018, 19, 27-34.
[28]
Sorushanova, A.; Delgado, L.M.; Wu, Z.; Shologu, N.; Kshirsagar, A.; Raghunath, R.; Mullen, A.M.; Bayon, Y.; Pandit, A.; Raghunath, M.; Zeugolis, D.I. The collagen suprafamily: From biosynthesis to advanced biomaterial development. Adv. Mater., 2019, 31(1)e1801651
[http://dx.doi.org/10.1002/adma.201801651] [PMID: 30126066]
[29]
Shukla, R.; Thok, K.; Kakade, S.; Handa, M.; Beg, S. Clinical translation status of nanoformulations.Nanoformulation Strateg. Cancer Treat; Elsevier, 2021, pp. 303-338.
[http://dx.doi.org/10.1016/B978-0-12-821095-6.00012-4]
[30]
Schmidt, M.M.; Dornelles, R.C.P.; Mello, R.O.; Kubota, E.H.; Mazutti, M.A.; Kempka, A.P.; Demiate, I.M. Collagen extraction process. Int. Food Res. J., 2016, 23, 913-922.
[31]
Shukla, R.; Handa, M.; Lokesh, S.B.; Ruwali, M.; Kohli, K.; Kesharwani, P. Conclusion and Future Prospective of Polymeric Nanoparticles for Cancer Therapy; Elsevier Inc., 2019.
[http://dx.doi.org/10.1016/B978-0-12-816963-6.00018-2]
[32]
Karmaker, A.; Hasan, M.; Sharifuzzaman, M.; Ahmed, S. Development of natural fiber-supported high-strength autologous fibrin glue from human plasma. J. Adhes. Sci. Technol., 2020, 34(17), 1898-1911.
[http://dx.doi.org/10.1080/01694243.2020.1733382]
[33]
Shabunin, A.S.; Yudin, V.E.; Dobrovolskaya, I.P.; Zinovyev, E.V.; Zubov, V.; Ivan’kova, E.M.; Morganti, P. Composite wound dressing based on chitin/chitosan nanofibers: Processing and biomedical applications. Cosmetics, 2019, 6(1), 16.
[http://dx.doi.org/10.3390/cosmetics6010016]
[34]
Beg, S.; Almalki, W.H.; Malik, A.; Farhan, M.; Aatif, M.; Rahman, Z.; Alruwaili, N.K.; Alrobaian, M.; Tarique, M.; Rahman, M. 3D printing for drug delivery and biomedical applications. Drug Discov. Today, 2020, 25(9), 1668-1681.
[http://dx.doi.org/10.1016/j.drudis.2020.07.007] [PMID: 32687871]
[35]
Shukla, R.; Handa, M.; Vasdev, N.; Singh, D.P.; Kesharwani, P. Nanomedicine in pain management. Theory Appl; Nonparenteral Nanomedicines, 2021.
[http://dx.doi.org/10.1016/B978-0-12-820466-5.00015-6]
[36]
Gupta, R.C.; Lall, R.; Srivastava, A.; Sinha, A. Hyaluronic acid: Molecular mechanisms and therapeutic trajectory. Front. Vet. Sci., 2019, 6, 192.
[http://dx.doi.org/10.3389/fvets.2019.00192] [PMID: 31294035]
[37]
Adabi, M.; Naghibzadeh, M.; Adabi, M.; Zarrinfard, M.A.; Esnaashari, S.S.; Seifalian, A.M.; Faridi-Majidi, R.; Tanimowo Aiyelabegan, H.; Ghanbari, H. Biocompatibility and nanostructured materials: Applications in nanomedicine. Artif. Cells Nanomed. Biotechnol., 2017, 45(4), 833-842.
[http://dx.doi.org/10.1080/21691401.2016.1178134] [PMID: 27247194]
[38]
Coleman, R.J.; Lawrie, G.; Lambert, L.K.; Whittaker, M.; Jack, K.S.; Grøndahl, L. Phosphorylation of alginate: Synthesis, characterization, and evaluation of in vitro mineralization capacity. Biomacromolecules, 2011, 12(4), 889-897.
[http://dx.doi.org/10.1021/bm1011773] [PMID: 21381703]
[39]
Pacho, N.; Mar, V. Synthesis of micro- and nanoparticles of alginate and chitosan for controlled release of drugs. In: Natural Polysaccharides in Drug Delivery and Biomedical Applications; Academic Press, 2019; pp. 363-398.
[http://dx.doi.org/10.1016/B978-0-12-817055-7.00016-9]
[40]
Beneke, C.E.; Viljoen, A.M.; Hamman, J.H. Polymeric plant-derived excipients in drug delivery. Molecules, 2009, 14(7), 2602-2620.
[http://dx.doi.org/10.3390/molecules14072602] [PMID: 19633627]
[41]
Liu, Q.; Huang, Y.; Lan, Y.; Zuo, Q.; Li, C.; Zhang, Y.; Guo, R.; Xue, W. Acceleration of skin regeneration in full-thickness burns by incorporation of bFGF-loaded alginate microspheres into a CMCS-PVA hydrogel. J. Tissue Eng. Regen. Med., 2017, 11(5), 1562-1573.
[http://dx.doi.org/10.1002/term.2057] [PMID: 26118827]
[42]
Kulkarni, V.; Butte, K.; Rathod, S. Natural polymers – A comprehensive review. Int. J. Res. Pharm. Biomed. Sci., 2012, 3, 1597-1613.
[43]
Sarhan, W.A.; Azzazy, H.M.M.E.; El-Sherbiny, I.M.E. Honey/Chitosan nanofiber wound dressing enriched with allium sativum and cleome droserifolia : Enhanced antimicrobial and wound healing activity. ACS Appl. Mater. Interfaces, 2016, 8, 6379-6390.
[http://dx.doi.org/10.1021/acsami.6b00739]
[44]
Alavarse, A.C.; de Oliveira Silva, F.W.; Colque, J.T.; da Silva, V.M.; Prieto, T.; Venancio, E.C.; Bonvent, J.J. Tetracycline hydrochloride-loaded electrospun nanofibers mats based on PVA and chitosan for wound dressing. Mater. Sci. Eng. C, 2017, 77, 271-281.
[http://dx.doi.org/10.1016/j.msec.2017.03.199] [PMID: 28532030]
[45]
Stoica, A.E.; Chircov, C.; Grumezescu, A.M. Nanomaterials for wound dressings: An up-to-date overview. Molecules, 2020, 25(11)E2699
[http://dx.doi.org/10.3390/molecules25112699] [PMID: 32532089]
[46]
Shahverdi, S.; Hajimiri, M.; Esfandiari, M.A.; Larijani, B.; Atyabi, F.; Rajabiani, A.; Dehpour, A.R.; Gharehaghaji, A.A.; Dinarvand, R. Fabrication and structure analysis of poly(lactide-co-glycolic acid)/silk fibroin hybrid scaffold for wound dressing applications. Int. J. Pharm., 2014, 473(1-2), 345-355.
[http://dx.doi.org/10.1016/j.ijpharm.2014.07.021] [PMID: 25051110]
[47]
El-Sayed, S.; Mahmoud, K.H.; Fatah, A.A.; Hassen, A. DSC, TGA and dielectric properties of carboxymethyl cellulose/polyvinyl alcohol blends, Phys. B. Physica B, 2011, 406(21), 4068-4076.
[http://dx.doi.org/10.1016/j.physb.2011.07.050]
[48]
Namviriyachote, N.; Lipipun, V.; Akkhawattanangkul, Y.; Charoonrut, P.; Ritthidej, G.C. Development of polyurethane foam dressing containing silver and asiaticoside for healing of dermal wound. Asian J. Pharm. Sci., 2019, 14(1), 63-77.
[http://dx.doi.org/10.1016/j.ajps.2018.09.001] [PMID: 32104439]
[49]
Baoyong, L.; Jian, Z.; Denglong, C.; Min, L. Evaluation of a new type of wound dressing made from recombinant spider silk protein using rat models. Burns, 2010, 36(6), 891-896.
[http://dx.doi.org/10.1016/j.burns.2009.12.001] [PMID: 20171017]
[50]
Jung, J.A.; Yoo, K.H.; Han, S.K.; Dhong, E.S.; Kim, W.K. Evaluation of the efficacy of highly hydrophilic polyurethane foam dressing in treating a diabetic foot ulcer. Adv. Skin Wound Care, 2016, 29(12), 546-555.
[http://dx.doi.org/10.1097/01.ASW.0000508178.67430.34] [PMID: 27846028]
[51]
Kakkar, P.; Verma, S.; Manjubala, I.; Madhan, B. Development of keratin-chitosan-gelatin composite scaffold for soft tissue engineering. Mater. Sci. Eng. C, 2014, 45, 343-347.
[http://dx.doi.org/10.1016/j.msec.2014.09.021] [PMID: 25491838]
[52]
Janmohammadi, M.; Nourbakhsh, M.S. Electrospun polycaprolactone scaffolds for tissue engineering: A review. Int. J. Polym. Mater., 2019, 68(9), 527-539.
[http://dx.doi.org/10.1080/00914037.2018.1466139]
[53]
Jiang, L.; Zhang, J. Biodegradable and Biobased Polymers; Applied Plastics Engineering Handbook, 2017, pp. 127-143.
[http://dx.doi.org/10.1016/B978-0-323-39040-8.00007-9]
[54]
Okamura, Y.; Kabata, K.; Kinoshita, M.; Miyazaki, H.; Saito, A.; Fujie, T.; Ohtsubo, S.; Saitoh, D.; Takeoka, S. Fragmentation of poly(lactic acid) nanosheets and patchwork treatment for burn wounds. Adv. Mater., 2013, 25(4), 545-551.
[http://dx.doi.org/10.1002/adma.201202851] [PMID: 23117996]
[55]
Binotto, J.P.; Mendes, L.G. Gaspari; Esquisatto, M.A.M.; Andrade, F.A.S. Mendonça; Santos, G.M.T. Poly (Lactic acid) membrane and Sedum dendroideum extract favors the repair of burns in rats. Acta Cir. Bras., 2020, 35(3)
[http://dx.doi.org/10.1590/s0102-865020200030000002]
[56]
Hoveizi, E.; Nabiuni, M.; Parivar, K.; Rajabi-Zeleti, S.; Tavakol, S. Functionalisation and surface modification of electrospun polylactic acid scaffold for tissue engineering. Cell Biol. Int., 2014, 38(1), 41-49.
[http://dx.doi.org/10.1002/cbin.10178] [PMID: 24030862]
[57]
Kyzer, S.; Kadouri, A.; Levi, A.; Ramadan, E.; Levinsky, H.; Halpern, M.; Chaimoff, C. Repair of fascia with polyglycolic acid mesh cultured with fibroblasts--experimental study. Eur. Surg. Res., 1997, 29(2), 84-92.
[http://dx.doi.org/10.1159/000129511] [PMID: 9058075]
[58]
Ekholm, M.; Helander, P.; Hietanen, J.; Lindqvist, C.; Salo, A.; Kellomäki, M.; Suuronen, R. A histological and immunohistochemical study of tissue reactions to solid poly(ortho ester) in rabbits. Int. J. Oral Maxillofac. Surg., 2006, 35(7), 631-635.
[http://dx.doi.org/10.1016/j.ijom.2006.01.029] [PMID: 16540288]
[59]
Goh, Y.F.; Shakir, I.; Hussain, R. Electrospun fibers for tissue engineering, drug delivery, and wound dressing. J. Mater. Sci., 2013, 48(8), 3027-3054.
[http://dx.doi.org/10.1007/s10853-013-7145-8]
[60]
Unnithan, A.R.; Barakat, N.A.; Pichiah, P.B.; Gnanasekaran, G.; Nirmala, R.; Cha, Y.S.; Jung, C.H.; El-Newehy, M.; Kim, H.Y.U.A.R. Wound-dressing materials with antibacterial activity from electrospun polyurethane-dextran nanofiber mats containing ciprofloxacin HCl. Carbohydr. Polym., 2012, 90(4), 1786-1793.
[http://dx.doi.org/10.1016/j.carbpol.2012.07.071] [PMID: 22944448]
[61]
Kontogiannopoulos, K.N.; Assimopoulou, A.N.; Tsivintzelis, I.; Panayiotou, C.; Papageorgiou, V.P. Electrospun fiber mats containing shikonin and derivatives with potential biomedical applications. Int. J. Pharm., 2011, 409(1-2), 216-228.
[http://dx.doi.org/10.1016/j.ijpharm.2011.02.004] [PMID: 21316431]
[62]
Ngadaonye, J.I.; Geever, L.M.; Killion, J.; Higginbotham, C.L. Development of novel chitosan-poly(N,N-diethylacrylamide) IPN films for potential wound dressing and biomedical applications. J. Polym. Res., 2013, 20(7), 161.
[http://dx.doi.org/10.1007/s10965-013-0161-1]
[63]
Sinha, M.; Banik, R.M.; Haldar, C.; Maiti, P. Development of ciprofloxacin hydrochloride loaded poly(ethylene glycol)/chitosan scaffold as wound dressing. J. Porous Mater., 2013, 20(4), 799-807.
[http://dx.doi.org/10.1007/s10934-012-9655-1]
[64]
Mhessn, R.J.; Abd-Alredha, L.; Al-Rubaie, R.; Aziz, A.F.K. Preparation of tannin based hydrogel for biological application. E-J. Chem., 2011, 8(4), 1638-1643.
[http://dx.doi.org/10.1155/2011/763295]
[65]
Nguyen, T.T.T.; Ghosh, C.; Hwang, S.G.; Tran, L.D.; Park, J.S. Characteristics of curcumin-loaded poly (lactic acid) nanofibers for wound healing. J. Mater. Sci., 2013, 48(20), 7125-7133.
[http://dx.doi.org/10.1007/s10853-013-7527-y]
[66]
Luckachan, G.E.; Pillai, C.K.S. Biodegradable polymers- A review on recent trends and emerging perspectives. J. Polym. Environ., 2011, 19(3), 637-676.
[http://dx.doi.org/10.1007/s10924-011-0317-1]
[67]
Oh, S.T.; Kim, W.R.; Kim, S.H.; Chung, Y.C.; Park, J.S. The preparation of polyurethane foam combined with pH-sensitive alginate/bentonite hydrogel for wound dressings. Fibers Polym., 2011, 12(2), 159-165.
[http://dx.doi.org/10.1007/s12221-011-0159-4]
[68]
Singh, R.; Singh, D. Radiation synthesis of PVP/alginate hydrogel containing nanosilver as wound dressing. J. Mater. Sci. Mater. Med., 2012, 23(11), 2649-2658.
[http://dx.doi.org/10.1007/s10856-012-4730-3] [PMID: 22886579]
[69]
Dai, X.Y.; Nie, W.; Wang, Y.C.; Shen, Y.; Li, Y.; Gan, S.J. Electrospun emodin polyvinylpyrrolidone blended nanofibrous membrane: A novel medicated biomaterial for drug delivery and accelerated wound healing. J. Mater. Sci. Mater. Med., 2012, 23(11), 2709-2716.
[http://dx.doi.org/10.1007/s10856-012-4728-x] [PMID: 22875606]
[70]
Kalashnikova, I.; Das, S.; Seal, S. Nanomaterials for wound healing: Scope and advancement. Nanomedicine (Lond.), 2015, 10(16), 2593-2612.
[http://dx.doi.org/10.2217/nnm.15.82] [PMID: 26295361]

Rights & Permissions Print Export Cite as
© 2023 Bentham Science Publishers | Privacy Policy