Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

PBX1 Participates in Estrogen-mediated Bladder Cancer Progression and Chemo-resistance Affecting Estrogen Receptors

Author(s): Yang Zhao, Jizhong Che, Aimin Tian, Gang Zhang, Yankai Xu, Shuhang Li, Songlin Liu and Yinxu Wan*

Volume 22, Issue 9, 2022

Published on: 28 June, 2022

Page: [757 - 770] Pages: 14

DOI: 10.2174/1568009622666220413084456

Price: $65

Abstract

Background: Bladder cancer (BCa) is a common cancer associated with high morbidity and mortality worldwide. Pre-B-cell leukemia transcription factor 1 (PBX1) has been reported to be involved in tumor progression.

Objective: The aim of the study was to explore the specific role of PBX1 in BCa and its underlying mechanisms.

Methods: The relative expressions of PBX1 in muscle-invasive BCa tissues and cell lines were analyzed through RT-qPCR and western blotting. Kaplan–Meier analysis was used to analyze the relationship between PBX1 levels and survival status. Co-immunoprecipitation (CO-IP) and chromatin immunoprecipitation (ChIP)-qPCR assays were adopted to verify the interaction between PBX1 and Estrogen receptors (ERs) and explore the estrogen receptors (ERs)-dependent genes transcription.

Results: PBX1 was upregulated in invasive BCa patients and BCa cells, positively associated with tumor size, lymph node metastasis, distant metastasis and poorer survival status. The overexpression of PBX1 promoted cell growth, invasion, epithelial-mesenchymal transition (EMT) process and cisplatin resistance in BCa cells, while the silence of PBX1 showed opposite effects. Furthermore, PBX1 interacted with ERs and was required for ER function. PBX1 overexpression aggravated the tumorpromoting effect of estrogen on BCa cells, while it partially suppressed the inhibitory effects of ER antagonist AZD9496 on BCa cells.

Conclusion: This study revealed that PBX1 participated in estrogen mediated BCa progression and chemo-resistance through binding and activating estrogen receptors. Hence, PBX1 may serve as a potential prognostic and therapeutic target for BCa treatment.

Keywords: Bladder cancer, PBX1, estrogen receptors, chemo-resistance, morbidity, mortality.

Graphical Abstract
[1]
Sanli, O.; Dobruch, J.; Knowles, M.A.; Burger, M.; Alemozaffar, M.; Nielsen, M.E.; Lotan, Y. Bladder cancer. Nat. Rev. Dis. Primers, 2017, 3(1), 17022.
[http://dx.doi.org/10.1038/nrdp.2017.22] [PMID: 28406148]
[2]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[3]
Dy, G.W.; Gore, J.L.; Forouzanfar, M.H.; Naghavi, M.; Fitzmaurice, C. Global burden of urologic cancers, 1990–2013. Eur. Urol., 2017, 71(3), 437-446.
[http://dx.doi.org/10.1016/j.eururo.2016.10.008] [PMID: 28029399]
[4]
Soloway, M.S. Bladder cancer: Lack of progress in bladder cancer--what are the obstacles? Nat. Rev. Urol., 2013, 10(1), 5-6.
[http://dx.doi.org/10.1038/nrurol.2012.219] [PMID: 23165404]
[5]
Ferraz-de-Souza, B.; Martin, F.; Mallet, D.; Hudson-Davies, R.E.; Cogram, P.; Lin, L.; Gerrelli, D.; Beuschlein, F.; Morel, Y.; Huebner, A.; Achermann, J.C. CBP/p300-interacting transactivator, with Glu/Asp-rich C-terminal domain, 2, and pre-B-cell leukemia transcription factor 1 in human adrenal development and disease. J. Clin. Endocrinol. Metab., 2009, 94(2), 678-683.
[http://dx.doi.org/10.1210/jc.2008-1064] [PMID: 18984668]
[6]
Schnabel, C.A.; Selleri, L.; Cleary, M.L. Pbx1 is essential for adrenal development and urogenital differentiation. Genesis, 2003, 37(3), 123-130.
[http://dx.doi.org/10.1002/gene.10235] [PMID: 14595835]
[7]
Teoh, P.H.; Shu-Chien, A.C.; Chan, W.K. Pbx1 is essential for growth of zebrafish swim bladder. Dev. Dyn., 2010, 239(3), 865-874.
[http://dx.doi.org/10.1002/dvdy.22221] [PMID: 20108353]
[8]
Kamps, M.P.; Look, A.T.; Baltimore, D. The human t(1;19) translocation in pre-B ALL produces multiple nuclear E2A-Pbx1 fusion proteins with differing transforming potentials. Genes Dev., 1991, 5(3), 358-368.
[http://dx.doi.org/10.1101/gad.5.3.358] [PMID: 1672117]
[9]
Jung, J-G.; Shih, I-M.; Park, J.T.; Gerry, E.; Kim, T.H.; Ayhan, A.; Handschuh, K.; Davidson, B.; Fader, A.N.; Selleri, L.; Wang, T.L. Ovarian cancer chemoresistance relies on the stem cell reprogramming factor PBX1. Cancer Res., 2016, 76(21), 6351-6361.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0980] [PMID: 27590741]
[10]
Shiraishi, K.; Yamasaki, K.; Nanba, D.; Inoue, H.; Hanakawa, Y.; Shirakata, Y.; Hashimoto, K.; Higashiyama, S. Pre-B-cell leukemia transcription factor 1 is a major target of promyelocytic leukemia zinc-finger-mediated melanoma cell growth suppression. Oncogene, 2007, 26(3), 339-348.
[http://dx.doi.org/10.1038/sj.onc.1209800] [PMID: 16862184]
[11]
Okada, S.; Irié, T.; Tanaka, J.; Yasuhara, R.; Yamamoto, G.; Isobe, T.; Hokazono, C.; Tachikawa, T.; Kohno, Y.; Mishima, K. Potential role of hematopoietic pre-B-cell leukemia transcription factor-interacting protein in oral carcinogenesis. J. Oral Pathol. Med., 2015, 44(2), 115-125.
[http://dx.doi.org/10.1111/jop.12210] [PMID: 25060351]
[12]
Magnani, L.; Ballantyne, E.B.; Zhang, X.; Lupien, M. PBX1 genomic pioneer function drives ERα signaling underlying progression in breast cancer. PLoS Genet., 2011, 7(11), e1002368.
[http://dx.doi.org/10.1371/journal.pgen.1002368] [PMID: 22125492]
[13]
Kikugawa, T.; Kinugasa, Y.; Shiraishi, K.; Nanba, D.; Nakashiro, K.; Tanji, N.; Yokoyama, M.; Higashiyama, S. PLZF regulates Pbx1 transcription and Pbx1-HoxC8 complex leads to androgen-independent prostate cancer proliferation. Prostate, 2006, 66(10), 1092-1099.
[http://dx.doi.org/10.1002/pros.20443] [PMID: 16637071]
[14]
Wei, X.; Yu, L.; Li, Y. PBX1 promotes the cell proliferation via JAK2/STAT3 signaling in clear cell renal carcinoma. Biochem. Biophys. Res. Commun., 2018, 500(3), 650-657.
[http://dx.doi.org/10.1016/j.bbrc.2018.04.127] [PMID: 29678569]
[15]
Magnani, L.; Patten, D.K.; Nguyen, V.T.; Hong, S.P.; Steel, J.H.; Patel, N.; Lombardo, Y.; Faronato, M.; Gomes, A.R.; Woodley, L.; Page, K.; Guttery, D.; Primrose, L.; Fernandez Garcia, D.; Shaw, J.; Viola, P.; Green, A.; Nolan, C.; Ellis, I.O.; Rakha, E.A.; Shousha, S.; Lam, E.W. Győrffy, B.; Lupien, M.; Coombes, R.C. The pioneer factor PBX1 is a novel driver of metastatic progression in ERα-positive breast cancer. Oncotarget, 2015, 6(26), 21878-21891.
[http://dx.doi.org/10.18632/oncotarget.4243] [PMID: 26215677]
[16]
Le Tanno, P.; Breton, J.; Bidart, M.; Satre, V.; Harbuz, R.; Ray, P.F.; Bosson, C.; Dieterich, K.; Jaillard, S.; Odent, S.; Poke, G.; Beddow, R.; Digilio, M.C.; Novelli, A.; Bernardini, L.; Pisanti, M.A.; Mackenroth, L.; Hackmann, K.; Vogel, I.; Christensen, R.; Fokstuen, S.; Béna, F.; Amblard, F.; Devillard, F.; Vieville, G.; Apostolou, A.; Jouk, P.S.; Guebre-Egziabher, F.; Sartelet, H.; Coutton, C. PBX1 haploinsufficiency leads to syndromic congenital anomalies of the kidney and urinary tract (CAKUT) in humans. J. Med. Genet., 2017, 54(7), 502-510.
[http://dx.doi.org/10.1136/jmedgenet-2016-104435] [PMID: 28270404]
[17]
Dobruch, J.; Daneshmand, S.; Fisch, M.; Lotan, Y.; Noon, A.P.; Resnick, M.J.; Shariat, S.F.; Zlotta, A.R.; Boorjian, S.A. Gender and bladder cancer: A collaborative review of etiology, biology, and outcomes. Eur. Urol., 2016, 69(2), 300-310.
[http://dx.doi.org/10.1016/j.eururo.2015.08.037] [PMID: 26346676]
[18]
Kauffman, E.C.; Robinson, B.D.; Downes, M.; Marcinkiewicz, K.; Vourganti, S.; Scherr, D.S.; Gudas, L.J.; Mongan, N.P. Estrogen receptor-β expression and pharmacological targeting in bladder cancer. Oncol. Rep., 2013, 30(1), 131-138.
[http://dx.doi.org/10.3892/or.2013.2416] [PMID: 23612777]
[19]
Ou, Z.; Wang, Y.; Chen, J.; Tao, L.; Zuo, L.; Sahasrabudhe, D.; Joseph, J.; Wang, L.; Yeh, S. Estrogen receptor β promotes bladder cancer growth and invasion via alteration of miR-92a/DAB2IP signals. Exp. Mol. Med., 2018, 50(11), 1-11.
[http://dx.doi.org/10.1038/s12276-018-0155-5] [PMID: 30459405]
[20]
Goto, T.; Kashiwagi, E.; Jiang, G.; Nagata, Y.; Teramoto, Y.; Baras, A.S.; Yamashita, S.; Ito, A.; Arai, Y.; Miyamoto, H. Estrogen receptor-β signaling induces cisplatin resistance in bladder cancer. Am. J. Cancer Res., 2020, 10(8), 2523-2534.
[PMID: 32905529]
[21]
Toska, E.; Osmanbeyoglu, H.U.; Castel, P.; Chan, C.; Hendrickson, R.C.; Elkabets, M.; Dickler, M.N.; Scaltriti, M.; Leslie, C.S.; Armstrong, S.A.; Baselga, J. PI3K pathway regulates ER-dependent transcription in breast cancer through the epigenetic regulator KMT2D. Science, 2017, 355(6331), 1324-1330.
[http://dx.doi.org/10.1126/science.aah6893] [PMID: 28336670]
[22]
Toska, E.; Castel, P.; Chhangawala, S.; Arruabarrena-Aristorena, A.; Chan, C.; Hristidis, V.C.; Cocco, E.; Sallaku, M.; Xu, G.; Park, J.; Minuesa, G.; Shifman, S.G.; Socci, N.D.; Koche, R.; Leslie, C.S.; Scaltriti, M.; Baselga, J. PI3K inhibition activates SGK1 via a feedback loop to promote chromatin-based regulation of ER-dependent gene expression. Cell Rep., 2019, 27(1), 294-306.e5.
[http://dx.doi.org/10.1016/j.celrep.2019.02.111] [PMID: 30943409]
[23]
Ao, X.; Ding, W.; Ge, H.; Zhang, Y.; Ding, D.; Liu, Y. PBX1 is a valuable prognostic biomarker for patients with breast cancer. Exp. Ther. Med., 2020, 20(1), 385-394.
[http://dx.doi.org/10.3892/etm.2020.8705] [PMID: 32565927]
[24]
Hayashi, T.; Seiler, R.; Oo, H.Z.; Jäger, W.; Moskalev, I.; Awrey, S.; Dejima, T.; Todenhöfer, T.; Li, N.; Fazli, L.; Matsubara, A.; Black, P.C. Targeting HER2 with T-DM1, an antibody cytotoxic drug conjugate, is effective in HER2 over expressing bladder cancer. J. Urol., 2015, 194(4), 1120-1131.
[http://dx.doi.org/10.1016/j.juro.2015.05.087] [PMID: 26047983]
[25]
Chen, W.M.; Huang, M.D.; Sun, D.P.; Kong, R.; Xu, T.P.; Xia, R.; Zhang, E.B.; Shu, Y.Q. Long intergenic non-coding RNA 00152 promotes tumor cell cycle progression by binding to EZH2 and repressing p15 and p21 in gastric cancer. Oncotarget, 2016, 7(9), 9773-9787.
[http://dx.doi.org/10.18632/oncotarget.6949] [PMID: 26799422]
[26]
Lu, H.; Ju, D.D.; Yang, G.D.; Zhu, L.Y.; Yang, X.M.; Li, J.; Song, W.W.; Wang, J.H.; Zhang, C.C.; Zhang, Z.G.; Zhang, R. Targeting cancer stem cell signature gene SMOC-2 Overcomes chemoresistance and inhibits cell proliferation of endometrial carcinoma. EBioMedicine, 2019, 40, 276-289.
[http://dx.doi.org/10.1016/j.ebiom.2018.12.044] [PMID: 30594556]
[27]
Zhang, H.H.; Huang, B.; Cao, Y.H.; Li, Q.; Xu, H.F. Role of 5-Aza-CdR in mitomycin-C chemosensitivity of T24 bladder cancer cells. Oncol. Lett., 2017, 14(5), 5652-5656.
[http://dx.doi.org/10.3892/ol.2017.6853] [PMID: 29142609]
[28]
Godoy, G.; Gakis, G.; Smith, C.L.; Fahmy, O. Effects of androgen and estrogen receptor signaling pathways on bladder cancer initiation and progression. Bladder Cancer, 2016, 2(2), 127-137.
[http://dx.doi.org/10.3233/BLC-160052] [PMID: 27376135]
[29]
Chaffer, C.L.; Brennan, J.P.; Slavin, J.L.; Blick, T.; Thompson, E.W.; Williams, E.D. Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: Role of fibroblast growth factor receptor-2. Cancer Res., 2006, 66(23), 11271-11278.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2044] [PMID: 17145872]
[30]
Gugnoni, M.; Sancisi, V.; Gandolfi, G.; Manzotti, G.; Ragazzi, M.; Giordano, D.; Tamagnini, I.; Tigano, M.; Frasoldati, A.; Piana, S.; Ciarrocchi, A. Cadherin-6 promotes EMT and cancer metastasis by restraining autophagy. Oncogene, 2017, 36(5), 667-677.
[http://dx.doi.org/10.1038/onc.2016.237] [PMID: 27375021]
[31]
Li, S.; Cong, X.; Gao, H.; Lan, X.; Li, Z.; Wang, W.; Song, S.; Wang, Y.; Li, C.; Zhang, H.; Zhao, Y.; Xue, Y. Tumor-associated neutrophils induce EMT by IL-17a to promote migration and invasion in gastric cancer cells. J. Exp. Clin. Cancer Res., 2019, 38(1), 6.
[http://dx.doi.org/10.1186/s13046-018-1003-0] [PMID: 30616627]
[32]
Risolino, M.; Mandia, N.; Iavarone, F.; Dardaei, L.; Longobardi, E.; Fernandez, S.; Talotta, F.; Bianchi, F.; Pisati, F.; Spaggiari, L.; Harter, P.N.; Mittelbronn, M.; Schulte, D.; Incoronato, M.; Di Fiore, P.P.; Blasi, F.; Verde, P. Transcription factor PREP1 induces EMT and metastasis by controlling the TGF-β-SMAD3 pathway in non-small cell lung adenocarcinoma. Proc. Natl. Acad. Sci. USA, 2014, 111(36), E3775-E3784.
[http://dx.doi.org/10.1073/pnas.1407074111] [PMID: 25157139]
[33]
Zhu, X.; Wei, L.; Bai, Y.; Wu, S.; Han, S. FoxC1 promotes epithelial-mesenchymal transition through PBX1 dependent transactivation of ZEB2 in esophageal cancer. Am. J. Cancer Res., 2017, 7(8), 1642-1653.
[PMID: 28861321]
[34]
Zhuang, C.; Ma, Q.; Zhuang, C.; Ye, J.; Zhang, F.; Gui, Y. LncRNA GClnc1 promotes proliferation and invasion of bladder cancer through activation of MYC. FASEB J., 2019, 33(10), 11045-11059.
[http://dx.doi.org/10.1096/fj.201900078RR] [PMID: 31298933]
[35]
Long, Y.; Wu, Z.; Yang, X.; Chen, L.; Han, Z.; Zhang, Y.; Liu, J.; Liu, W.; Liu, X. MicroRNA-101 inhibits the proliferation and invasion of bladder cancer cells via targeting c-FOS. Mol. Med. Rep., 2016, 14(3), 2651-2656.
[http://dx.doi.org/10.3892/mmr.2016.5534] [PMID: 27485165]
[36]
Hsu, I.; Vitkus, S.; Da, J.; Yeh, S. Role of oestrogen receptors in bladder cancer development. Nat. Rev. Urol., 2013, 10(6), 317-326.
[http://dx.doi.org/10.1038/nrurol.2013.53] [PMID: 23588401]
[37]
Wolpert, B.J.; Amr, S.; Ezzat, S.; Saleh, D.; Gouda, I.; Loay, I.; Hifnawy, T.; Mikhail, N.N.; Abdel-Hamid, M.; Zhan, M.; Zheng, Y.L.; Squibb, K.; Abdel-Aziz, M.A.; Zaghloul, M.; Khaled, H.; Loffredo, C.A. Estrogen exposure and bladder cancer risk in Egyptian women. Maturitas, 2010, 67(4), 353-357.
[http://dx.doi.org/10.1016/j.maturitas.2010.07.014] [PMID: 20813471]
[38]
Miyamoto, H.; Yang, Z.; Chen, Y.T.; Ishiguro, H.; Uemura, H.; Kubota, Y.; Nagashima, Y.; Chang, Y.J.; Hu, Y.C.; Tsai, M.Y.; Yeh, S.; Messing, E.M.; Chang, C. Promotion of bladder cancer development and progression by androgen receptor signals. J. Natl. Cancer Inst., 2007, 99(7), 558-568.
[http://dx.doi.org/10.1093/jnci/djk113] [PMID: 17406000]
[39]
Izumi, K.; Zheng, Y.; Hsu, J.W.; Chang, C.; Miyamoto, H. Androgen receptor signals regulate UDP-glucuronosyltransferases in the urinary bladder: A potential mechanism of androgen-induced bladder carcinogenesis. Mol. Carcinog., 2013, 52(2), 94-102.
[http://dx.doi.org/10.1002/mc.21833] [PMID: 22086872]
[40]
Ding, M.; Liu, Y.; Li, J.; Yao, L.; Liao, X.; Xie, H.; Yang, K.; Zhou, Q.; Liu, Y.; Huang, W.; Cai, Z. Oestrogen promotes tumorigenesis of bladder cancer by inducing the enhancer RNA-eGREB1. J. Cell. Mol. Med., 2018, 22(12), 5919-5927.
[http://dx.doi.org/10.1111/jcmm.13861] [PMID: 30252203]
[41]
Sonpavde, G.; Okuno, N.; Weiss, H.; Yu, J.; Shen, S.S.; Younes, M.; Jian, W.; Lerner, S.P.; Smith, C.L. Efficacy of selective estrogen receptor modulators in nude mice bearing human transitional cell carcinoma. Urology, 2007, 69(6), 1221-1226.
[http://dx.doi.org/10.1016/j.urology.2007.02.041] [PMID: 17572228]
[42]
Shen, S.S.; Smith, C.L.; Hsieh, J.T.; Yu, J.; Kim, I.Y.; Jian, W.; Sonpavde, G.; Ayala, G.E.; Younes, M.; Lerner, S.P. Expression of estrogen receptors-alpha and -beta in bladder cancer cell lines and human bladder tumor tissue. Cancer, 2006, 106(12), 2610-2616.
[http://dx.doi.org/10.1002/cncr.21945] [PMID: 16700038]
[43]
Su, Y.; Yang, W.; Jiang, N.; Shi, J.; Chen, L.; Zhong, G.; Bi, J.; Dong, W.; Wang, Q.; Wang, C.; Lin, T. Hypoxia-elevated circELP3 contributes to bladder cancer progression and cisplatin resistance. Int. J. Biol. Sci., 2019, 15(2), 441-452.
[http://dx.doi.org/10.7150/ijbs.26826] [PMID: 30745833]
[44]
Zhang, Y.; Wang, Z.; Yu, J.; Shi, J.; Wang, C.; Fu, W.; Chen, Z.; Yang, J. Cancer stem-like cells contribute to cisplatin resistance and progression in bladder cancer. Cancer Lett., 2012, 322(1), 70-77.
[http://dx.doi.org/10.1016/j.canlet.2012.02.010] [PMID: 22343321]
[45]
Ghosh, S. Cisplatin: The first metal based anticancer drug. Bioorg. Chem., 2019, 88, 102925.
[http://dx.doi.org/10.1016/j.bioorg.2019.102925] [PMID: 31003078]
[46]
Sekino, Y.; Sakamoto, N.; Ishikawa, A.; Honma, R.; Shigematsu, Y.; Hayashi, T.; Sentani, K.; Oue, N.; Teishima, J.; Matsubara, A.; Yasui, W. Transcribed ultraconserved region Uc.63+ promotes resistance to cisplatin through regulation of androgen receptor signaling in bladder cancer. Oncol. Rep., 2019, 41(5), 3111-3118.
[http://dx.doi.org/10.3892/or.2019.7039] [PMID: 30864720]
[47]
Fang, C.H.; Lin, Y.T.; Liang, C.M.; Liang, S.M. A novel c-Kit/phospho-prohibitin axis enhances ovarian cancer stemness and chemoresistance via Notch3-PBX1 and β-catenin-ABCG2 signaling. J. Biomed. Sci., 2020, 27(1), 42.
[http://dx.doi.org/10.1186/s12929-020-00638-x] [PMID: 32169072]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy