Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Copper-catalyzed C-N Bond Cleavage: Synthesis of N-sulfonylformamidines from N-(2-pyridinylmethyl)benzenesulfonamides

Author(s): Xiaozhong Wang, Qihang Zhao, Yangyang Fang, Menglu Cai, Yingqi Chen and Liyan Dai*

Volume 19, Issue 7, 2022

Published on: 27 May, 2022

Page: [797 - 807] Pages: 11

DOI: 10.2174/1570179419666220408000751

Price: $65

Abstract

A broad range of N-sulfonyformamidines, widely used intermediates for drugs, were synthesized in moderate to excellent yields from 2-Pyridinemethanamine as N-source via Coppercatalyzed C-N cleavage. Firstly, N-(2-pyridinylmethyl)benzenesulfonamides were smoothly synthesized via 2-pyridinemethanamine and sulfonyl chlorides, then reacted with N,Ndimethylformamide dimethyl acetal to obtain the corresponding N-Sulfonylformamidines analogs, during which pyridin-2-ylmethyl and sulfonyl groups were essential for the C-N bond cleavage. The current work presents a valuable complementarity to the synthesis of N-sulfonyformamidines as 2- pyridinemethanamine can provide the N source and sulfonyl chloride,s which could be original materials.

Background: N-sulfonylamidines have gained considerable attention from schools and industries because of their unique bioactivity. Since Pinner’s strategy, expanding the synthesis methods of Nsulfonylamidines has been the goal of many organic chemists over the past decades. Besides the crash reaction conditions and the participation of undesirable reagents, the production of Nsulfonylamidines commonly required unstable ammonia and azides as the source of nitrogen that hindered the further development and application of N-sulfonylamidine derivatives.

Objective: The study aims to find a stable N source to replace NaN3 or NH3 to synthesize N-sulfonylamidines from sulfonyl chlorides.

Methods: Firstly, N-(2-pyridinylmethyl)benzenesulfonamides were smoothly synthesized via 2- pyridinemethanamine and sulfonyl chlorides. Then the reaction conditions of N-(2-pyridinylmethyl) benzenesulfonamides and N,N-dimethylformamide dimethyl acetal (DMF-DMA) were screened and optimized. The reaction was processed in glycol at 80 ℃ for 8 hours with the addition of 5 mol% Cu(OAc)2·H2O as a catalyst.

Results: Taking advantage of pyridin-2-ylmethyl, a scope of N-Sulfonylformamidines were synthesized from those N-(2-pyridinylmethyl)benzenesulfonamides under copper-catalyzed C-N bond cleavage.

Conclusion: This ready synthetic method will be more of a promising inspiration for bioactive compound synthesis and drug development than for an innovative approach to synthesizing N-sulfonylformamidines.

Keywords: N-sulfonyformamidines, C-N bond cleavage, pyridin-2-ylmethyl, Cu(OAc)2·H2O, DMF-DMA, 5KWs, sulfonyl chlorides.

Graphical Abstract
[1]
Berlinck, R.G.S.; Trindade-Silva, A.E.; Santos, M.F.C. The chemistry and biology of organic guanidine derivatives. Nat. Prod. Rep., 2012, 29(12), 1382-1406.
[http://dx.doi.org/10.1039/c2np20071f] [PMID: 22991131]
[2]
Rassias, G.; Zogali, V.; Swarbrick, C.M.D.; Ki Chan, K.W.; Chan, S.A.; Gwee, C.P.; Wang, S.; Kaplanai, E.; Canko, A.; Kiousis, D.; Lescar, J.; Luo, D.; Matsoukas, M.T.; Vasudevan, S.G. Cell-active carbazole derivatives as inhibitors of the zika virus protease. Eur. J. Med. Chem., 2019, 180, 536-545.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.007] [PMID: 31344613]
[3]
Cui, G.; Jin, J.; Chen, H.; Cao, R.; Chen, X.; Xu, B. Synthesis and biological evaluation of pyrimidine derivatives as novel human Pin1 inhibitors. Bioorg. Med. Chem., 2018, 26(8), 2186-2197.
[http://dx.doi.org/10.1016/j.bmc.2018.03.024] [PMID: 29576270]
[4]
Xu, X.L.; Li, X.N.; Ma, L.; Ye, N.; Weng, B.J. An unexpected diethyl azodicarboxylate-promoted dehydrogenation of tertiaryamine and tandem reaction with sulfonyl azide. J. Am. Chem. Soc., 2008, 130(43), 14048.
[http://dx.doi.org/10.1021/ja8047514]
[5]
Rouzi, A.; Hudabaierdi, R.; Wusiman, A. Synthesis of N-sulfonylformamidines by tert-butyl hydroperoxide-promoted, metal-free, direct oxidative dehydrogenation of aliphatic amines. Tetrahedron, 2018, 74(20), 2475-2481.
[http://dx.doi.org/10.1016/j.tet.2018.03.074]
[6]
Zhang, Y.; Chen, Z.L. Three component reaction of aryl diazonium salt with sulfonamide & actonitrile to synthesize N-sulfonyl amidine. Tetrahedron Lett., 2018, 59(47), 4183-4186.
[http://dx.doi.org/10.1016/j.tetlet.2018.10.027]
[7]
Bi, W.Z.; Zhang, W.J.; Li, Z.J.; Xia, X.Y.; Chen, X.L.; Qu, L.B.; Zhao, Y.F. Air-induced one-pot synthesis of N-sulfonylformamidines from sulfonyl chlorides, NaN3, and tertiary/secondary amines. Eur. J. Org. Chem., 2019, 2019(35), 6071-6076.
[http://dx.doi.org/10.1002/ejoc.201901048]
[8]
Wusiman, A.; Hudabaierdi, R. Efficient synthesis of N-oxysulfonyl formamidines through thionyl chloride-promoted reaction of sulfamates with formamides. Synth. Commun., 2017, 47(21), 2015-2021.
[http://dx.doi.org/10.1080/00397911.2017.1361999]
[9]
Adiche, C.; Hamadouche, M.; El Abed, D. Facile synthesis of sulfonyl amidines by 1,3-dipolar cycloaddition between 1-morpholinocycloalkenes and Sulfonyl Azides without Catalyst. Heterocycles, 2016, 92(9), 1614-1628.
[http://dx.doi.org/10.3987/COM-16-13503]
[10]
Mulati, A.; Wusiman, A. Facile one-pot synthesis of cyclic N-sulfonylamidines from lactam and Sulfonamide. Heterocycles, 2015, 91(11), 2163-2171.
[http://dx.doi.org/10.3987/COM-15-13307]
[11]
He, Y.; Wang, X. Synthesis of cyclic amidines by iridium-catalyzed deoxygenative reduction of lactams and tandem reaction with sulfonyl Azides. Org. Lett., 2021, 23(1), 225-230.
[http://dx.doi.org/10.1021/acs.orglett.0c03953] [PMID: 33325718]
[12]
Yanagisawa, I.; Hirata, Y.; Ishii, Y. Studies on histamine H2 receptor antagonists. 2. Synthesis and pharmacological activities of N-sulfamoyl and N-sulfonyl amidine derivatives. J. Med. Chem., 1987, 30(10), 1787-1793.
[http://dx.doi.org/10.1021/jm00393a018] [PMID: 2888895]
[13]
Anglada, L.; Marquez, M.; Sacristan, A.; Ortiz, J.A. Inhibitors of gastric-acid secretion - N-sulfonyl formamidines in a series of new histamine H2-receptor antagonists. Eur. J. Med. Chem., 1988, 23(1), 97-100.
[http://dx.doi.org/10.1016/0223-5234(88)90174-2]
[14]
Lee, M.Y.; Kim, M.H.; Kim, J.; Kim, S.H.; Kim, B.T.; Jeong, I.H.; Chang, S.; Kim, S.H.; Chang, S.Y. Synthesis and SAR of sulfonyl- and phosphoryl amidine compounds as anti-resorptive agents. Bioorg. Med. Chem. Lett., 2010, 20(2), 541-545.
[http://dx.doi.org/10.1016/j.bmcl.2009.11.104] [PMID: 20005100]
[15]
Silva, A.L.; Covarrubias-Zuniga, A.; Maldonado, L.A. A simple preparation of N,N-dimethyl-N '-alkyl (aryl) sulfonylformamidines. Org. Prep. Proced. Int., 2002, 34(5), 545-549.
[http://dx.doi.org/10.1080/00304940209355779]
[16]
Chandna, N.; Chandak, N.; Kumar, P.; Kapoor, J.K.; Sharma, P.K. Metal- and solvent-free synthesis of N-sulfonylformamidines. Green Chem., 2013, 15(8), 2294-2301.
[http://dx.doi.org/10.1039/c3gc40797g]
[17]
Hudabaierdi, R.; Wusiman, A.; Mulati, A. Improved synthesis of N-sulfonylformamidine derivatives promoted by thionyl chloride. Phosphorus Sulfur Silicon Relat. Elem., 2017, 192(5), 485-489.
[http://dx.doi.org/10.1080/10426507.2017.1284843]
[18]
Zheng, Y.; Mao, J.C.; Chen, J.; Rong, G.W.; Liu, D.F.; Yan, H.; Chia, Y.J.; Xu, X.F. Unexpected C=N bond formation via NaI-catalyzed oxidative de-tetra-hydrogenative cross-couplings between N,N-dimethyl aniline and sulfamides. RSC Advances, 2015, 5(62), 50113-50117.
[http://dx.doi.org/10.1039/C5RA06773A]
[19]
Chen, J.; Guo, Y.P.; Sun, M.H.; Fan, G.T.; Zhou, L. Bromoform reaction of tertiary amines with N,N-dibromosulfonamides or NBS/sulfonamides. Chem. Commun. (Camb.), 2014, 50(82), 12367-12370.
[http://dx.doi.org/10.1039/C4CC05578K] [PMID: 25187429]
[20]
Gazvoda, M.; Kocevar, M.; Polanc, S. In situ formation of vilsmeier reagents mediated by oxalyl chloride: A tool for the selective synthesis of N-sulfonylformamidines. Eur. J. Org. Chem., 2013, 2013(24), 5381-5386.
[http://dx.doi.org/10.1002/ejoc.201300402]
[21]
Niu, Z.; Lin, S.; Dong, Z.; Sun, H.; Liang, F.; Zhang, J. Otherwise inert reaction of sulfonamides/carboxamides with formamides via proton transfer-enhanced reactivity. Org. Biomol. Chem., 2013, 11(15), 2460-2465.
[http://dx.doi.org/10.1039/c3ob27351b] [PMID: 23429527]
[22]
Chen, S.; Xu, Y.; Wan, X. Direct condensation of sulfonamide and formamide: NaI-catalyzed synthesis of N-sulfonyl formamidine using TBHP as oxidant. Org. Lett., 2011, 13(23), 6152-6155.
[http://dx.doi.org/10.1021/ol2024604] [PMID: 22039964]
[23]
Jeong, Y.; Ban, J.; Lim, M.; Rhee, H. A novel synthesis of N-sulfonylformamidines from N-sulfonylsulfonamides. Synthesis, 2018, 50(9), 1867-1874.
[http://dx.doi.org/10.1055/s-0036-1591936]
[24]
Xu, X.; Ge, Z.; Cheng, D.; Ma, L.; Lu, C.; Zhang, Q.; Yao, N.; Li, X. CuCl/CCl(4)-promoted convenient synthesis of sulfonyl amidines from tertiary amines and sulfonyl azides. Org. Lett., 2010, 12(5), 897-899.
[http://dx.doi.org/10.1021/ol1000236] [PMID: 20121255]
[25]
Liu, N.; Tang, B.Y.; Chen, Y.; He, L. Catalyzed imidation of tertiary amines by simple copper salts. Eur. J. Org. Chem., 2009, 2009(13), 2059-2062.
[http://dx.doi.org/10.1002/ejoc.200900143]
[26]
Huang, H.; Ji, X.; Wu, W.; Huang, L.; Jiang, H. Copper-catalyzed formal C-N bond cleavage of aromatic methylamines: Assembly of pyridine derivatives. J. Org. Chem., 2013, 78(8), 3774-3782.
[http://dx.doi.org/10.1021/jo400261v] [PMID: 23496336]
[27]
Chen, F.J.; Zhao, S.; Hu, F.; Chen, K.; Zhang, Q.; Zhang, S.Q.; Shi, B.F. Pd(II)-catalyzed alkoxylation of unactivated C(sp(3))-H and C(sp(2))-H bonds using a removable directing group: Efficient synthesis of alkyl ethers. Chem. Sci. (Camb.), 2013, 4(11), 4187-4192.
[http://dx.doi.org/10.1039/c3sc51993g]
[28]
Chen, Y.; Graden, H.; Aurell, C-J.; Gibson, J. A convenient synthesis of N,N-dimethylformamidines from sulfonamides. Synthesis, 2015, 47(10), 1405-1412.
[http://dx.doi.org/10.1055/s-0034-1380277]
[29]
Gou, Q.; Liu, Z.; Cao, T.; Tan, X.; Shi, W.; Ran, M.; Cheng, F.; Qin, J. Copper-catalyzed coupling of sulfonamides with alkylamines: Synthesis of (E)-N-sulfonylformamidines. J. Org. Chem., 2020, 85(4), 2092-2102.
[http://dx.doi.org/10.1021/acs.joc.9b02860] [PMID: 31876415]
[30]
Congreve, A.; Kataky, R.; Knell, M.; Parker, D.; Puschmann, H.; Senanayake, K.; Wylie, L. Examination of cobalt, nickel, copper and zinc(II) complex geometry and binding affinity in aqueous media using simple pyridylsulfonamide ligands. New J. Chem., 2003, 27(1), 98-106.
[http://dx.doi.org/10.1039/b206279h]
[31]
Dayan, S.; Cetin, A.; Arslan, N.B.; Ozpozan, N.K.; Ozdemir, N.; Dayan, O. Palladium(II) complexes bearing bidentate pyridyl-sulfonamide ligands: Synthesis and catalytic applications. Polyhedron, 2015, 85, 748-753.
[http://dx.doi.org/10.1016/j.poly.2014.09.042]
[32]
Gunnaz, S.; Ozdemir, N.; Dayan, S.; Dayan, O.; Cetinkaya, B. Synthesis of ruthenium(II) complexes containing tridentate triamine (‘(nnn)over-cap ’) and bidentate diamine ligands ((nn)over-cap '): As catalysts for transfer hydrogenation of ketones. Organometallics, 2011, 30(15), 4165-4173.
[http://dx.doi.org/10.1021/om200470p]
[33]
Komatsu, K.; Kikuchi, K.; Kojima, H.; Urano, Y.; Nagano, T. Selective zinc sensor molecules with various affinities for Zn2+, revealing dynamics and regional distribution of synaptically released Zn2+ in hippocampal slices. J. Am. Chem. Soc., 2005, 127(29), 10197-10204.
[http://dx.doi.org/10.1021/ja050301e] [PMID: 16028930]
[34]
Mondal, A.; Li, Y.; Khan, M.A.; Ross, J.H., Jr; Houser, R.P. Supramolecular copper hydroxide tennis balls: Self-assembly, structures, and magnetic properties of octanuclear [Cu(8)L(8)(OH)(4)](4+) clusters (HL = N-(2-pyridylmethyl)acetamide). Inorg. Chem., 2004, 43(22), 7075-7082.
[http://dx.doi.org/10.1021/ic0493292] [PMID: 15500345]
[35]
Yamauchi, O.; Yajima, T.; Fujii, R.; Shimazaki, Y.; Yabusaki, M.; Takani, M.; Tashiro, M.; Motoyama, T.; Kakuto, M.; Nakabayashi, Y. CH center dot center dot center dot Metal(II) axial interaction in planar complexes (metal = Cu, Pd) and implications for possible environmental effects of alkyl groups at biological copper sites. J. Inorg. Biochem., 2008, 102(5-6), 1218-1226.
[http://dx.doi.org/10.1016/j.jinorgbio.2007.11.022] [PMID: 18234344]
[36]
Ruano, J.L.G.; Fernandez-Salas, J.A.; Maestro, M.C.; Parra, A. Reduction of sulfonylimines with raney nickel. Synth. Commun., 2013, 43(2), 198-207.
[http://dx.doi.org/10.1080/00397911.2011.594974]
[37]
Palakurthy, N.B.; Mandal, B. Sulfonamide synthesis using N-hydroxybenzotriazole sulfonate: An alternative to pentafluorophenyl (PFP) and trichlorophenyl (TCP) esters of sulfonic acids. Tetrahedron Lett., 2011, 52(52), 7132-7134.
[http://dx.doi.org/10.1016/j.tetlet.2011.10.107]
[38]
Yao, B.; Zhang, Y.; Li, Y. Copper-catalyzed coupling reaction of C-OMe bonds adjacent to a nitrogen atom with terminal alkynes. J. Org. Chem., 2010, 75(13), 4554-4561.
[http://dx.doi.org/10.1021/jo1007898] [PMID: 20536252]
[39]
Yang, W.; Huang, D.; Zeng, X.; Luo, D.; Wang, X.; Hu, Y. N-Sulfonyl acetylketenimine as a highly reactive intermediate for the synthesis of N-sulfonyl amidines. Chem. Commun. (Camb.), 2018, 54(59), 8222-8225.
[http://dx.doi.org/10.1039/C8CC04699A] [PMID: 29987306]
[40]
Gençer, N.; Demir, D.; Sonmez, F.; Kucukislamoglu, M. New saccharin derivatives as tyrosinase inhibitors. Bioorg. Med. Chem., 2012, 20(9), 2811-2821.
[http://dx.doi.org/10.1016/j.bmc.2012.03.033] [PMID: 22494841]
[41]
Perato, S.; Large, B.; Lu, Q.; Gaucher, A.; Prim, D. Pyridylmethylamine-palladium catalytic systems: A selective alternative in the C-H Arylation of Indole. ChemCatChem, 2017, 9(3), 389-392.
[http://dx.doi.org/10.1002/cctc.201601275]
[42]
Jiang, Y.Q.; Li, J.; Feng, Z.W.; Xu, G.Q.; Shi, X.; Ding, Q.J.; Li, W.; Ma, C.H.; Yu, B. Ethylene glycol: A green solvent for visible light‐promoted aerobic transition metal‐free cascade sulfonation/cyclization reaction. Adv. Synth. Catal., 2020, 362(13), 2609-2614.
[http://dx.doi.org/10.1002/adsc.202000233]
[43]
Daugulis, O.; Do, H.Q.; Shabashov, D. Palladium- and copper-catalyzed arylation of carbon-hydrogen bonds. Acc. Chem. Res., 2009, 42(8), 1074-1086.
[http://dx.doi.org/10.1021/ar9000058] [PMID: 19552413]
[44]
Ouyang, K.; Hao, W.; Zhang, W.X.; Xi, Z. Transition-metal-catalyzed cleavage of C-N single bonds. Chem. Rev., 2015, 115(21), 12045-12090.
[http://dx.doi.org/10.1021/acs.chemrev.5b00386] [PMID: 26423200]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy