Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Evaluation of Different Signal Peptides for Secretory Production of Recombinant Human Interferon-gamma: Bioinformatics Approach

Author(s): Niloofar Ghoshoon, Younes Ghasemi, Hoda Jahandar, Mohammad Bagher Ghoshoon* and Navid Nezafat*

Volume 20, Issue 2, 2023

Published on: 10 June, 2022

Page: [181 - 191] Pages: 11

DOI: 10.2174/1570180819666220408135018

Price: $65

Abstract

Background: The fusion of the secretory signal peptide to the N-terminal of a polypeptide’s amino acid sequence is an attractive technique for the secretory production of heterologous proteins. On the other hand, applying computational analysis may be beneficial in overcoming the barriers of trial-anderror approaches in detecting proper signal sequences.

As the scope of this study, the most probable effective properties of 30 signal sequences for the extracellular production of recombinant human interferon-gamma (rhIFN-γ) were analysed.

Methods: Online available web server, SignalP5.0, was used to predict signal peptides’ probability, most likely translocation pathways, and cleavage site location. The physicochemical features of signal peptides and rhIFN-γ were assessed by the ProtParam tool, and the solubility of protein was predicted by SOLpro.

Results: Finally, 12 high probable signal peptides, including OmpC, PhoE, AnsB, and OmpA, were theoretically detected with ideal solubility probabilities and almost balanced physicochemical properties; hopes to be helpful in future experimental studies for the secretion of rhIFN-γ.

Conclusion: The experimental analysis is required to validate the in silico results and focus on in-lab affecting factors such as cultivation methods and conditions.

Keywords: Signal peptide, human interferon-gamma, bioinformatics, E. coli, OmpC, PhoE, AnsB.

Graphical Abstract
[1]
Charley, B.; McCullough, K.; Martinod, S. Antiviral and antigenic properties of recombinant porcine interferon gamma. Vet. Immunol. Immunopathol., 1988, 19(2), 95-103.
[http://dx.doi.org/10.1016/0165-2427(88)90001-3] [PMID: 2847405]
[2]
Williams, J.G.; Jurkovich, G.J.; Maier, R.V. Interferon-γ: A key immunoregulatory lymphokine. J. Surg. Res., 1993, 54(1), 79-93.
[http://dx.doi.org/10.1006/jsre.1993.1013] [PMID: 8429643]
[3]
Castro, F.; Cardoso, A.P.; Gonçalves, R.M.; Serre, K.; Oliveira, M.J. Interferon-gamma at the crossroads of tumor immune surveillance or evasion. Front. Immunol., 2018, 9, 847.
[http://dx.doi.org/10.3389/fimmu.2018.00847] [PMID: 29780381]
[4]
Errante, P.R.; Frazão, J.B.; Condino-Neto, A. The use of interferon-gamma therapy in chronic granulomatous disease. Recent Patents Anti-Infect. Drug Disc., 2008, 3(3), 225-230.
[http://dx.doi.org/10.2174/157489108786242378] [PMID: 18991804]
[5]
International Chronic Granulomatous Disease Cooperative Study Group. A controlled trial of interferon gamma to prevent infection in chronic granulomatous disease. N. Engl. J. Med., 1991, 324(8), 509-516.
[http://dx.doi.org/10.1056/NEJM199102213240801] [PMID: 1846940]
[6]
Key, L.L., Jr; Ries, W.L.; Rodriguiz, R.M.; Hatcher, H.C. Recombinant human interferon gamma therapy for osteopetrosis. J. Pediatr., 1992, 121(1), 119-124.
[http://dx.doi.org/10.1016/S0022-3476(05)82557-0] [PMID: 1320672]
[7]
Key, L.L., Jr; Rodriguiz, R.M.; Willi, S.M.; Wright, N.M.; Hatcher, H.C.; Eyre, D.R.; Cure, J.K.; Griffin, P.P.; Ries, W.L. Long-term treatment of osteopetrosis with recombinant human interferon gamma. N. Engl. J. Med., 1995, 332(24), 1594-1599.
[http://dx.doi.org/10.1056/NEJM199506153322402] [PMID: 7753137]
[8]
Kim, O.Y.; Park, H.T.; Dinh, N.T.H.; Choi, S.J.; Lee, J.; Kim, J.H.; Lee, S-W.; Gho, Y.S. Bacterial outer membrane vesicles suppress tumor by interferon-γ-mediated antitumor response. Nat. Commun., 2017, 8(1), 626.
[http://dx.doi.org/10.1038/s41467-017-00729-8] [PMID: 28931823]
[9]
Windbichler, G.H.; Hausmaninger, H.; Stummvoll, W.; Graf, A.H.; Kainz, C.; Lahodny, J.; Denison, U.; Müller-Holzner, E.; Marth, C. Interferon-gamma in the first-line therapy of ovarian cancer: A randomized phase III trial. Br. J. Cancer, 2000, 82(6), 1138-1144.
[http://dx.doi.org/10.1054/bjoc.1999.1053] [PMID: 10735496]
[10]
Street, S.E.; Cretney, E.; Smyth, M.J. Perforin and interferon-γ activities independently control tumor initiation, growth, and metastasis. Blood, 2001, 97(1), 192-197.
[http://dx.doi.org/10.1182/blood.V97.1.192] [PMID: 11133760]
[11]
King, T.E., Jr; Albera, C.; Bradford, W.Z.; Costabel, U.; Hormel, P.; Lancaster, L.; Noble, P.W.; Sahn, S.A.; Szwarcberg, J.; Thomeer, M.; Valeyre, D.; du Bois, R.M. INSPIRE Study Group. Effect of interferon gamma-1b on survival in patients with idiopathic pulmonary fibrosis (INSPIRE): A multicentre, randomised, placebo-controlled trial. Lancet, 2009, 374(9685), 222-228.
[http://dx.doi.org/10.1016/S0140-6736(09)60551-1] [PMID: 19570573]
[12]
Raghu, G.; Brown, K.K.; Bradford, W.Z.; Starko, K.; Noble, P.W.; Schwartz, D.A.; King, T.E. Jr Idiopathic Pulmonary Fibrosis Study Group. A placebo-controlled trial of interferon gamma-1b in patients with idiopathic pulmonary fibrosis. N. Engl. J. Med., 2004, 350(2), 125-133.
[http://dx.doi.org/10.1056/NEJMoa030511] [PMID: 14711911]
[13]
Kaplan, E.H.; Rosen, S.T.; Norris, D.B.; Roenigk, H.H., Jr; Saks, S.R.; Bunn, P.A. Jr Phase II study of recombinant human interferon gamma for treatment of cutaneous T-cell lymphoma. J. Natl. Cancer Inst., 1990, 82(3), 208-212.
[http://dx.doi.org/10.1093/jnci/82.3.208] [PMID: 2104937]
[14]
Samimi, S.; Morrissey, K.; Anshelevich, S.; Evans, K.; Gardner, J.; Musiek, A.; Vittorio, C.; Rook, A.; Kim, E. Romidepsin and interferon gamma: A novel combination for refractory cutaneous T-cell lymphoma. J. Am. Acad. Dermatol., 2013, 68(1), e5-e6.
[http://dx.doi.org/10.1016/j.jaad.2011.06.043] [PMID: 23244387]
[15]
Miller, C.H.; Maher, S.G.; Young, H.A. Clinical use of interferon-γ. Ann. N. Y. Acad. Sci., 2009, 1182, 69-79.
[http://dx.doi.org/10.1111/j.1749-6632.2009.05069.x] [PMID: 20074276]
[16]
Soza, A.; Heller, T.; Ghany, M.; Lutchman, G.; Jake Liang, T.; Germain, J.; Hsu, H.H.; Park, Y.; Hoofnagle, J.H. Pilot study of interferon gamma for chronic hepatitis C. J. Hepatol., 2005, 43(1), 67-71.
[http://dx.doi.org/10.1016/j.jhep.2005.02.023] [PMID: 15913831]
[17]
Zhang, Z.; Tong, K-T.; Belew, M.; Pettersson, T.; Janson, J-C. Production, purification and characterization of recombinant human interferon γ. J. Chromatogr. A, 1992, 604(1), 143-155.
[http://dx.doi.org/10.1016/0021-9673(92)85539-6] [PMID: 1639923]
[18]
Gray, P.W.; Leung, D.W.; Pennica, D.; Yelverton, E.; Najarian, R.; Simonsen, C.C.; Derynck, R.; Sherwood, P.J.; Wallace, D.M.; Berger, S.L.; Levinson, A.D.; Goeddel, D.V. Expression of human immune interferon cDNA in E. coli and monkey cells. Nature, 1982, 295(5849), 503-508.
[http://dx.doi.org/10.1038/295503a0] [PMID: 6173769]
[19]
Farrar, M.A.; Schreiber, R.D. The molecular cell biology of interferon-gamma and its receptor. Annu. Rev. Immunol., 1993, 11, 571-611.
[http://dx.doi.org/10.1146/annurev.iy.11.040193.003035] [PMID: 8476573]
[20]
Malek Sabet, N.; Masoumian, R.; Nasiri-Khalili, M.; Maghsoudi, N.; Sami, H.; Saeedinia, A. The structural characterization of recombinant human interferon gamma. J. Biol. Sci., 2008, 8, 1087-1091.
[http://dx.doi.org/10.3923/jbs.2008.1087.1091]
[21]
Razaghi, A.; Tan, E.; Lua, L.H.L.; Owens, L.; Karthikeyan, O.P.; Heimann, K. Is Pichia pastoris a realistic platform for industrial production of recombinant human interferon gamma? Biologicals, 2017, 45, 52-60.
[http://dx.doi.org/10.1016/j.biologicals.2016.09.015] [PMID: 27810255]
[22]
Prabhu, A.A.; Veeranki, V.D.; Dsilva, S.J. Improving the production of human interferon gamma (hIFN-γ) in Pichia pastoris cell factory: An approach of cell level. Process Biochem., 2016, 51, 709-718.
[http://dx.doi.org/10.1016/j.procbio.2016.02.007]
[23]
Chen, W-S.; Villaflores, O.B.; Jinn, T-R.; Chan, M-T.; Chang, Y-C.; Wu, T-Y. Expression of recombinant human interferon-γ with antiviral activity in the bi-cistronic baculovirus-insect/larval system. Biosci. Biotechnol. Biochem., 2011, 75(7), 1342-1348.
[http://dx.doi.org/10.1271/bbb.110107] [PMID: 21737931]
[24]
Babaeipour, V.; Shojaosadati, S.; Robatjazi, S.; Khalilzadeh, R.; Maghsoudi, N. Over-production of human interferon-γ by HCDC of recombinant Escherichia coli. Process Biochem., 2007, 42, 112-117.
[http://dx.doi.org/10.1016/j.procbio.2006.07.009]
[25]
Khalilzadeh, R.; Shojaosadati, S.A.; Bahrami, A.; Maghsoudi, N. Over-expression of recombinant human interferon-gamma in high cell density fermentation of Escherichia coli. Biotechnol. Lett., 2003, 25(23), 1989-1992.
[http://dx.doi.org/10.1023/B:BILE.0000004390.98648.25] [PMID: 14719811]
[26]
Babaeipour, V.; Shojaosadati, S.A.; Khalilzadeh, R.; Maghsoudi, N.; Farnoud, A.M. Enhancement of human γ-interferon production in recombinant E. coli using batch cultivation. Appl. Biochem. Biotechnol., 2010, 160(8), 2366-2376.
[http://dx.doi.org/10.1007/s12010-009-8718-5] [PMID: 19655276]
[27]
Yoon, S.H.; Kim, S.K.; Kim, J.F. Secretory production of recombinant proteins in Escherichia coli. Recent Pat. Biotechnol., 2010, 4(1), 23-29.
[http://dx.doi.org/10.2174/187220810790069550] [PMID: 20201800]
[28]
Choi, J.H.; Keum, K.C.; Lee, S.Y. Production of recombinant proteins by high cell density culture of Escherichia coli. Chem. Eng. Sci., 2006, 61, 876-885.
[http://dx.doi.org/10.1016/j.ces.2005.03.031]
[29]
de Marco, A. Strategies for successful recombinant expression of disulfide bond-dependent proteins in Escherichia coli. Microb. Cell Fact., 2009, 8, 26.
[http://dx.doi.org/10.1186/1475-2859-8-26] [PMID: 19442264]
[30]
Lee, S.Y.; Choi, J.H.; Lee, S.J. Therapeutic Proteins; Springer, 2005, pp. 31-41.
[http://dx.doi.org/10.1385/1-59259-922-2:031]
[31]
Choi, J.H.; Lee, S.Y. Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl. Microbiol. Biotechnol., 2004, 64(5), 625-635.
[http://dx.doi.org/10.1007/s00253-004-1559-9] [PMID: 14966662]
[32]
Sandkvist, M.; Bagdasarian, M. Secretion of recombinant proteins by Gram-negative bacteria. Curr. Opin. Biotechnol., 1996, 7(5), 505-511.
[http://dx.doi.org/10.1016/S0958-1669(96)80053-X] [PMID: 8939628]
[33]
Ni, Y.; Chen, R. Extracellular recombinant protein production from Escherichia coli. Biotechnol. Lett., 2009, 31(11), 1661-1670.
[http://dx.doi.org/10.1007/s10529-009-0077-3] [PMID: 19597765]
[34]
Baneyx, F.; Mujacic, M. Recombinant protein folding and misfolding in Escherichia coli. Nat. Biotechnol., 2004, 22(11), 1399-1408.
[http://dx.doi.org/10.1038/nbt1029] [PMID: 15529165]
[35]
Ghoshoon, M.B.; Berenjian, A.; Hemmati, S.; Dabbagh, F.; Karimi, Z.; Negahdaripour, M.; Ghasemi, Y. Extracellular production of recombinant L-Asparaginase II in Escherichia coli: Medium optimization using response surface methodology. Int. J. Pept. Res. Ther., 2015, 21, 487-495.
[http://dx.doi.org/10.1007/s10989-015-9476-6]
[36]
Kapp, K.; Schrempf, S.; Lemberg, M.K.; Dobberstein, B. Post-targeting functions of signal peptides.Protein Transport into the Endoplasmic Reticulum; , 2009, pp. 1-16.
[37]
Shokri, A.; Sandén, A.M.; Larsson, G. Cell and process design for targeting of recombinant protein into the culture medium of Escherichia coli. Appl. Microbiol. Biotechnol., 2003, 60(6), 654-664.
[http://dx.doi.org/10.1007/s00253-002-1156-8] [PMID: 12664143]
[38]
von Heijne, G. The signal peptide. J. Membr. Biol., 1990, 115(3), 195-201.
[http://dx.doi.org/10.1007/BF01868635] [PMID: 2197415]
[39]
The UniProt C.. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res., 2018, 47, D506-D515.
[http://dx.doi.org/10.1093/nar/gky1049]
[40]
Chen, C.; Huang, H.; Wu, C.H. Protein Bioinformatics Databases and Resources. Methods Mol. Biol., 2017, 1558, 3-39.
[http://dx.doi.org/10.1007/978-1-4939-6783-4_1] [PMID: 28150231]
[41]
Low, K.O.; Muhammad Mahadi, N.; Md Illias, R. Optimisation of signal peptide for recombinant protein secretion in bacterial hosts. Appl. Microbiol. Biotechnol., 2013, 97(9), 3811-3826.
[http://dx.doi.org/10.1007/s00253-013-4831-z] [PMID: 23529680]
[42]
Almagro Armenteros, J.J.; Salvatore, M.; Emanuelsson, O.; Winther, O.; von Heijne, G.; Elofsson, A.; Nielsen, H. Detecting sequence signals in targeting peptides using deep learning. Life Sci. Alliance, 2019, 2(5), 2.
[http://dx.doi.org/10.26508/lsa.201900429] [PMID: 31570514]
[43]
Almagro Armenteros, J.J.; Tsirigos, K.D.; Sønderby, C.K.; Petersen, T.N.; Winther, O.; Brunak, S.; von Heijne, G.; Nielsen, H.; Signal, P. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol., 2019, 37(4), 420-423.
[http://dx.doi.org/10.1038/s41587-019-0036-z] [PMID: 30778233]
[44]
Gasteiger, E.; Gattiker, A.; Hoogland, C.; Ivanyi, I.; Appel, R.D.; Bairoch, A. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res., 2003, 31(13), 3784-3788.
[http://dx.doi.org/10.1093/nar/gkg563] [PMID: 12824418]
[45]
Gasteiger, E.; Hoogland, C.; Gattiker, A.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. The proteomics protocols handbook; Springer, 2005, pp. 571-607.
[http://dx.doi.org/10.1385/1-59259-890-0:571]
[46]
Magnan, C.N.; Randall, A.; Baldi, P. SOLpro: Accurate sequence-based prediction of protein solubility. Bioinformatics, 2009, 25(17), 2200-2207.
[http://dx.doi.org/10.1093/bioinformatics/btp386] [PMID: 19549632]
[47]
Chang, C.C.H.; Song, J.; Tey, B.T.; Ramanan, R.N. Bioinformatics approaches for improved recombinant protein production in Escherichia coli: Protein solubility prediction. Brief. Bioinform., 2014, 15(6), 953-962.
[http://dx.doi.org/10.1093/bib/bbt057] [PMID: 23926206]
[48]
Palmer, T.; Berks, B.C. The twin-arginine translocation (Tat) protein export pathway. Nat. Rev. Microbiol., 2012, 10(7), 483-496.
[http://dx.doi.org/10.1038/nrmicro2814] [PMID: 22683878]
[49]
Cristóbal, S.; de Gier, J.W.; Nielsen, H.; von Heijne, G. Competition between Sec- and TAT-dependent protein translocation in Escherichia coli. EMBO J., 1999, 18(11), 2982-2990.
[http://dx.doi.org/10.1093/emboj/18.11.2982] [PMID: 10357811]
[50]
Berks, B.C.; Sargent, F.; Palmer, T. The Tat protein export pathway. Mol. Microbiol., 2000, 35(2), 260-274.
[http://dx.doi.org/10.1046/j.1365-2958.2000.01719.x] [PMID: 10652088]
[51]
Freudl, R. Signal peptides for recombinant protein secretion in bacterial expression systems. Microb. Cell Fact., 2018, 17(1), 52.
[http://dx.doi.org/10.1186/s12934-018-0901-3] [PMID: 29598818]
[52]
von Heijne, G. How signal sequences maintain cleavage specificity. J. Mol. Biol., 1984, 173(2), 243-251.
[http://dx.doi.org/10.1016/0022-2836(84)90192-X] [PMID: 6423828]
[53]
Auclair, S.M.; Bhanu, M.K.; Kendall, D.A. Signal peptidase I: Cleaving the way to mature proteins. Protein Sci., 2012, 21(1), 13-25.
[http://dx.doi.org/10.1002/pro.757] [PMID: 22031009]
[54]
Inouye, M.; Halegoua, S.; Beckwith, J. Secretion and membrane localization of proteins in Escherichia coli. CRC Crit. Rev. Biochem., 1980, 7(4), 339-371.
[http://dx.doi.org/10.3109/10409238009105465] [PMID: 6993100]
[55]
Suominen, I.; Meyer, P.; Tilgmann, C.; Glumoff, T.; Glumoff, V.; Käpylä, J.; Mäntsälä, P. Effects of signal peptide mutations on processing of Bacillus stearothermophilus α-amylase in Escherichia coli. Microbiology, 1995, 141(Pt 3), 649-654.
[http://dx.doi.org/10.1099/13500872-141-3-649] [PMID: 7711904]
[56]
Negahdaripour, M.; Nezafat, N.; Hajighahramani, N.; Soheil Rahmatabadi, S.; Hossein Morowvat, M.; Ghasemi, Y. In silico study of different signal peptides for secretory production of interleukin-11 in Escherichia coli. Curr. Proteomics, 2017, 14, 112-121.
[http://dx.doi.org/10.2174/1570164614666170106110848]
[57]
Kyte, J.; Doolittle, R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol., 1982, 157(1), 105-132.
[http://dx.doi.org/10.1016/0022-2836(82)90515-0] [PMID: 7108955]
[58]
Ikai, A. Thermostability and aliphatic index of globular proteins. J. Biochem., 1980, 88(6), 1895-1898.
[PMID: 7462208]
[59]
García-Fruitós, E.; González-Montalbán, N.; Morell, M.; Vera, A.; Ferraz, R.M.; Arís, A.; Ventura, S.; Villaverde, A. Aggregation as bacterial inclusion bodies does not imply inactivation of enzymes and fluorescent proteins. Microb. Cell Fact., 2005, 4, 27.
[http://dx.doi.org/10.1186/1475-2859-4-27] [PMID: 16156893]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy