Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Mini-Review Article

Systemic and Anticancer Potential of Adaptogenic Constituents Isolated from Traditional Herbs – A Mini-Review

Author(s): Mahaboob Khan Sulaiman* and Jaganathan Lakshmanan

Volume 22, Issue 16, 2022

Published on: 31 May, 2022

Page: [2811 - 2821] Pages: 11

DOI: 10.2174/1871520622666220408091610

Price: $65

Abstract

Adaptogens were initially recognized as stress-resistance inducing compounds. Recent studies reveal that adaptogens are pleiotropically-acting chemical constituents that can be isolated from traditional herbs. They are gaining increasing attention in cancer chemotherapy. This review summarizes the physiological action of adaptogens isolated from the 9 most widely used traditional herbs implicated in cancer therapy viz., Withania somnifera, Tinospora cordifolia, Rhodiola rosea, Emblica officinalis, Glycyrrhiza glabra, Bacopa monnieri, Asparagus racemosus, Ocimum sanctum, and Panax notoginseng. The studies were identified through a systematic search of major computerized databases such as Pubmed, Embase, Medline, Inflibnet, Google Scholar, and Cochrane Library. Individual names of each herb and biological action were the search terms employed. In this review, we have enlisted the chemical constituents and their mechanism of action in a few organ systems as well as in cancer cells. Studies indicate that the adaptogens isolated from these herbs can be broadly arranged into 2 classes based on their chemical structure. These molecules exert a positive influence on several organ systems such as respiratory, nervous, cardiovascular, immune, and gastrointestinal tracts. It is also clear that adaptogens act as effective chemopreventive agents alone or in combination with chemo drugs in multiple cancers by targeting multiple intracellular target proteins. Therefore, we conclude that adaptogens are versatile ligands capable of eliciting many systemic effects. Their biological functions are complex, varied, and context-dependent in various cancers. This offers great scope for personalized treatment and cancer chemoprevention in the future.

Keywords: Adaptogens, anticancer, anti-inflammatory, immuno-modulators, phytochemicals, plant botanicals.

[1]
Panossian, A. Understanding adaptogenic activity: Specificity of the pharmacological action of adaptogens and other phytochemicals. Ann. N. Y. Acad. Sci., 2017, 1401(1), 49-64.
[http://dx.doi.org/10.1111/nyas.13399] [PMID: 28640972]
[2]
Rege, N.N.; Thatte, U.M.; Dahanukar, S.A. Adaptogenic properties of six rasayana herbs used in Ayurvedic medicine. Phytother. Res., 1999, 13(4), 275-291.
[http://dx.doi.org/10.1002/(SICI)1099-1573(199906)13:4<275::AID-PTR510>3.0.CO;2-S] [PMID: 10404532]
[3]
Balachandran, P.; Govindarajan, R. Cancer-an ayurvedic perspective. Pharmacol. Res., 2005, 51(1), 19-30.
[http://dx.doi.org/10.1016/j.phrs.2004.04.010] [PMID: 15519531]
[4]
Singh, P.; Guleri, R.; Singh, V.; Kaur, G.; Kataria, H.; Singh, B.; Kaur, G.; Kaul, S.C.; Wadhwa, R.; Pati, P.K. Biotechnological interventions in Withania somnifera (L.). Dunal. Biotechnol. Genet. Eng. Rev., 2015, 31(1-2), 1-20.
[http://dx.doi.org/10.1080/02648725.2015.1020467] [PMID: 25787309]
[5]
Winters, M. Ancient medicine, modern use: Withania somnifera and its potential role in integrative oncology. Alter. Med. Rev., 2006, 11(4), 269-277.
[6]
Panchabhai, T.S.; Kulkarni, U.P.; Rege, N.N. Validation of therapeutic claims of Tinospora cordifolia: A review. Phytother. Res., 2008, 22(4), 425-441.
[http://dx.doi.org/10.1002/ptr.2347] [PMID: 18167043]
[7]
Panossian, A.; Wikman, G. Effects of adaptogens on the central nervous system and the molecular mechanisms associated with their stress-protective activity. Pharmaceuticals (Basel), 2010, 3(1), 188-224.
[http://dx.doi.org/10.3390/ph3010188] [PMID: 27713248]
[8]
Pu, W.L.; Zhang, M.Y.; Bai, R.Y.; Sun, L.K.; Li, W.H.; Yu, Y.L. Anti-inflammatory effects of Rhodiola rosea L.: A review. Biomed. Pharmacother., 2020, 121, 109552.
[9]
Hashem-Dabaghian, F.; Ziaee, M.; Ghaffari, S.; Nabati, F.; Kianbakht, S. A systematic review on the cardiovascular pharmacology of Emblica officinalis Gaertn. J. Cardiovasc. Thorac. Res., 2018, 10(3), 118-128.
[http://dx.doi.org/10.15171/jcvtr.2018.20] [PMID: 30386531]
[10]
Fouladi, S.; Masjedi, M.; Ganjalikhani Hakemi, M.; Eskandari, N. The review of in vitro and in vivo studies over the glycyrrhizic acid as natural remedy option for treatment of allergic asthma. Iran. J. Allergy Asthma Immunol., 2019, 18(1), 1-11.
[http://dx.doi.org/10.18502/ijaai.v18i1.626] [PMID: 30848569]
[11]
Gioti, K.; Papachristodoulou, A.; Benaki, D.; Beloukas, A.; Vontzalidou, A.; Aligiannis, N.; Skaltsounis, A.L.; Mikros, E.; Tenta, R. Glycyrrhiza glabra-enhanced extract and adriamycin antiproliferative effect on PC-3 prostate cancer cells. Nutr. Cancer, 2020, 72(2), 320-332.
[http://dx.doi.org/10.1080/01635581.2019.1632357] [PMID: 31274029]
[12]
Abdul Manap, A.S.; Vijayabalan, S.; Madhavan, P.; Chia, Y.Y.; Arya, A.; Wong, E.H.; Rizwan, F.; Bindal, U.; Koshy, S. Bacopa monnieri, a neuroprotective lead in alzheimer disease: A review on its properties, mechanisms of action, and preclinical and clinical studies. Drug Target Insights, 2019, 13, 1177392819866412.
[http://dx.doi.org/10.1177/1177392819866412] [PMID: 31391778]
[13]
Gautam, M.; Diwanay, S.; Gairola, S.; Shinde, Y.; Patki, P.; Patwardhan, B. Immunoadjuvant potential of Asparagus racemosus aqueous extract in experimental system. J. Ethnopharmacol., 2004, 91(2-3), 251-255.
[http://dx.doi.org/10.1016/j.jep.2003.12.023] [PMID: 15120447]
[14]
Mondal, S.; Mirdha, B.R.; Mahapatra, S.C. The science behind sacredness of Tulsi (Ocimum sanctum Linn.). Indian J. Physiol. Pharmacol., 2009, 53(4), 291-306.
[PMID: 20509321]
[15]
Utispan, K.; Niyomtham, N.; Yingyongnarongkul, B.E.; Koontongkaew, S. Ethanolic extract of ocimum sanctum leaves reduced invasion and matrix metalloproteinase activity of head and neck cancer cell lines. APJCP, 2020, 21(2), 363-370.
[http://dx.doi.org/10.31557/APJCP.2020.21.2.363] [PMID: 32102512]
[16]
Wang, C.Z.; Anderson, S.; Yuan, C.S. Phytochemistry and anticancer potential of notoginseng. Am. J. Chin. Med., 2016, 44(1), 23-34.
[http://dx.doi.org/10.1142/S0192415X16500026] [PMID: 26916912]
[17]
Mishra, LC; Singh, BB; Dagenais, S Scientific basis for the therapeutic use of Withania somnifera (ashwagandha): A review. Alter. Med. Rev., 2000, 5(4), 334-346.
[18]
Jagetia, G.C.; Ganapathi, N.G.; Venkatesh, P.; Rao, N.; Baliga, M.S. Evaluation of the radioprotective effect of Liv 52 in mice. Environ. Mol. Mutagen., 2006, 47(7), 490-502.
[http://dx.doi.org/10.1002/em.20218] [PMID: 16758471]
[19]
Ganzera, M.; Yayla, Y.; Khan, I.A. Analysis of the marker compounds of Rhodiola rosea L. (golden root) by reversed phase high performance liquid chromatography. Chem. Pharm. Bull. (Tokyo), 2001, 49(4), 465-467.
[http://dx.doi.org/10.1248/cpb.49.465] [PMID: 11310675]
[20]
Variya, B.C.; Bakrania, A.K.; Patel, S.S. Emblica officinalis (Amla): A review for its phytochemistry, ethnomedicinal uses and medicinal potentials with respect to molecular mechanisms. Pharmacol. Res., 2016, 111, 180-200.
[http://dx.doi.org/10.1016/j.phrs.2016.06.013] [PMID: 27320046]
[21]
Baliga, MS; Dsouza, JJ Amla (Emblica officinalis Gaertn), a wonder berry in the treatment and prevention of cancer. Eur. J. Cancer Prevent., 2011, 20(3), 225-239.
[22]
Fukuchi, K.; Okudaira, N.; Adachi, K.; Odai-Ide, R.; Watanabe, S.; Ohno, H.; Yamamoto, M.; Kanamoto, T.; Terakubo, S.; Nakashima, H.; Uesawa, Y.; Kagaya, H.; Sakagami, H. Antiviral and antitumor activity of licorice root extracts. In vivo, 2016, 30(6), 777-785.
[http://dx.doi.org/10.21873/invivo.10994] [PMID: 27815461]
[23]
Li, K.; Ji, S.; Song, W.; Kuang, Y.; Lin, Y.; Tang, S.; Cui, Z.; Qiao, X.; Yu, S.; Ye, M. Glycybridins A-K, bioactive phenolic compounds from glycyrrhiza glabra. J. Nat. Prod., 2017, 80(2), 334-346.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00783] [PMID: 28140583]
[24]
Chakravarty, A.K.; Sarkar, T.; Nakane, T.; Kawahara, N.; Masuda, K. New phenylethanoid glycosides from Bacopa monniera. Chem. Pharm. Bull. (Tokyo), 2002, 50(12), 1616-1618.
[http://dx.doi.org/10.1248/cpb.50.1616] [PMID: 12499603]
[25]
Zhou, Y.; Shen, Y.H.; Zhang, C.; Su, J.; Liu, R.H.; Zhang, W.D. Triterpene saponins from Bacopa monnieri and their antidepressant effects in two mice models. J. Nat. Prod., 2007, 70(4), 652-655.
[http://dx.doi.org/10.1021/np060470s] [PMID: 17343408]
[26]
Hayes, P.Y.; Jahidin, A.H.; Lehmann, R.; Penman, K.; Kitching, W.; De Voss, J.J. Steroidal saponins from the roots of Asparagus racemosus. Phytochemistry, 2008, 69(3), 796-804.
[http://dx.doi.org/10.1016/j.phytochem.2007.09.001] [PMID: 17936315]
[27]
Chaudhary, A.; Sharma, S.; Mittal, A.; Gupta, S.; Dua, A. Phytochemical and antioxidant profiling of Ocimum sanctum. J. Food Sci. Technol., 2020, 57(10), 3852-3863.
[http://dx.doi.org/10.1007/s13197-020-04417-2] [PMID: 32903995]
[28]
Wang, G.J.; Fu, H.X.; Xiao, J.C.; Ye, W.; Rao, T.; Shao, Y.H.; Kang, D.; Xie, L.; Liang, Y. Appropriate choice of collision-induced dissociation energy for qualitative analysis of notoginsenosides based on liquid chromatography hybrid ion trap time-of-flight mass spectrometry. Chin. J. Nat. Med., 2016, 14(4), 278-285.
[http://dx.doi.org/10.1016/S1875-5364(16)30028-0] [PMID: 27114315]
[29]
Seo, EJ; Klauck, SM; Efferth, T Panossian, A Adaptogens in chemobrain (Part II): Effect of plant extracts on chemotherapy-induced cytotoxicity in neuroglia cells. Phytomedicine, 2019, 58, 152743.
[30]
Tan, W.; Lu, J.; Huang, M.; Li, Y.; Chen, M.; Wu, G.; Gong, J.; Zhong, Z.; Xu, Z.; Dang, Y.; Guo, J.; Chen, X.; Wang, Y. Anti-cancer natural products isolated from chinese medicinal herbs. Chin. Med., 2011, 6(1), 27.
[http://dx.doi.org/10.1186/1749-8546-6-27] [PMID: 21777476]
[31]
Bale, S.; Venkatesh, P.; Sunkoju, M.; Godugu, C. An Adaptogen: Withaferin a ameliorates in vitro and in vivo pulmonary fibrosis by modulating the interplay of fibrotic, matricelluar proteins, and cytokines. Front. Pharmacol., 2018, 9, 248.
[http://dx.doi.org/10.3389/fphar.2018.00248] [PMID: 29623041]
[32]
Bocharov, E.V.; Ivanova-Smolenskaya, I.A.; Poleshchuk, V.V.; Kucheryanu, V.G.; Il’enko, V.A.; Bocharova, O.A. Therapeutic efficacy of the neuroprotective plant adaptogen in neurodegenerative disease (Parkinson’s disease as an example). Bull. Exp. Biol. Med., 2010, 149(6), 682-684.
[http://dx.doi.org/10.1007/s10517-010-1023-z] [PMID: 21165417]
[33]
Lishmanov Iu, B.; Maslov, L.N.; Arbuzov, A.G.; Krylatov, A.V.; Platonov, A.A.; Burkova, V.N. Cardioprotective, inotropic, and anti-arrhythmia properties of a complex adaptogen “Tonizid”. Eksp. Klin. Farmakol., 2008, 71(3), 15-22.
[PMID: 18652250]
[34]
Pooja, A.S.B.; Khanum, F. Anti-inflammatory activity of Rhodiola rosea-“a second-generation adaptogen”. Phytother. Res., 2009, 23(8), 1099-1102.
[http://dx.doi.org/10.1002/ptr.2749] [PMID: 19152369]
[35]
Suslov, N.I.; Churin, A.A.; Skurikhin, E.G.; Provalova, N.V.; Stal’bovskiĭ, A.O.; Litvinenko, V.I.; Dygaĭ, A.M. Effect of natural nootropic and adaptogen preparations on the cortex bioelectrical activity in rats. Eksp. Klin. Farmakol., 2002, 65(1), 7-10.
[PMID: 12025793]
[36]
Nemetchek, M.D.; Stierle, A.A.; Stierle, D.B.; Lurie, D.I. The Ayurvedic plant Bacopa monnieri inhibits inflammatory pathways in the brain. J. Ethnopharmacol., 2017, 197, 92-100.
[http://dx.doi.org/10.1016/j.jep.2016.07.073] [PMID: 27473605]
[37]
Shakhmatov, I.I.; Bondarchuk, IuA.; Vdovin, V.M.; Alekseeva, O.V.; Kiselev, V.I. Hemostasis changes and their correction by adaptogen. Patol. Fiziol. Eksp. Ter., 2010, (2), 43-46.
[PMID: 20804074]
[38]
Kim, B.; Kim, E.Y.; Lee, E.J.; Han, J.H.; Kwak, C.H.; Jung, Y.S.; Lee, S.O.; Chung, T.W.; Ha, K.T. Panax notoginseng inhibits tumor growth through activating macrophage to M1 polarization. Am. J. Chin. Med., 2018, 46(6), 1369-1385.
[http://dx.doi.org/10.1142/S0192415X18500726] [PMID: 30168347]
[39]
Udintsev, S.N.; Shakhov, V.P.; Borovskoĭ, I.G.; Ibragimova, S.G. The effect of low concentrations of adaptogen solutions on the functional activity of murine bone marrow cells in vitro. Biofizika, 1991, 36(1), 105-108.
[PMID: 1854818]
[40]
Engdal, S.; Klepp, O.; Nilsen, O.G. Identification and exploration of herb-drug combinations used by cancer patients. Integr. Cancer Ther., 2009, 8(1), 29-36.
[http://dx.doi.org/10.1177/1534735408330202] [PMID: 19174505]
[41]
Patil, D.; Gautam, M.; Gairola, S.; Jadhav, S.; Patwardhan, B. Effect of botanical immunomodulators on human CYP3A4 inhibition: Implications for concurrent use as adjuvants in cancer therapy. Integr. Cancer Ther., 2014, 13(2), 167-175.
[http://dx.doi.org/10.1177/1534735413503551] [PMID: 24105360]
[42]
Alam, N.; Hossain, M.; Mottalib, M.A.; Sulaiman, S.A.; Gan, S.H.; Khalil, M.I. Methanolic extracts of Withania somnifera leaves, fruits and roots possess antioxidant properties and antibacterial activities. BMC Complement. Altern. Med., 2012, 12(1), 175.
[http://dx.doi.org/10.1186/1472-6882-12-175] [PMID: 23039061]
[43]
Prakash, J.; Gupta, S.K.; Dinda, A.K. Withania somnifera root extract prevents DMBA-induced squamous cell carcinoma of skin in Swiss albino mice. Nutr. Cancer, 2002, 42(1), 91-97.
[http://dx.doi.org/10.1207/S15327914NC421_12] [PMID: 12235655]
[44]
Malik, F.; Singh, J.; Khajuria, A.; Suri, K.A.; Satti, N.K.; Singh, S.; Kaul, M.K.; Kumar, A.; Bhatia, A.; Qazi, G.N. A standardized root extract of Withania somnifera and its major constituent withanolide-A elicit humoral and cell-mediated immune responses by up regulation of Th1-dominant polarization in BALB/c mice. Life Sci., 2007, 80(16), 1525-1538.
[http://dx.doi.org/10.1016/j.lfs.2007.01.029] [PMID: 17336338]
[45]
Malik, F.; Kumar, A.; Bhushan, S.; Mondhe, D.M.; Pal, H.C.; Sharma, R.; Khajuria, A.; Singh, S.; Singh, G.; Saxena, A.K.; Suri, K.A.; Qazi, G.N.; Singh, J. Immune modulation and apoptosis induction: Two sides of antitumoural activity of a standardised herbal formulation of Withania somnifera. Eur. J. Cancer, 2009, 45(8), 1494-1509.
[http://dx.doi.org/10.1016/j.ejca.2009.01.034] [PMID: 19269163]
[46]
Sun, Y.; Xun, K.; Wang, Y.; Chen, X. A systematic review of the anticancer properties of berberine, a natural product from Chinese herbs. Anticancer Drugs, 2009, 20(9), 757-769.
[http://dx.doi.org/10.1097/CAD.0b013e328330d95b] [PMID: 19704371]
[47]
Gong, C.; Hu, X.; Xu, Y.; Yang, J.; Zong, L.; Wang, C.; Zhu, J.; Li, Z.; Lu, D. Berberine inhibits proliferation and migration of colorectal cancer cells by downregulation of GRP78. Anticancer Drugs, 2020, 31(2), 141-149.
[http://dx.doi.org/10.1097/CAD.0000000000000835] [PMID: 31743135]
[48]
Leyon, P.V.; Kuttan, G. Effect of Tinospora cordifolia on the cytokine profile of angiogenesis-induced animals. Int. Immunopharmacol., 2004, 4(13), 1569-1575.
[http://dx.doi.org/10.1016/j.intimp.2004.06.015] [PMID: 15454110]
[49]
Cai, Z.; Li, W.; Wang, H.; Yan, W.; Zhou, Y.; Wang, G.; Cui, J.; Wang, F. Antitumor effects of a purified polysaccharide from Rhodiola rosea and its action mechanism. Carbohydr. Polym., 2012, 90(1), 296-300.
[http://dx.doi.org/10.1016/j.carbpol.2012.05.039] [PMID: 24751044]
[50]
Zhao, G.; Shi, A.; Fan, Z.; Du, Y. Salidroside inhibits the growth of human breast cancer in vitro and in vivo. Oncol. Rep., 2015, 33(5), 2553-2560.
[http://dx.doi.org/10.3892/or.2015.3857] [PMID: 25814002]
[51]
Sun, K.X.; Xia, H.W.; Xia, R.L. Anticancer effect of salidroside on colon cancer through inhibiting JAK2/STAT3 signaling pathway. Int. J. Clin. Exp. Pathol., 2015, 8(1), 615-621.
[PMID: 25755753]
[52]
Jose, J.K.; Kuttan, G.; Kuttan, R. Antitumour activity of Emblica officinalis. J. Ethnopharmacol., 2001, 75(2-3), 65-69.
[http://dx.doi.org/10.1016/S0378-8741(00)00378-0] [PMID: 11297836]
[53]
Khan, M.T.; Lampronti, I.; Martello, D.; Bianchi, N.; Jabbar, S.; Choudhuri, M.S.; Datta, B.K.; Gambari, R. Identification of pyrogallol as an antiproliferative compound present in extracts from the medicinal plant Emblica officinalis: Effects on in vitro cell growth of human tumor cell lines. Int. J. Oncol., 2002, 21(1), 187-192.
[http://dx.doi.org/10.3892/ijo.21.1.187] [PMID: 12063567]
[54]
Chen, C.; Shenoy, A.K.; Padia, R.; Fang, D.; Jing, Q.; Yang, P.; Su, S.B.; Huang, S. Suppression of lung cancer progression by isoliquiritigenin through its metabolite 2, 4, 2′, 4′-Tetrahydroxychalcone. J. Exp. Clin. Cancer Res., 2018, 37(1), 243.
[http://dx.doi.org/10.1186/s13046-018-0902-4] [PMID: 30285892]
[55]
Abe, H.; Ohya, N.; Yamamoto, K.F.; Shibuya, T.; Arichi, S.; Odashima, S. Effects of glycyrrhizin and glycyrrhetinic acid on growth and melanogenesis in cultured B16 melanoma cells. Eur. J. Cancer Clin. Oncol., 1987, 23(10), 1549-1555.
[http://dx.doi.org/10.1016/0277-5379(87)90099-X] [PMID: 3678319]
[56]
Sharma, G.; Kar, S.; Palit, S.; Das, P.K. 18β-glycyrrhetinic acid induces apoptosis through modulation of Akt/FOXO3a/Bim pathway in human breast cancer MCF-7 cells. J. Cell. Physiol., 2012, 227(5), 1923-1931.
[http://dx.doi.org/10.1002/jcp.22920] [PMID: 21732363]
[57]
Hsieh, MJ; Chen, MK; Chen, CJ; Hsieh, MC; Lo, YS; Chuang, YC Glabridin induces apoptosis and autophagy through JNK1/2 pathway in human hepatoma cells. Phytomedicine, 2016, 23(4), 359-366.
[58]
Łojewski, M.; Pomierny, B.; Muszyńska, B.; Krzyżanowska, W.; Budziszewska, B.; Szewczyk, A. Protective effects of Bacopa monnieri on hydrogen peroxide and staurosporine: Induced damage of human neuroblastoma SH-SY5Y cells. Planta Med., 2016, 82(3), 205-210.
[PMID: 26544120]
[59]
Palethorpe, H.M.; Smith, E.; Tomita, Y.; Nakhjavani, M.; Yool, A.J.; Price, T.J.; Young, J.P.; Townsend, A.R.; Hardingham, J.E. Bacopasides I and II act in synergy to inhibit the growth, migration and invasion of breast cancer cell lines. Molecules, 2019, 24(19), E3539.
[http://dx.doi.org/10.3390/molecules24193539] [PMID: 31574930]
[60]
John, S.; Sivakumar, K.C.; Mishra, R.; Bacoside, A. Bacoside a induces tumor cell death in human glioblastoma cell lines through catastrophic macropinocytosis. Front. Mol. Neurosci., 2017, 10, 171.
[http://dx.doi.org/10.3389/fnmol.2017.00171] [PMID: 28663722]
[61]
Smith, E.; Palethorpe, H.M.; Tomita, Y.; Pei, J.V.; Townsend, A.R.; Price, T.J.; Young, J.P.; Yool, A.J.; Hardingham, J.E. The Purified extract from the medicinal plant Bacopa monnieri, Bacopaside II, inhibits growth of colon cancer cells in vitro by inducing cell cycle arrest and apoptosis. Cells, 2018, 7(7), E81.
[http://dx.doi.org/10.3390/cells7070081] [PMID: 30037060]
[62]
Dhar, M.L.; Dhar, M.M.; Dhawan, B.N.; Mehrotra, B.N.; Ray, C. Screening of Indian plants for biological activity: I. Indian J. Exp. Biol., 1968, 6(4), 232-247.
[PMID: 5720682]
[63]
Mitra, S.K.; Prakash, N.S.; Sundaram, R. Shatavarins (containing Shatavarin IV) with anticancer activity from the roots of Asparagus rac-emosus. Indian J. Pharmacol., 2012, 44(6), 732-736.
[http://dx.doi.org/10.4103/0253-7613.103273] [PMID: 23248403]
[64]
Rao, A.R. Inhibitory action of Asparagus racemosus on DMBA-induced mammary carcinogenesis in rats. Int. J. Cancer, 1981, 28(5), 607-610.
[http://dx.doi.org/10.1002/ijc.2910280512] [PMID: 6796529]
[65]
Bhutani, KK; Paul, AT; Fayad, W; Linder, S Apoptosis inducing activity of steroidal constituents from Solanum xanthocarpum and Asparagus racemosus. Phytomedicine, 2010, 17(10), 789-793.
[http://dx.doi.org/10.1016/j.phymed.2010.01.017]
[66]
Verma, S.P.; Sisoudiya, S.; Das, P. Aqueous extract of anticancer drug CRUEL herbomineral formulation capsules exerts anti-proliferative effects in renal cell carcinoma cell lines. APJCP, 2015, 16(18), 8419-8423.
[PMID: 26745095]
[67]
Shimizu, T.; Torres, M.P.; Chakraborty, S.; Souchek, J.J.; Rachagani, S.; Kaur, S.; Macha, M.; Ganti, A.K.; Hauke, R.J.; Batra, S.K. Holy Basil leaf extract decreases tumorigenicity and metastasis of aggressive human pancreatic cancer cells in vitro and in vivo: Potential role in therapy. Cancer Lett., 2013, 336(2), 270-280.
[http://dx.doi.org/10.1016/j.canlet.2013.03.017] [PMID: 23523869]
[68]
Kim, SC; Magesh, V; Jeong, SJ; Lee, HJ; Ahn, KS Lee, HJ Ethanol extract of Ocimum sanctum exerts anti-metastatic activity through inactivation of matrix metalloproteinase-9 and enhancement of anti-oxidant enzymes. Food and chemical toxicology, 2010, 48(6), 1478-1482.
[http://dx.doi.org/10.1016/j.fct.2010.03.014]
[69]
Baliga, M.S.; Jimmy, R.; Thilakchand, K.R.; Sunitha, V.; Bhat, N.R.; Saldanha, E.; Rao, S.; Rao, P.; Arora, R.; Palatty, P.L. Ocimum sanctum L (Holy Basil or Tulsi) and its phytochemicals in the prevention and treatment of cancer. Nutr. Cancer, 2013, 65(sup1)(Suppl. 1), 26-35.
[http://dx.doi.org/10.1080/01635581.2013.785010] [PMID: 23682780]
[70]
Shivpuje, P.; Ammanangi, R.; Bhat, K.; Katti, S. Effect of Ocimum sanctum on Oral Cancer Cell Line: An in vitro Study. J. Contemp. Dent. Pract., 2015, 16(9), 709-714.
[http://dx.doi.org/10.5005/jp-journals-10024-1745] [PMID: 26522595]
[71]
Manaharan, T.; Thirugnanasampandan, R.; Jayakumar, R.; Kanthimathi, M.S.; Ramya, G.; Ramnath, M.G. Purified essential oil from ocimum sanctum linn. triggers the apoptotic mechanism in human breast cancer cells. Pharmacogn. Mag., 2016, 12(46)(Suppl. 3), S327-S331.
[http://dx.doi.org/10.4103/0973-1296.185738] [PMID: 27563220]
[72]
Nagaprashantha, L.D.; Vatsyayan, R.; Singhal, J.; Fast, S.; Roby, R.; Awasthi, S.; Singhal, S.S. Anti-cancer effects of novel flavonoid vicenin-2 as a single agent and in synergistic combination with docetaxel in prostate cancer. Biochem. Pharmacol., 2011, 82(9), 1100-1109.
[http://dx.doi.org/10.1016/j.bcp.2011.07.078] [PMID: 21803027]
[73]
Baruah, T.J.; Kma, L. Vicenin-2 acts as a radiosensitizer of the non-small cell lung cancer by lowering Akt expression. Biofactors, 2019, 45(2), 200-210.
[http://dx.doi.org/10.1002/biof.1472] [PMID: 30496626]
[74]
Yang, D.; Zhang, X.; Zhang, W.; Rengarajan, T. Vicenin-2 inhibits Wnt/β-catenin signaling and induces apoptosis in HT-29 human colon cancer cell line. Drug Des. Devel. Ther., 2018, 12, 1303-1310.
[http://dx.doi.org/10.2147/DDDT.S149307] [PMID: 29849451]
[75]
Wang, L.; Xu, J.; Yan, Y.; Liu, H.; Li, F. Synthesis of gold nanoparticles from leaf Panax notoginseng and its anticancer activity in pancreatic cancer PANC-1 cell lines. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 1216-1223.
[http://dx.doi.org/10.1080/21691401.2019.1593852] [PMID: 30942628]
[76]
Bi, X.; Zhao, Y.; Fang, W.; Yang, W. Anticancer activity of Panax notoginseng extract 20(S)-25-OCH3-PPD: Targetting beta-catenin signalling. Clin. Exp. Pharmacol. Physiol., 2009, 36(11), 1074-1078.
[http://dx.doi.org/10.1111/j.1440-1681.2009.05203.x] [PMID: 19413587]
[77]
Toh, D.F.; Patel, D.N.; Chan, E.C.; Teo, A.; Neo, S.Y.; Koh, H.L. Anti-proliferative effects of raw and steamed extracts of Panax noto-ginseng and its ginsenoside constituents on human liver cancer cells. Chin. Med., 2011, 6(1), 4.
[http://dx.doi.org/10.1186/1749-8546-6-4] [PMID: 21255464]
[78]
Xu, L.; Xiao, S.; Yuan, W.; Cui, J.; Su, G.; Zhao, Y. Synthesis and anticancer activity evaluation of hydrolyzed derivatives of Panaxnoto-ginseng saponins. Molecules, 2018, 23(11), E3021.
[http://dx.doi.org/10.3390/molecules23113021] [PMID: 30463224]
[79]
Wu, Q.; Deng, J.; Fan, D.; Duan, Z.; Zhu, C.; Fu, R.; Wang, S. Ginsenoside Rh4 induces apoptosis and autophagic cell death through activation of the ROS/JNK/p53 pathway in colorectal cancer cells. Biochem. Pharmacol., 2018, 148, 64-74.
[http://dx.doi.org/10.1016/j.bcp.2017.12.004] [PMID: 29225132]
[80]
Liu, H.; Zhao, J.; Fu, R.; Zhu, C.; Fan, D. The ginsenoside Rk3 exerts anti-esophageal cancer activity in vitro and in vivo by mediating apoptosis and autophagy through regulation of the PI3K/Akt/mTOR pathway. PLoS One, 2019, 14(5), e0216759.
[http://dx.doi.org/10.1371/journal.pone.0216759] [PMID: 31091245]
[81]
Li, L.; Sun, J.X.; Wang, X.Q.; Liu, X.K.; Chen, X.X.; Zhang, B.; He, Z.D.; Liu, D.Z.; Chen, L.X.; Wang, L.W.; Huang, Z. Notoginsenoside R7 suppresses cervical cancer via PI3K/PTEN/Akt/mTOR signaling. Oncotarget, 2017, 8(65), 109487-109496.
[http://dx.doi.org/10.18632/oncotarget.22721] [PMID: 29312623]
[82]
Duan, Z.; Deng, J.; Dong, Y.; Zhu, C.; Li, W.; Fan, D. Anticancer effects of ginsenoside Rk3 on non-small cell lung cancer cells: In vitro and in vivo. Food Funct., 2017, 8(10), 3723-3736.
[http://dx.doi.org/10.1039/C7FO00385D] [PMID: 28949353]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy