Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Inhibitor of Growth 4 (ING4) Plays a Tumor-repressing Role in Oral Squamous Cell Carcinoma via Nuclear Factor Kappa-B (NF-kB)/DNA Methyltransferase 1 (DNMT1) Axis-mediated Regulation of Aldehyde Dehydrogenase 1A2 (ALDH1A2)

Author(s): Zhi Cui*, Shiqun Sun, Jia Li, Jianing Li, Tong Sha, Jie He and Linjing Zuo

Volume 22, Issue 9, 2022

Published on: 30 June, 2022

Page: [771 - 783] Pages: 13

DOI: 10.2174/1568009622666220406104732

Price: $65

Abstract

Background: Inhibitor of growth 4 (ING4) level was reported to be decreased in head and neck squamous cell carcinoma (HNSC) tissue, however, it is unknown whether and how ING4 participates in regulating the development of oral squamous cell carcinoma (OSCC).

Objective: This study aimed to investigate the role and mechanism of ING4 in OSCC.

Methods: ING4 was forced to up- or down-regulated in two OSCC cell lines, and its effects on the malignant behavior of OSCC cells were investigated in vitro. The ubiquitination level of NF-kB p65 in ING4 upregulated cells was measured by co-immunoprecipitation. Moreover, the effects of ING4 on the methylation level of ALDH1A2 were evaluated by methylation-specific polymerase chain reaction (MSP) assay. The role of ING4 in OSCC growth in vivo was observed in nude mice.

Results: Our results showed that the expression of ING4 in OSCC cell lines was lower than that in normal oral keratinocyte cells. In vitro, ING4 overexpression inhibited the proliferation, migration, and invasion of OSCC cell lines and ING4 silencing exhibited opposite results. We also demonstrated that ING4 overexpression promoted the ubiquitination and degradation of P65 and reduced DNA methyltransferase 1 (DNMT1) expression and Aldehyde dehydrogenase 1A2 (ALDH1A2) methylation. Moreover, overexpression of p65 rescued the suppression of malignant behavior, induced by ING4 overexpression. In addition, ING4 negatively regulated the growth of OSCC xenograft tumors in vivo.

Conclusion: Our data evidenced that ING4 played a tumor-repressing role in OSCC in vivo and in vitro via NF-κB/DNMT1/ALDH1A2 axis.

Keywords: ING4, NF-κB/P65, DNMT1, ALDH1A2, oral squamous cell carcinoma, malignant phenotype.

« Previous
Graphical Abstract
[1]
Choi, S.; Myers, J.N. Molecular pathogenesis of oral squamous cell carcinoma: Implications for therapy. J. Dent. Res., 2008, 87(1), 14-32.
[http://dx.doi.org/10.1177/154405910808700104] [PMID: 18096889]
[2]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of inci-dence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[3]
Hannen, E.J.; Riediger, D. The quantification of angiogenesis in relation to metastasis in oral cancer: A review. Int. J. Oral Maxillofac. Surg., 2004, 33(1), 2-7.
[http://dx.doi.org/10.1054/ijom.2003.0433] [PMID: 14690652]
[4]
Irani, S. Distant metastasis from oral cancer: A review and molecular biologic aspects. J. Int. Soc. Prev. Community Dent., 2016, 6(4), 265-271.
[http://dx.doi.org/10.4103/2231-0762.186805] [PMID: 27583211]
[5]
Matsuura, D.; Valim, T.D.; Kulcsar, M.A.V.; Pinto, F.R.; Brandão, L.G.; Cernea, C.R.; Matos, L.L. Risk factors for salvage surgery failure in oral cavity squamous cell carcinoma. Laryngoscope, 2018, 128(5), 1113-1119.
[http://dx.doi.org/10.1002/lary.26935] [PMID: 28988428]
[6]
SHahinas, J; Hysi, D Methods and risk of bias in molecular marker prognosis studies in oral squamous cell carcinoma. Oral Dis., 2018, 24(1-2), 115-119.
[http://dx.doi.org/10.1111/odi.12753] [PMID: 29480595]
[7]
Nanding, A.; Tang, L.; Cai, L.; Chen, H.; Geng, J.; Liu, X.; Ning, X.; Li, X.; Zhang, Q. Low ING4 protein expression detected by paraffin-section immunohistochemistry is associated with poor prognosis in untreated patients with gastrointestinal stromal tumors. Gastric Cancer, 2014, 17(1), 87-96.
[http://dx.doi.org/10.1007/s10120-013-0248-8] [PMID: 23504291]
[8]
Cui, S.; Gao, Y.; Zhang, K.; Chen, J.; Wang, R.; Chen, L. The emerging role of inhibitor of growth 4 as a tumor suppressor in multiple human cancers. Cell. Physiol. Biochem., 2015, 36(2), 409-422.
[http://dx.doi.org/10.1159/000430108] [PMID: 25968091]
[9]
Xie, Y.; Zhang, H.; Sheng, W.; Xiang, J.; Ye, Z.; Yang, J. Adenovirus-mediated ING4 expression suppresses lung carcinoma cell growth via induction of cell cycle alteration and apoptosis and inhibition of tumor invasion and angiogenesis. Cancer Lett., 2008, 271(1), 105-116.
[http://dx.doi.org/10.1016/j.canlet.2008.05.050] [PMID: 18789575]
[10]
Gong, A.; Ye, S.; Xiong, E.; Guo, W.; Zhang, Y.; Peng, W.; Shao, G.; Jin, J.; Zhang, Z.; Yang, J.; Gao, J. Autophagy contributes to ING4-induced glioma cell death. Exp. Cell Res., 2013, 319(12), 1714-1723.
[http://dx.doi.org/10.1016/j.yexcr.2013.05.004] [PMID: 23684856]
[11]
Shen, J.C.; Unoki, M.; Ythier, D.; Duperray, A.; Varticovski, L.; Kumamoto, K.; Pedeux, R.; Harris, C.C. Inhibitor of growth 4 suppresses cell spreading and cell migration by interacting with a novel binding partner, liprin alpha1. Cancer Res., 2007, 67(6), 2552-2558.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3870] [PMID: 17363573]
[12]
Li, J.; Martinka, M.; Li, G. Role of ING4 in human melanoma cell migration, invasion and patient survival. Carcinogenesis, 2008, 29(7), 1373-1379.
[http://dx.doi.org/10.1093/carcin/bgn086] [PMID: 18375955]
[13]
Qu, H.; Yin, H.; Yan, S.; Tao, M.; Xie, Y.; Chen, W. Inhibitor of growth 4 suppresses colorectal cancer growth and invasion by inducing G1 arrest, inhibiting tumor angiogenesis and reversing epithelial-mesenchymal transition. Oncol. Rep., 2016, 35(5), 2927-2935.
[http://dx.doi.org/10.3892/or.2016.4626] [PMID: 26936485]
[14]
Garkavtsev, I.; Kozin, S.V.; Chernova, O.; Xu, L.; Winkler, F.; Brown, E.; Barnett, G.H.; Jain, R.K. The candidate tumour suppressor pro-tein ING4 regulates brain tumour growth and angiogenesis. Nature, 2004, 428(6980), 328-332.
[http://dx.doi.org/10.1038/nature02329] [PMID: 15029197]
[15]
Colla, S.; Tagliaferri, S.; Morandi, F.; Lunghi, P.; Donofrio, G.; Martorana, D.; Mancini, C.; Lazzaretti, M.; Mazzera, L.; Ravanetti, L.; Bonomini, S.; Ferrari, L.; Miranda, C.; Ladetto, M.; Neri, T.M.; Neri, A.; Greco, A.; Mangoni, M.; Bonati, A.; Rizzoli, V.; Giuliani, N. The new tumor-suppressor gene inhibitor of growth family member 4 (ING4) regulates the production of proangiogenic molecules by myelo-ma cells and suppresses hypoxia-inducible factor-1 alpha (HIF-1alpha) activity: Involvement in myeloma-induced angiogenesis. Blood, 2007, 110(13), 4464-4475.
[http://dx.doi.org/10.1182/blood-2007-02-074617] [PMID: 17848618]
[16]
Zhang, X.; Xu, L.S.; Wang, Z.Q.; Wang, K.S.; Li, N.; Cheng, Z.H.; Huang, S.Z.; Wei, D.Z.; Han, Z.G. ING4 induces G2/M cell cycle arrest and enhances the chemosensitivity to DNA-damage agents in HepG2 cells. FEBS Lett., 2004, 570(1-3), 7-12.
[http://dx.doi.org/10.1016/j.febslet.2004.06.010] [PMID: 15251430]
[17]
Wang, R.; Huang, J.; Feng, B.; De, W.; Chen, L. Identification of ING4 (inhibitor of growth 4) as a modulator of docetaxel sensitivity in human lung adenocarcinoma. Mol. Med., 2012, 18(5), 874-886.
[http://dx.doi.org/10.2119/molmed.2011.00230] [PMID: 22460125]
[18]
Ling, C.; Xie, Y.; Zhao, D.; Zhu, Y.; Xiang, J.; Yang, J. Enhanced radiosensitivity of Non-Small-Cell Lung Cancer (NSCLC) by adenovi-rus-mediated ING4 gene therapy. Cancer Gene Ther., 2012, 19(10), 697-706.
[http://dx.doi.org/10.1038/cgt.2012.50] [PMID: 22863759]
[19]
Zhao, Y.; Su, C.; Zhai, H.; Tian, Y.; Sheng, W.; Miao, J.; Yang, J. Synergistic antitumor effect of adenovirus-mediated hING4 gene therapy and (125)I radiation therapy on pancreatic cancer. Cancer Lett., 2012, 316(2), 211-218.
[http://dx.doi.org/10.1016/j.canlet.2011.11.003] [PMID: 22075380]
[20]
Li, X.H.; Kikuchi, K.; Zheng, Y.; Noguchi, A.; Takahashi, H.; Nishida, T.; Masuda, S.; Yang, X.H.; Takano, Y. Downregulation and trans-location of nuclear ING4 is correlated with tumorigenesis and progression of head and neck squamous cell carcinoma. Oral Oncol., 2011, 47(3), 217-223.
[http://dx.doi.org/10.1016/j.oraloncology.2011.01.004] [PMID: 21310648]
[21]
Gudas, L.J. Emerging roles for retinoids in regeneration and differentiation in normal and disease states. Biochim. Biophys. Acta, 2012, 1821(1), 213-221.
[http://dx.doi.org/10.1016/j.bbalip.2011.08.002] [PMID: 21855651]
[22]
Bushue, N.; Wan, Y.J. Retinoid pathway and cancer therapeutics. Adv. Drug Deliv. Rev., 2010, 62(13), 1285-1298.
[http://dx.doi.org/10.1016/j.addr.2010.07.003] [PMID: 20654663]
[23]
Tang, X.H.; Gudas, L.J. Retinoids, retinoic acid receptors, and cancer. Annu. Rev. Pathol., 2011, 6(1), 345-364.
[http://dx.doi.org/10.1146/annurev-pathol-011110-130303] [PMID: 21073338]
[24]
Marcato, P.; Dean, C.A.; Giacomantonio, C.A.; Lee, P.W. Aldehyde dehydrogenase: Its role as a cancer stem cell marker comes down to the specific isoform. Cell Cycle, 2011, 10(9), 1378-1384.
[http://dx.doi.org/10.4161/cc.10.9.15486] [PMID: 21552008]
[25]
Vasiliou, V.; Nebert, D.W. Analysis and update of the human aldehyde dehydrogenase (ALDH) gene family. Hum. Genomics, 2005, 2(2), 138-143.
[http://dx.doi.org/10.1186/1479-7364-2-2-138] [PMID: 16004729]
[26]
Seidensaal, K.; Nollert, A.; Feige, A.H.; Muller, M.; Fleming, T.; Gunkel, N.; Zaoui, K.; Grabe, N.; Weichert, W.; Weber, K.J.; Plinkert, P.; Simon, C.; Hess, J. Impaired aldehyde dehydrogenase 1 subfamily member 2A-dependent retinoic acid signaling is related with a mesen-chymal-like phenotype and an unfavorable prognosis of head and neck squamous cell carcinoma. Mol. Cancer, 2015, 14(1), 204.
[http://dx.doi.org/10.1186/s12943-015-0476-0] [PMID: 26634247]
[27]
Kim, H.; Lapointe, J.; Kaygusuz, G.; Ong, D.E.; Li, C.; van de Rijn, M.; Brooks, J.D.; Pollack, J.R. The retinoic acid synthesis gene ALDH1a2 is a candidate tumor suppressor in prostate cancer. Cancer Res., 2005, 65(18), 8118-8124.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-4562] [PMID: 16166285]
[28]
Kostareli, E.; Hielscher, T.; Zucknick, M.; Baboci, L.; Wichmann, G.; Holzinger, D.; Mücke, O.; Pawlita, M.; Del Mistro, A.; Boscolo-Rizzo, P.; Da Mosto, M.C.; Tirelli, G.; Plinkert, P.; Dietz, A.; Plass, C.; Weichenhan, D.; Hess, J. Gene promoter methylation signature pre-dicts survival of head and neck squamous cell carcinoma patients. Epigenetics, 2016, 11(1), 61-73.
[http://dx.doi.org/10.1080/15592294.2015.1137414] [PMID: 26786582]
[29]
Ducasse, M.; Brown, M.A. Epigenetic aberrations and cancer. Mol. Cancer, 2006, 5(1), 60.
[http://dx.doi.org/10.1186/1476-4598-5-60] [PMID: 17092350]
[30]
Laird, P.W. Cancer epigenetics. Hum. Mol. Genet., 2005, 14(Spec No 1)(Suppl. 1), R65-R76.
[http://dx.doi.org/10.1093/hmg/ddi113] [PMID: 15809275]
[31]
Paluszczak, J.; Baer-Dubowska, W. Epigenetic diagnostics of cancer--the application of DNA methylation markers. J. Appl. Genet., 2006, 47(4), 365-375.
[http://dx.doi.org/10.1007/BF03194647] [PMID: 17132902]
[32]
Rajabi, H.; Tagde, A.; Alam, M.; Bouillez, A.; Pitroda, S.; Suzuki, Y.; Kufe, D. DNA methylation by DNMT1 and DNMT3b methyltrans-ferases is driven by the MUC1-C oncoprotein in human carcinoma cells. Oncogene, 2016, 35(50), 6439-6445.
[http://dx.doi.org/10.1038/onc.2016.180] [PMID: 27212035]
[33]
Hou, Y.; Zhang, Z.; Xu, Q.; Wang, H.; Xu, Y.; Chen, K. Inhibitor of growth 4 induces NFκB/p65 ubiquitin-dependent degradation. Oncogene, 2014, 33(15), 1997-2003.
[http://dx.doi.org/10.1038/onc.2013.135] [PMID: 23624912]
[34]
Shiah, S.G.; Hsiao, J.R.; Chang, H.J.; Hsu, Y.M.; Wu, G.H.; Peng, H.Y.; Chou, S.T.; Kuo, C.C.; Chang, J.Y. MiR-30a and miR-379 modu-late retinoic acid pathway by targeting DNA methyltransferase 3B in oral cancer. J. Biomed. Sci., 2020, 27(1), 46.
[http://dx.doi.org/10.1186/s12929-020-00644-z] [PMID: 32238162]
[35]
Du, Y.; Cheng, Y.; Su, G. The essential role of tumor suppressor gene ING4 in various human cancers and non-neoplastic disorders. Biosci. Rep., 2019, 39(1), 39.
[http://dx.doi.org/10.1042/BSR20180773] [PMID: 30643005]
[36]
Li, M.; Zhu, Y.; Zhang, H.; Li, L.; He, P.; Xia, H.; Zhang, Y.; Mao, C. Delivery of Inhibitor of Growth 4 (ING4) gene significantly inhibits proliferation and invasion and promotes apoptosis of human osteosarcoma cells. Sci. Rep., 2014, 4(1), 7380.
[http://dx.doi.org/10.1038/srep07380] [PMID: 25490312]
[37]
Xu, M.; Xie, Y.; Sheng, W.; Miao, J.; Yang, J. Adenovirus-mediated ING4 gene transfer in osteosarcoma suppresses tumor growth via induction of apoptosis and inhibition of tumor angiogenesis. Technol. Cancer Res. Treat., 2015, 14(5), 617-626.
[http://dx.doi.org/10.7785/tcrt.2012.500424] [PMID: 24750000]
[38]
Shao, B.; Liu, E. Expression of ING4 is negatively correlated with cellular proliferation and microvessel density in human glioma. Oncol. Lett., 2017, 14(3), 3663-3668.
[http://dx.doi.org/10.3892/ol.2017.6618] [PMID: 28927128]
[39]
Byron, S.A.; Min, E.; Thal, T.S.; Hostetter, G.; Watanabe, A.T.; Azorsa, D.O.; Little, T.H.; Tapia, C.; Kim, S. Negative regulation of NF-κB by the ING4 tumor suppressor in breast cancer. PLoS One, 2012, 7(10)e46823
[http://dx.doi.org/10.1371/journal.pone.0046823] [PMID: 23056468]
[40]
Li, J.; Li, G. Cell cycle regulator ING4 is a suppressor of melanoma angiogenesis that is regulated by the metastasis suppressor BRMS1. Cancer Res., 2010, 70(24), 10445-10453.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-3040] [PMID: 21056991]
[41]
Choi, J.A.; Kwon, H.; Cho, H.; Chung, J.Y.; Hewitt, S.M.; Kim, J.H. ALDH1A2 is a candidate tumor suppressor gene in ovarian cancer. Cancers (Basel), 2019, 11(10), 11.
[http://dx.doi.org/10.3390/cancers11101553] [PMID: 31615043]
[42]
Wu, S.; Xue, W.; Huang, X.; Yu, X.; Luo, M.; Huang, Y.; Liu, Y.; Bi, Z.; Qiu, X.; Bai, S. Distinct prognostic values of ALDH1 isoenzymes in breast cancer. Tumour Biol., 2015, 36(4), 2421-2426.
[http://dx.doi.org/10.1007/s13277-014-2852-6] [PMID: 25582316]
[43]
Touma, S.E.; Perner, S.; Rubin, M.A.; Nanus, D.M.; Gudas, L.J. Retinoid metabolism and ALDH1A2 (RALDH2) expression are altered in the transgenic adenocarcinoma mouse prostate model. Biochem. Pharmacol., 2009, 78(9), 1127-1138.
[http://dx.doi.org/10.1016/j.bcp.2009.06.022] [PMID: 19549509]
[44]
Plass, C.; Pfister, S.M.; Lindroth, A.M.; Bogatyrova, O.; Claus, R.; Lichter, P. Mutations in regulators of the epigenome and their connec-tions to global chromatin patterns in cancer. Nat. Rev. Genet., 2013, 14(11), 765-780.
[http://dx.doi.org/10.1038/nrg3554] [PMID: 24105274]
[45]
Wong, K.K. DNMT1 as a therapeutic target in pancreatic cancer: Mechanisms and clinical implications. Cell Oncol. (Dordr.), 2020, 43(5), 779-792.
[http://dx.doi.org/10.1007/s13402-020-00526-4] [PMID: 32504382]
[46]
Liu, H.; Song, Y.; Qiu, H.; Liu, Y.; Luo, K.; Yi, Y.; Jiang, G.; Lu, M.; Zhang, Z.; Yin, J.; Zeng, S.; Chen, X.; Deng, M.; Jia, X.; Gu, Y.; Chen, D.; Zheng, G.; He, Z. Downregulation of FOXO3a by DNMT1 promotes breast cancer stem cell properties and tumorigenesis. Cell Death Differ., 2020, 27(3), 966-983.
[http://dx.doi.org/10.1038/s41418-019-0389-3] [PMID: 31296961]
[47]
Wang, Y.; Hu, Y.; Guo, J.; Wang, L. miR-148a-3p suppresses the proliferation and invasion of esophageal cancer by targeting DNMT1. Genet. Test. Mol. Biomarkers, 2019, 23(2), 98-104.
[http://dx.doi.org/10.1089/gtmb.2018.0285] [PMID: 30735457]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy