Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Highlighting the Potential Role of Exosomes as the Targeted Nanotherapeutic Carrier in Metastatic Breast Cancer

Author(s): Alisha Khera, Hema K. Alajangi, Akhil Khajuria, Ravi P. Barnwal*, Santosh Kumar* and Gurpal Singh*

Volume 20, Issue 4, 2023

Published on: 24 June, 2022

Page: [317 - 334] Pages: 18

DOI: 10.2174/1567201819666220404103936

Price: $65

Abstract

Breast cancer, being the second most common type of cancer, is a leading cause of death in the female population. Of all the available treatments existing for breast cancer, exosomes appear as an important medium for the site targeted delivery of the drugs. Exosomes, unlike all the other extracellular vesicles, play a vital role in the transport of numerous biomolecules throughout the body and can easily be detected because of the presence of specific biomarkers. Apart from playing a wide variety of roles in the progression of many diseases, they are also responsible for tumor progression and metastasis in breast cancer. Exosomes and related engineering strategies are being discussed as nano-carrier for the delivery of different drugs in the case of breast cancer. Overall, we have discussed in this review the role of exosomes in breast cancer and the engineering strategies being devised for making them an efficient drug delivery system.

Keywords: Breast cancer, exosomes, nanovehicles, engineering strategies, tumor, treatment.

Next »
Graphical Abstract
[1]
Moloney, B.M.; O’Loughlin, D.; Abd Elwahab, S.; Kerin, M.J. Breast cancer detection—a synopsis of conventional modalities and the potential role of microwave imaging. Diagnostics (Basel), 2020, 10(2), E103.
[http://dx.doi.org/10.3390/diagnostics10020103] [PMID: 32075017]
[2]
Damyanov, C.A.; Maslev, I.K.; Pavlov, V.S. Conventional treatment of cancer realities and problems. Ann. Complement. Altern Med., 2018, 1, 1-9.
[3]
Yong, T; Zhang, X; Bie, N Drug carriers for chemotherapy.,
[4]
Aday, S.; Hazan-Halevy, I.; Chamorro-Jorganes, A.; Anwar, M.; Goldsmith, M.; Beazley-Long, N.; Sahoo, S.; Dogra, N.; Sweaad, W.; Catapano, F.; Ozaki-Tan, S.; Angelini, G.D.; Madeddu, P.; Benest, A.V.; Peer, D.; Emanueli, C. Bioinspired artificial exosomes based on lipid nanoparticles carrying let-7b-5p promote angiogenesis in vitro and in vivo. Mol. Ther., 2021, 29(7), 2239-2252.
[http://dx.doi.org/10.1016/j.ymthe.2021.03.015] [PMID: 33744469]
[5]
Dong, X.; Bai, X.; Ni, J.; Zhang, H.; Duan, W.; Graham, P.; Li, Y. Exosomes and breast cancer drug resistance. Cell Death Dis., 2020, 11(11), 987.
[http://dx.doi.org/10.1038/s41419-020-03189-z] [PMID: 33203834]
[6]
Liu, J.; Zhu, S.; Tang, W.; Huang, Q.; Mei, Y.; Yang, H. Exosomes from tamoxifen-resistant breast cancer cells transmit drug resistance partly by delivering miR-9-5p. Cancer Cell Int., 2021, 21(1), 1-15.
[http://dx.doi.org/10.1186/s12935-021-02370-4]
[7]
Vasan, N.; Baselga, J.; Hyman, D.M. A view on drug resistance in cancer. Nature, 2019, 575(7782), 299-309.
[http://dx.doi.org/10.1038/s41586-019-1730-1] [PMID: 31723286]
[8]
Salarpour, S.; Forootanfar, H.; Pournamdari, M.; Ahmadi-Zeidabadi, M.; Esmaeeli, M.; Pardakhty, A. Paclitaxel incorporated exosomes derived from glioblastoma cells: Comparative study of two loading techniques. Daru, 2019, 27(2), 533-539. Epub ahead of print
[http://dx.doi.org/10.1007/s40199-019-00280-5] [PMID: 31317441]
[9]
Saari, H.; Lázaro-Ibáñez, E.; Viitala, T.; Vuorimaa-Laukkanen, E.; Siljander, P.; Yliperttula, M. Microvesicle- and exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells. J. Control. Release, 2015, 220(Pt B), 727, 737.
[http://dx.doi.org/10.1016/j.jconrel.2015.09.031] [PMID: 26390807]
[10]
Yang, T.; Martin, P.; Fogarty, B.; Brown, A.; Schurman, K.; Phipps, R.; Yin, V.P.; Lockman, P.; Bai, S. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm. Res., 2015, 32(6), 2003-2014.
[http://dx.doi.org/10.1007/s11095-014-1593-y] [PMID: 25609010]
[11]
Agrawal, A.K.; Aqil, F.; Jeyabalan, J.; Spencer, W.A.; Beck, J.; Gachuki, B.W.; Alhakeem, S.S.; Oben, K.; Munagala, R.; Bondada, S.; Gupta, R.C. Milk-derived exosomes for oral delivery of paclitaxel. Nanomedicine, 2017, 13(5), 1627-1636.
[http://dx.doi.org/10.1016/j.nano.2017.03.001] [PMID: 28300659]
[12]
Iessi, E.; Logozzi, M.; Lugini, L.; Azzarito, T.; Federici, C.; Spugnini, E.P.; Mizzoni, D.; Di Raimo, R.; Angelini, D.F.; Battistini, L.; Cecchetti, S.; Fais, S. Acridine Orange/exosomes increase the delivery and the effectiveness of Acridine Orange in human melanoma cells: A new prototype for theranostics of tumors. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 648-657.
[http://dx.doi.org/10.1080/14756366.2017.1292263] [PMID: 28262028]
[13]
Xu, R.; Rai, A.; Chen, M.; Suwakulsiri, W.; Greening, D.W.; Simpson, R.J. Extracellular vesicles in cancer - implications for future improvements in cancer care. Nat. Rev. Clin. Oncol., 2018, 15(10), 617-638.
[http://dx.doi.org/10.1038/s41571-018-0036-9] [PMID: 29795272]
[14]
EL Andaloussi, S.; Mäger, I.; Breakefield, X.O.; Wood, M.J. Extracellular vesicles: Biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov., 2013, 12(5), 347-357.
[http://dx.doi.org/10.1038/nrd3978] [PMID: 23584393]
[15]
Dreyer, F.; Baur, A. Biogenesis and functions of exosomes and extracellular vesicles. Methods Mol. Biol., 2016, 1448, 201-216.
[http://dx.doi.org/10.1007/978-1-4939-3753-0_15] [PMID: 27317183]
[16]
Buzas, E.I.; György, B.; Nagy, G.; Falus, A.; Gay, S. Emerging role of extracellular vesicles in inflammatory diseases. Nat. Rev. Rheumatol., 2014, 10(6), 356-364.
[http://dx.doi.org/10.1038/nrrheum.2014.19] [PMID: 24535546]
[17]
Pan, B.T.; Johnstone, R.M. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: Selective externalization of the receptor. Cell, 1983, 33(3), 967-978.
[http://dx.doi.org/10.1016/0092-8674(83)90040-5] [PMID: 6307529]
[18]
Song, H.; Liu, B.; Dong, B.; Xu, J.; Zhou, H.; Na, S.; Liu, Y.; Pan, Y.; Chen, F.; Li, L.; Wang, J. Exosome-based delivery of natural products in cancer therapy. Front. Cell Dev. Biol., 2021, 9, 650426.
[http://dx.doi.org/10.3389/fcell.2021.650426] [PMID: 33738290]
[19]
Doyle, L.M.; Wang, M.Z. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells, 2019, 8(7), E727.
[http://dx.doi.org/10.3390/cells8070727] [PMID: 31311206]
[20]
Boulanger, C.M.; Loyer, X.; Rautou, P.E.; Amabile, N. Extracellular vesicles in coronary artery disease. Nat. Rev. Cardiol., 2017, 14(5), 259-272.
[http://dx.doi.org/10.1038/nrcardio.2017.7] [PMID: 28150804]
[21]
Robbins, P.D.; Morelli, A.E. Regulation of immune responses by extracellular vesicles. Nat. Rev. Immunol., 2014, 14(3), 195-208.
[http://dx.doi.org/10.1038/nri3622] [PMID: 24566916]
[22]
Barros, F.M.; Carneiro, F.; Machado, J.C.; Melo, S.A. Exosomes and immune response in cancer: Friends or foes? Front. Immunol., 2018, 9, 730.
[http://dx.doi.org/10.3389/fimmu.2018.00730] [PMID: 29696022]
[23]
Greening, D.W.; Gopal, S.K.; Xu, R.; Simpson, R.J.; Chen, W. Exosomes and their roles in immune regulation and cancer. Semin. Cell Dev. Biol., 2015, 40, 72-81.
[http://dx.doi.org/10.1016/j.semcdb.2015.02.009] [PMID: 25724562]
[24]
Willms, E.; Cabañas, C.; Mäger, I.; Wood, M.J.A.; Vader, P. Extracellular vesicle heterogeneity: Subpopulations, isolation techniques, and diverse functions in cancer progression. Front. Immunol., 2018, 9, 738.
[http://dx.doi.org/10.3389/fimmu.2018.00738] [PMID: 29760691]
[25]
Yu, S.; Zhao, Z.; Xu, X.; Li, M.; Li, P. Characterization of three different types of extracellular vesicles and their impact on bacterial growth. Food Chem., 2019, 272, 372-378.
[http://dx.doi.org/10.1016/j.foodchem.2018.08.059] [PMID: 30309557]
[26]
Bjørge, I.M.; Kim, S.Y.; Mano, J.F.; Kalionis, B.; Chrzanowski, W. Extracellular vesicles, exosomes and shedding vesicles in regenerative medicine - a new paradigm for tissue repair. Biomater. Sci., 2017, 6(1), 60-78.
[http://dx.doi.org/10.1039/C7BM00479F] [PMID: 29184934]
[27]
Teixeira, J.H.; Silva, A.M.; Almeida, M.I.; Barbosa, M.A.; Santos, S.G. Circulating extracellular vesicles: Their role in tissue repair and regeneration. Transfus. Apheresis Sci., 2016, 55(1), 53-61.
[http://dx.doi.org/10.1016/j.transci.2016.07.015] [PMID: 27470711]
[28]
Taverna, S.; Pucci, M.; Alessandro, R. Extracellular vesicles: Small bricks for tissue repair/regeneration. Ann. Transl. Med., 2017, 5(4), 83.
[http://dx.doi.org/10.21037/atm.2017.01.53] [PMID: 28275628]
[29]
Isola, A.L.; Chen, S. Exosomes: The messengers of health and disease. Curr. Neuropharmacol., 2017, 15(1), 157-165.
[http://dx.doi.org/10.2174/1570159X14666160825160421] [PMID: 27568544]
[30]
Aheget, H.; Mazini, L.; Martin, F.; Belqat, B.; Marchal, J.A.; Benabdellah, K. Exosomes: Their role in pathogenesis, diagnosis and treatment of diseases. Cancers (Basel), 2020, 13(1), 1-45.
[http://dx.doi.org/10.3390/cancers13010084] [PMID: 33396739]
[31]
Thompson, A.G.; Gray, E.; Heman-Ackah, S.M.; Mäger, I.; Talbot, K.; Andaloussi, S.E.; Wood, M.J.; Turner, M.R. Extracellular vesicles in neurodegenerative disease - pathogenesis to biomarkers. Nat. Rev. Neurol., 2016, 12(6), 346-357.
[http://dx.doi.org/10.1038/nrneurol.2016.68] [PMID: 27174238]
[32]
Xiao, T.; Zhang, W.; Jiao, B.; Pan, C.Z.; Liu, X.; Shen, L. The role of exosomes in the pathogenesis of Alzheimer’ disease. Transl. Neurodegener., 2017, 6(1), 3.
[http://dx.doi.org/10.1186/s40035-017-0072-x] [PMID: 28184302]
[33]
Howitt, J.; Hill, A.F. Exosomes in the pathology of neurodegenerative diseases. J. Biol. Chem., 2016, 291(52), 26589-26597.
[http://dx.doi.org/10.1074/jbc.R116.757955] [PMID: 27852825]
[34]
Bunggulawa, EJ; Wang, W; Yin, T Recent advancements in the use of exosomes as drug delivery systems., 2018, 1-13.
[http://dx.doi.org/10.1186/s12951-018-0403-9]
[35]
Colombo, M.; Raposo, G.; Théry, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol., 2014, 30(1), 255-289.
[http://dx.doi.org/10.1146/annurev-cellbio-101512-122326] [PMID: 25288114]
[36]
Wu, C.Y.; Du, S.L.; Zhang, J.; Liang, A.L.; Liu, Y.J. Exosomes and breast cancer: A comprehensive review of novel therapeutic strategies from diagnosis to treatment. Cancer Gene Ther., 2017, 24(1), 6-12.
[http://dx.doi.org/10.1038/cgt.2016.69] [PMID: 27982016]
[37]
Tan, Y.; Luo, X.; Lv, W.; Hu, W.; Zhao, C.; Xiong, M.; Yi, Y.; Wang, D.; Wang, Y.; Wang, H.; Wu, Y.; Zhang, Q. Tumor-derived exosomal components: The multifaceted roles and mechanisms in breast cancer metastasis. Cell Death Dis., 2021, 12(6), 547. Epub ahead of print
[http://dx.doi.org/10.1038/s41419-021-03825-2] [PMID: 34039961]
[38]
Giordano, C.; La Camera, G.; Gelsomino, L.; Barone, I.; Bonofiglio, D.; Andò, S.; Catalano, S. The biology of exosomes in breast cancer progression: Dissemination, immune evasion and metastatic colonization. Cancers (Basel), 2020, 12(8), 1-16.
[http://dx.doi.org/10.3390/cancers12082179] [PMID: 32764376]
[39]
Lowry, M.C.; Gallagher, W.M.; O’Driscoll, L. The role of exosomes in breast cancer. Clin. Chem., 2015, 61(12), 1457-1465.
[http://dx.doi.org/10.1373/clinchem.2015.240028] [PMID: 26467503]
[40]
Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules, 2016, 21(7), E901. Epub ahead of print
[http://dx.doi.org/10.3390/molecules21070901] [PMID: 27409600]
[41]
Chen, G; Huang, AC; Zhang, W Associated with anti-PD-1 Response, 2019, 560, 382-386.
[42]
Yong, T.; Zhang, X.; Bie, N.; Zhang, H.; Zhang, X.; Li, F.; Hakeem, A.; Hu, J.; Gan, L.; Santos, H.A.; Yang, X. Tumor exosome-based nanoparticles are efficient drug carriers for chemotherapy. Nat. Commun., 2019, 10(1), 3838.
[http://dx.doi.org/10.1038/s41467-019-11718-4] [PMID: 31444335]
[43]
Liang, B.; Peng, P.; Chen, S.; Li, L.; Zhang, M.; Cao, D.; Yang, J.; Li, H.; Gui, T.; Li, X.; Shen, K. Characterization and proteomic analysis of ovarian cancer-derived exosomes. J. Proteomics, 2013, 80, 171-182.
[http://dx.doi.org/10.1016/j.jprot.2012.12.029] [PMID: 23333927]
[44]
Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol., 2015, 33(9), 941-951.
[http://dx.doi.org/10.1038/nbt.3330] [PMID: 26348965]
[45]
Wiklander, O.P.B.; Nordin, J.Z.; O’Loughlin, A.; Gustafsson, Y.; Corso, G.; Mäger, I.; Vader, P.; Lee, Y.; Sork, H.; Seow, Y.; Heldring, N.; Alvarez-Erviti, L.; Smith, C.I.; Le Blanc, K.; Macchiarini, P.; Jungebluth, P.; Wood, M.J.; Andaloussi, S.E. Extracellular vesicle in vivo bi-odistribution is determined by cell source, route of administration and targeting. J. Extracell. Vesicles, 2015, 4(1), 26316.
[http://dx.doi.org/10.3402/jev.v4.26316] [PMID: 25899407]
[46]
Mughees, M.; Kumar, K.; Wajid, S. Exosome vesicle as a nano-therapeutic carrier for breast cancer. J. Drug Target., 2021, 29(2), 121-130.
[http://dx.doi.org/10.1080/1061186X.2020.1808001] [PMID: 32787592]
[47]
Shao, J.; Zaro, J.; Shen, Y. Advances in exosome-based drug delivery and tumor targeting: From tissue distribution to intracellular fate. Int. J. Nanomedicine, 2020, 15, 9355-9371.
[http://dx.doi.org/10.2147/IJN.S281890] [PMID: 33262592]
[48]
Jabbari, N.; Akbariazar, E.; Feqhhi, M.; Rahbarghazi, R.; Rezaie, J. Breast cancer-derived exosomes: Tumor progression and therapeutic agents. J. Cell. Physiol., 2020, 235(10), 6345-6356.
[http://dx.doi.org/10.1002/jcp.29668] [PMID: 32216070]
[49]
Kim, T.K.; Eberwine, J.H. Mammalian cell transfection: The present and the future. Anal. Bioanal. Chem., 2010, 397(8), 3173-3178.
[http://dx.doi.org/10.1007/s00216-010-3821-6] [PMID: 20549496]
[50]
Bai, J.; Duan, J.; Liu, R.; Du, Y.; Luo, Q.; Cui, Y.; Su, Z.; Xu, J.; Xie, Y.; Lu, W. Engineered targeting tLyp-1 exosomes as gene therapy vectors for efficient delivery of siRNA into lung cancer cells. Asian J Pharm Sci, 2020, 15(4), 461-471.
[http://dx.doi.org/10.1016/j.ajps.2019.04.002] [PMID: 32952669]
[51]
Orefice, N.S. Development of new strategies using extracellular vesicles loaded with exogenous nucleic acid. Pharmaceutics, 2020, 12(8), E705.
[http://dx.doi.org/10.3390/pharmaceutics12080705] [PMID: 32722622]
[52]
Luan, X.; Sansanaphongpricha, K.; Myers, I.; Chen, H.; Yuan, H.; Sun, D. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol. Sin., 2017, 38(6), 754-763.
[http://dx.doi.org/10.1038/aps.2017.12] [PMID: 28392567]
[53]
Higginbotham, J.N.; Zhang, Q.; Jeppesen, D.K.; Scott, A.M.; Manning, H.C.; Ochieng, J.; Franklin, J.L.; Coffey, R.J. Identification and characterization of EGF receptor in individual exosomes by fluorescence-activated vesicle sorting. J. Extracell. Vesicles, 2016, 5(1), 29254.
[http://dx.doi.org/10.3402/jev.v5.29254] [PMID: 27345057]
[54]
Faruqu, FN; Xu, L; Al-Jamal, KT Preparation of exosomes for siRNA delivery to cancer cells. J Vis Exp, 2018, 142, 71.
[http://dx.doi.org/10.3791/58814]
[55]
Li, S.; Wu, Y.; Ding, F.; Yang, J.; Li, J.; Gao, X.; Zhang, C.; Feng, J. Engineering macrophage-derived exosomes for targeted chemotherapy of triple-negative breast cancer. Nanoscale, 2020, 12(19), 10854-10862.
[http://dx.doi.org/10.1039/D0NR00523A] [PMID: 32396590]
[56]
Xi, X.M.; Xia, S.J.; Lu, R. Drug loading techniques for exosome-based drug delivery systems. Pharmazie, 2021, 76(2), 61-67.
[PMID: 33714281]
[57]
Barjesteh, T.; Mansur, S.; Bao, Y. Inorganic nanoparticle-loaded exosomes for biomedical applications. Molecules, 2021, 26(4), 1135.
[http://dx.doi.org/10.3390/molecules26041135] [PMID: 33672706]
[58]
Zhao, J.Y.; Chen, G.; Gu, Y.P.; Cui, R.; Zhang, Z.L.; Yu, Z.L.; Tang, B.; Zhao, Y.F.; Pang, D.W. Ultrasmall magnetically engineered ag2se quantum dots for instant efficient labeling and whole-body high-resolution multimodal real-time tracking of cell-derived microvesicles. J. Am. Chem. Soc., 2016, 138(6), 1893-1903.
[http://dx.doi.org/10.1021/jacs.5b10340] [PMID: 26804745]
[59]
Kanchanapally, R.; Deshmukh, S.K.; Chavva, S.R.; Tyagi, N.; Srivastava, S.K.; Patel, G.K.; Singh, A.P.; Singh, S. Drug-loaded exosomal preparations from different cell types exhibit distinctive loading capability, yield, and antitumor efficacies: A comparative analysis. Int. J. Nanomedicine, 2019, 14, 531-541.
[http://dx.doi.org/10.2147/IJN.S191313] [PMID: 30666112]
[60]
Cao, Y.; Wu, T.; Zhang, K.; Meng, X.; Dai, W.; Wang, D.; Dong, H.; Zhang, X. Engineered exosome-mediated near-infrared-ii region V2C quantum dot delivery for nucleus-target low-temperature photothermal therapy. ACS Nano, 2019, 13(2), 1499-1510.
[http://dx.doi.org/10.1021/acsnano.8b07224] [PMID: 30677286]
[61]
Bose, R.J.C.; Uday Kumar, S.; Zeng, Y.; Afjei, R.; Robinson, E.; Lau, K.; Bermudez, A.; Habte, F.; Pitteri, S.J.; Sinclair, R.; Willmann, J.K.; Massoud, T.F.; Gambhir, S.S.; Paulmurugan, R. Tumor cell-derived extracellular vesicle-coated nanocarriers: An efficient theranostic platform for the cancer-specific delivery of Anti-miR-21 and imaging agents. ACS Nano, 2018, 12(11), 10817-10832.
[http://dx.doi.org/10.1021/acsnano.8b02587] [PMID: 30346694]
[62]
Ma, J.; Zhang, Y.; Tang, K.; Zhang, H.; Yin, X.; Li, Y.; Xu, P.; Sun, Y.; Ma, R.; Ji, T.; Chen, J.; Zhang, S.; Zhang, T.; Luo, S.; Jin, Y.; Luo, X.; Li, C.; Gong, H.; Long, Z.; Lu, J.; Hu, Z.; Cao, X.; Wang, N.; Yang, X.; Huang, B. Reversing drug resistance of soft tumor-repopulating cells by tumor cell-derived chemotherapeutic microparticles. Cell Res., 2016, 26(6), 713-727.
[http://dx.doi.org/10.1038/cr.2016.53] [PMID: 27167569]
[63]
Wang, J.; Chen, D.; Ho, E.A. Challenges in the development and establishment of exosome-based drug delivery systems. J. Control. Release, 2021, 329, 894-906.
[http://dx.doi.org/10.1016/j.jconrel.2020.10.020] [PMID: 33058934]
[64]
Liang, G.; Zhu, Y.; Ali, D.J.; Tian, T.; Xu, H.; Si, K.; Sun, B.; Chen, B.; Xiao, Z. Engineered exosomes for targeted co-delivery of miR-21 inhibitor and chemotherapeutics to reverse drug resistance in colon cancer. J. Nanobiotechnology, 2020, 18(1), 10.
[http://dx.doi.org/10.1186/s12951-019-0563-2] [PMID: 31918721]
[65]
Kalimuthu, S.; Gangadaran, P.; Rajendran, R.L.; Zhu, L.; Oh, J.M.; Lee, H.W.; Gopal, A.; Baek, S.H.; Jeong, S.Y.; Lee, S.W.; Lee, J.; Ahn, B.C. A new approach for loading anticancer drugs into mesenchymal stem cell-derived exosome mimetics for cancer therapy. Front. Pharmacol., 2018, 9, 1116.
[http://dx.doi.org/10.3389/fphar.2018.01116] [PMID: 30319428]
[66]
Liang, Y.; Duan, L.; Lu, J.; Xia, J. Engineering exosomes for targeted drug delivery. Theranostics, 2021, 11(7), 3183-3195.
[http://dx.doi.org/10.7150/thno.52570] [PMID: 33537081]
[67]
Zhang, Z.; Dombroski, J.A.; King, M.R. Engineering of exosomes to target cancer metastasis. Cell. Mol. Bioeng., 2019, 13(1), 1-16.
[http://dx.doi.org/10.1007/s12195-019-00607-x] [PMID: 32030104]
[68]
Alhasan, A.H.; Patel, P.C.; Choi, C.H.J.; Mirkin, C.A. Exosome encased spherical nucleic acid gold nanoparticle conjugates as potent microRNA regulation agents. Small, 2014, 10(1), 186-192.
[http://dx.doi.org/10.1002/smll.201302143] [PMID: 24106176]
[69]
Wahlgren, J.; De L Karlson, T.; Brisslert, M.; Vaziri Sani, F.; Telemo, E.; Sunnerhagen, P.; Valadi, H. Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Res., 2012, 40(17), e130.
[http://dx.doi.org/10.1093/nar/gks463] [PMID: 22618874]
[70]
Ohno, S.; Takanashi, M.; Sudo, K.; Ueda, S.; Ishikawa, A.; Matsuyama, N.; Fujita, K.; Mizutani, T.; Ohgi, T.; Ochiya, T.; Gotoh, N.; Kuroda, M. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol. Ther., 2013, 21(1), 185-191.
[http://dx.doi.org/10.1038/mt.2012.180] [PMID: 23032975]
[71]
Nolte-’t Hoen, E.N.M.; Buschow, S.I.; Anderton, S.M.; Stoorvogel, W.; Wauben, M.H. Activated T cells recruit exosomes secreted by dendritic cells via LFA-1. Blood, 2009, 113(9), 1977-1981.
[http://dx.doi.org/10.1182/blood-2008-08-174094] [PMID: 19064723]
[72]
Saunderson, S.C.; Dunn, A.C.; Crocker, P.R.; McLellan, A.D. CD169 mediates the capture of exosomes in spleen and lymph node. Blood, 2014, 123(2), 208-216.
[http://dx.doi.org/10.1182/blood-2013-03-489732] [PMID: 24255917]
[73]
Dai, J.; Su, Y.; Zhong, S.; Cong, L.; Liu, B.; Yang, J.; Tao, Y.; He, Z.; Chen, C.; Jiang, Y. Exosomes: Key players in cancer and potential therapeutic strategy. Signal Transduct. Target. Ther., 2020, 5(1), 145.
[http://dx.doi.org/10.1038/s41392-020-00261-0] [PMID: 32759948]
[74]
Mentkowski, K.I.; Snitzer, J.D.; Rusnak, S.; Lang, J.K. Therapeutic potential of engineered extracellular vesicles. AAPS J., 2018, 20(3), 50.
[http://dx.doi.org/10.1208/s12248-018-0211-z] [PMID: 29546642]
[75]
Liu, C.; Su, C. Design strategies and application progress of therapeutic exosomes. Theranostics, 2019, 9(4), 1015-1028.
[http://dx.doi.org/10.7150/thno.30853] [PMID: 30867813]
[76]
Ramasubramanian, L.; Kumar, P.; Wang, A. Engineering extracellular vesicles as nanotherapeutics for regenerative medicine. Biomolecules, 2019, 10(1), 1-23.
[http://dx.doi.org/10.3390/biom10010048] [PMID: 31905611]
[77]
Armstrong, J.P.K.; Holme, M.N.; Stevens, M.M. Re-engineering extracellular vesicles as smart nanoscale therapeutics. ACS Nano, 2017, 11(1), 69-83.
[http://dx.doi.org/10.1021/acsnano.6b07607] [PMID: 28068069]
[78]
Alvarez-Erviti, L.; Seow, Y.; Yin, H.; Betts, C.; Lakhal, S.; Wood, M.J. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol., 2011, 29(4), 341-345.
[http://dx.doi.org/10.1038/nbt.1807] [PMID: 21423189]
[79]
Yang, Y.; Hong, Y.; Cho, E.; Kim, G.B.; Kim, I.S. Extracellular vesicles as a platform for membrane-associated therapeutic protein delivery. J. Extracell. Vesicles, 2018, 7(1), 1440131. Epub ahead of print
[http://dx.doi.org/10.1080/20013078.2018.1440131] [PMID: 29535849]
[80]
Stickney, Z.; Losacco, J.; McDevitt, S.; Zhang, Z.; Lu, B. Development of exosome surface display technology in living human cells. Biochem. Biophys. Res. Commun., 2016, 472(1), 53-59.
[http://dx.doi.org/10.1016/j.bbrc.2016.02.058] [PMID: 26902116]
[81]
Simhadri, V.R.; Reiners, K.S.; Hansen, H.P.; Topolar, D.; Simhadri, V.L.; Nohroudi, K.; Kufer, T.A.; Engert, A.; Pogge von Strandmann, E. Dendritic cells release HLA-B-associated transcript-3 positive exosomes to regulate natural killer function. PLoS One, 2008, 3(10), e3377.
[http://dx.doi.org/10.1371/journal.pone.0003377] [PMID: 18852879]
[82]
El-Andaloussi, S.; Lee, Y.; Lakhal-Littleton, S.; Li, J.; Seow, Y.; Gardiner, C.; Alvarez-Erviti, L.; Sargent, I.L.; Wood, M.J. Exosome-mediated delivery of siRNA in vitro and in vivo. Nat. Protoc., 2012, 7(12), 2112-2126.
[http://dx.doi.org/10.1038/nprot.2012.131] [PMID: 23154783]
[83]
Yang, J.; Zhang, X.; Chen, X.; Wang, L.; Yang, G. Exosome Mediated Delivery of miR-124 Promotes Neurogenesis after Ischemia. Mol. Ther. Nucleic Acids, 2017, 7, 278-287.
[http://dx.doi.org/10.1016/j.omtn.2017.04.010] [PMID: 28624203]
[84]
Khongkow, M.; Yata, T.; Boonrungsiman, S.; Ruktanonchai, U.R.; Graham, D.; Namdee, K. Surface modification of gold nanoparticles with neuron-targeted exosome for enhanced blood-brain barrier penetration. Sci. Rep., 2019, 9(1), 8278.
[http://dx.doi.org/10.1038/s41598-019-44569-6] [PMID: 31164665]
[85]
Kojima, R.; Bojar, D.; Rizzi, G.; Hamri, G.C.; El-Baba, M.D.; Saxena, P.; Ausländer, S.; Tan, K.R.; Fussenegger, M. Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson’s disease treatment. Nat. Commun., 2018, 9(1), 1305.
[http://dx.doi.org/10.1038/s41467-018-03733-8] [PMID: 29610454]
[86]
Liu, Y.; Li, D.; Liu, Z.; Zhou, Y.; Chu, D.; Li, X.; Jiang, X.; Hou, D.; Chen, X.; Chen, Y.; Yang, Z.; Jin, L.; Jiang, W.; Tian, C.; Zhou, G.; Zen, K.; Zhang, J.; Zhang, Y.; Li, J.; Zhang, C.Y. Targeted exosome-mediated delivery of opioid receptor Mu siRNA for the treatment of morphine relapse. Sci. Rep., 2015, 5(1), 17543.
[http://dx.doi.org/10.1038/srep17543] [PMID: 26633001]
[87]
Bellavia, D.; Raimondo, S.; Calabrese, G.; Forte, S.; Cristaldi, M.; Patinella, A.; Memeo, L.; Manno, M.; Raccosta, S.; Diana, P.; Cirrincione, G.; Giavaresi, G.; Monteleone, F.; Fontana, S.; De Leo, G.; Alessandro, R. Interleukin 3- receptor targeted exosomes inhibit in vitro and in vivo Chronic Myelogenous Leukemia cell growth. Theranostics, 2017, 7(5), 1333-1345.
[http://dx.doi.org/10.7150/thno.17092] [PMID: 28435469]
[88]
Limoni, S.K.; Moghadam, M.F.; Moazzeni, S.M.; Gomari, H.; Salimi, F. Engineered exosomes for targeted transfer of siRNA to HER2 positive breast cancer cells. Appl. Biochem. Biotechnol., 2019, 187(1), 352-364.
[http://dx.doi.org/10.1007/s12010-018-2813-4] [PMID: 29951961]
[89]
Tian, Y.; Li, S.; Song, J.; Ji, T.; Zhu, M.; Anderson, G.J.; Wei, J.; Nie, G. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials, 2014, 35(7), 2383-2390.
[http://dx.doi.org/10.1016/j.biomaterials.2013.11.083] [PMID: 24345736]
[90]
Liang, G.; Kan, S.; Zhu, Y.; Feng, S.; Feng, W.; Gao, S. Engineered exosome-mediated delivery of functionally active miR-26a and its enhanced suppression effect in HepG2 cells. Int. J. Nanomedicine, 2018, 13, 585-599.
[http://dx.doi.org/10.2147/IJN.S154458] [PMID: 29430178]
[91]
Kim, G.; Kim, M.; Lee, Y.; Byun, J.W.; Hwang, D.W.; Lee, M. Systemic delivery of microRNA-21 antisense oligonucleotides to the brain using T7-peptide decorated exosomes. J. Control. Release, 2020, 317, 273-281.
[http://dx.doi.org/10.1016/j.jconrel.2019.11.009] [PMID: 31730913]
[92]
Kanuma, T.; Yamamoto, T.; Kobiyama, K.; Moriishi, E.; Masuta, Y.; Kusakabe, T.; Ozasa, K.; Kuroda, E.; Jounai, N.; Ishii, K.J. CD63-mediated antigen delivery into extracellular vesicles via DNA vaccination results in robust CD8+ T cell responses. J. Immunol., 2017, 198(12), 4707-4715.
[http://dx.doi.org/10.4049/jimmunol.1600731] [PMID: 28507029]
[93]
Zou, X.; Yuan, M.; Zhang, T.; Wei, H.; Xu, S.; Jiang, N.; Zheng, N.; Wu, Z. Extracellular vesicles expressing a single-chain variable fragment of an HIV-1 specific antibody selectively target Env+ tissues. Theranostics, 2019, 9(19), 5657-5671.
[http://dx.doi.org/10.7150/thno.33925] [PMID: 31534509]
[94]
Ferrantelli, F.; Arenaccio, C.; Manfredi, F.; Olivetta, E.; Chiozzini, C.; Leone, P.; Percario, Z.; Ascione, A.; Flego, M.; Di Bonito, P.; Accardi, L.; Federico, M. The intracellular delivery of anti-HPV16 E7 scFvs through engineered extracellular vesicles inhibits the proliferation of HPV-infected cells. Int. J. Nanomedicine, 2019, 14, 8755-8768.
[http://dx.doi.org/10.2147/IJN.S209366] [PMID: 31806970]
[95]
Longatti, A.; Schindler, C.; Collinson, A.; Jenkinson, L.; Matthews, C.; Fitzpatrick, L.; Blundy, M.; Minter, R.; Vaughan, T.; Shaw, M.; Tigue, N. High affinity single-chain variable fragments are specific and versatile targeting motifs for extracellular vesicles. Nanoscale, 2018, 10(29), 14230-14244.
[http://dx.doi.org/10.1039/C8NR03970D] [PMID: 30010165]
[96]
Zhou, Y.; Yuan, Y.; Liu, M.; Hu, X.; Quan, Y.; Chen, X. Tumor-specific delivery of KRAS siRNA with iRGD-exosomes efficiently inhibits tumor growth. ExRNA, 2019, 1(1), 1-7.
[http://dx.doi.org/10.1186/s41544-019-0034-9]
[97]
Sung, B.H.; von Lersner, A.; Guerrero, J.; Krystofiak, E.S.; Inman, D.; Pelletier, R.; Zijlstra, A.; Ponik, S.M.; Weaver, A.M. A live cell reporter of exosome secretion and uptake reveals pathfinding behavior of migrating cells. Nat. Commun., 2020, 11(1), 2092.
[http://dx.doi.org/10.1038/s41467-020-15747-2] [PMID: 32350252]
[98]
Yim, N.; Ryu, S.W.; Choi, K.; Lee, K.R.; Lee, S.; Choi, H.; Kim, J.; Shaker, M.R.; Sun, W.; Park, J.H.; Kim, D.; Heo, W.D.; Choi, C. Exo-some engineering for efficient intracellular delivery of soluble proteins using optically reversible protein-protein interaction module. Nat. Commun., 2016, 7(1), 12277.
[http://dx.doi.org/10.1038/ncomms12277] [PMID: 27447450]
[99]
Rost, B.R.; Schneider-Warme, F.; Schmitz, D.; Hegemann, P. Optogenetic tools for subcellular applications in neuroscience. Neuron, 2017, 96(3), 572-603.
[http://dx.doi.org/10.1016/j.neuron.2017.09.047] [PMID: 29096074]
[100]
van Dongen, H.M.; Masoumi, N.; Witwer, K.W.; Pegtel, D.M. Extracellular vesicles exploit viral entry routes for cargo delivery. Microbiol. Mol. Biol. Rev., 2016, 80(2), 369-386.
[http://dx.doi.org/10.1128/MMBR.00063-15] [PMID: 26935137]
[101]
Meyer, C.; Losacco, J.; Stickney, Z.; Li, L.; Marriott, G.; Lu, B. Pseudotyping exosomes for enhanced protein delivery in mammalian cells. Int. J. Nanomedicine, 2017, 12, 3153-3170.
[http://dx.doi.org/10.2147/IJN.S133430] [PMID: 28458537]
[102]
Sterzenbach, U.; Putz, U.; Low, L.H.; Silke, J.; Tan, S.S.; Howitt, J. Engineered exosomes as vehicles for biologically active proteins. Mol. Ther., 2017, 25(6), 1269-1278.
[http://dx.doi.org/10.1016/j.ymthe.2017.03.030] [PMID: 28412169]
[103]
Anticoli, S.; Manfredi, F.; Chiozzini, C.; Arenaccio, C.; Olivetta, E.; Ferrantelli, F.; Capocefalo, A.; Falcone, E.; Ruggieri, A.; Federico, M. An exosome-based vaccine platform imparts cytotoxic t lymphocyte immunity against viral antigens. Biotechnol. J., 2018, 13(4), e1700443.
[http://dx.doi.org/10.1002/biot.201700443] [PMID: 29274250]
[104]
Medof, M.E.; Nagarajan, S.; Tykocinski, M.L. Cell-surface engineering with GPI-anchored proteins. FASEB J., 1996, 10(5), 574-586.
[http://dx.doi.org/10.1096/fasebj.10.5.8621057] [PMID: 8621057]
[105]
Kooijmans, S.A.A.; Aleza, C.G.; Roffler, S.R.; van Solinge, W.W.; Vader, P.; Schiffelers, R.M. Display of GPI-anchored anti-EGFR nano-bodies on extracellular vesicles promotes tumour cell targeting. J. Extracell. Vesicles, 2016, 5(1), 31053.
[http://dx.doi.org/10.3402/jev.v5.31053] [PMID: 26979463]
[106]
Lai, C.P.; Kim, E.Y.; Badr, C.E.; Weissleder, R.; Mempel, T.R.; Tannous, B.A.; Breakefield, X.O. Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nat. Commun., 2015, 6(1), 7029.
[http://dx.doi.org/10.1038/ncomms8029] [PMID: 25967391]
[107]
Villarroya-beltri, C.; Baixauli, F.; Gutiérrez-vázquez, C. Europe PMC funders group europe PMC funders author manuscripts sorting it out: Regulation of exosome loading. Semin. Cancer Biol., 2015, 2, 3-13.
[108]
Villarroya-Beltri, C.; Gutiérrez-Vázquez, C.; Sánchez-Cabo, F.; Pérez-Hernández, D.; Vázquez, J.; Martin-Cofreces, N.; Martinez-Herrera, D.J.; Pascual-Montano, A.; Mittelbrunn, M.; Sánchez-Madrid, F. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat. Commun., 2013, 4(1), 2980.
[http://dx.doi.org/10.1038/ncomms3980] [PMID: 24356509]
[109]
Sutaria, D.S.; Badawi, M.; Phelps, M.A.; Schmittgen, T.D. Achieving the promise of therapeutic extracellular vesicles: The devil is in details of therapeutic loading. Pharm. Res., 2017, 34(5), 1053-1066.
[http://dx.doi.org/10.1007/s11095-017-2123-5] [PMID: 28315083]
[110]
Wang, B.; Yao, K.; Huuskes, B.M.; Shen, H.H.; Zhuang, J.; Godson, C.; Brennan, E.P.; Wilkinson-Berka, J.L.; Wise, A.F.; Ricardo, S.D. Mesenchymal stem cells deliver exogenous MicroRNA-let7c via exosomes to attenuate renal fibrosis. Mol. Ther., 2016, 24(7), 1290-1301.
[http://dx.doi.org/10.1038/mt.2016.90] [PMID: 27203438]
[111]
Lou, G.; Song, X.; Yang, F.; Wu, S.; Wang, J.; Chen, Z.; Liu, Y. Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J. Hematol. Oncol., 2015, 8(1), 122.
[http://dx.doi.org/10.1186/s13045-015-0220-7] [PMID: 26514126]
[112]
Shurtleff, M.J.; Temoche-Diaz, M.M.; Karfilis, K.V.; Ri, S.; Schekman, R. Y-box protein 1 is required to sort microRNAs into exosomes in cells and in a cell-free reaction. eLife, 2016, 5, 1-23.
[http://dx.doi.org/10.7554/eLife.19276] [PMID: 27559612]
[113]
Zhang, H.; Wu, J.; Wu, J.; Fan, Q.; Zhou, J.; Wu, J.; Liu, S.; Zang, J.; Ye, J.; Xiao, M.; Tian, T.; Gao, J. Exosome-mediated targeted delivery of miR-210 for angiogenic therapy after cerebral ischemia in mice. J. Nanobiotechnology, 2019, 17(1), 29.
[http://dx.doi.org/10.1186/s12951-019-0461-7] [PMID: 30782171]
[114]
Jia, G; Han, Y; An, Y NRP-1 targeted and cargo-loaded exosomes facilitate simultaneous imaging and therapy of glioma in vitro and in vivo 2018, 178, 302-316.
[http://dx.doi.org/10.1016/j.biomaterials.2018.06.029]
[115]
Pi, F.; Binzel, D.W.; Lee, T.J.; Li, Z.; Sun, M.; Rychahou, P.; Li, H.; Haque, F.; Wang, S.; Croce, C.M.; Guo, B.; Evers, B.M.; Guo, P. Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression. Nat. Nanotechnol., 2018, 13(1), 82-89.
[http://dx.doi.org/10.1038/s41565-017-0012-z] [PMID: 29230043]
[116]
Zhu, L.; Dong, D.; Yu, Z.L.; Zhao, Y.F.; Pang, D.W.; Zhang, Z.L. Folate-engineered microvesicles for enhanced target and synergistic therapy toward breast cancer. ACS Appl. Mater. Interfaces, 2017, 9(6), 5100-5108.
[http://dx.doi.org/10.1021/acsami.6b14633] [PMID: 28106372]
[117]
Kim, M.S.; Haney, M.J.; Zhao, Y.; Yuan, D.; Deygen, I.; Klyachko, N.L.; Kabanov, A.V.; Batrakova, E.V. Engineering macrophage-derived exosomes for targeted paclitaxel delivery to pulmonary metastases: In vitro and in vivo evaluations. Nanomedicine, 2018, 14(1), 195-204.
[http://dx.doi.org/10.1016/j.nano.2017.09.011] [PMID: 28982587]
[118]
Wang, J.; Li, W.; Lu, Z.; Zhang, L.; Hu, Y.; Li, Q.; Du, W.; Feng, X.; Jia, H.; Liu, B.F. The use of RGD-engineered exosomes for enhanced targeting ability and synergistic therapy toward angiogenesis. Nanoscale, 2017, 9(40), 15598-15605.
[http://dx.doi.org/10.1039/C7NR04425A] [PMID: 28990632]
[119]
Kooijmans, S.A.A.; Fliervoet, L.A.L.; van der Meel, R.; Fens, M.H.A.M.; Heijnen, H.F.G.; van Bergen En Henegouwen, P.M.P.; Vader, P.; Schiffelers, R.M. PEGylated and targeted extracellular vesicles display enhanced cell specificity and circulation time. J. Control. Release, 2016, 224, 77-85.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.009] [PMID: 26773767]
[120]
Koh, E.; Lee, E.J.; Nam, G.H.; Hong, Y.; Cho, E.; Yang, Y.; Kim, I.S. Exosome-SIRPα a CD47 blockade increases cancer cell phagocytosis. Biomaterials, 2017, 121, 121-129.
[http://dx.doi.org/10.1016/j.biomaterials.2017.01.004] [PMID: 28086180]
[121]
Ye, Z.; Zhang, T.; He, W.; Jin, H.; Liu, C.; Yang, Z.; Ren, J. Methotrexate-loaded extracellular vesicles functionalized with therapeutic and targeted peptides for the treatment of glioblastoma multiforme. ACS Appl. Mater. Interfaces, 2018, 10(15), 12341-12350.
[http://dx.doi.org/10.1021/acsami.7b18135] [PMID: 29564886]
[122]
Wan, Y.; Wang, L.; Zhu, C. Delivery., 2019, 78, 798-808.
[123]
Sun, D.; Zhuang, X.; Xiang, X.; Liu, Y.; Zhang, S.; Liu, C.; Barnes, S.; Grizzle, W.; Miller, D.; Zhang, H.G. A novel nanoparticle drug delivery system: The anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol. Ther., 2010, 18(9), 1606-1614.
[http://dx.doi.org/10.1038/mt.2010.105] [PMID: 20571541]
[124]
Nakase, I.; Futaki, S. Combined treatment with a pH-sensitive fusogenic peptide and cationic lipids achieves enhanced cytosolic delivery of exosomes. Sci. Rep., 2015, 5(1), 10112.
[http://dx.doi.org/10.1038/srep10112] [PMID: 26011176]
[125]
Smyth, T.; Petrova, K.; Payton, N.M.; Persaud, I.; Redzic, J.S.; Graner, M.W.; Smith-Jones, P.; Anchordoquy, T.J. Surface functionalization of exosomes using click chemistry. Bioconjug. Chem., 2014, 25(10), 1777-1784.
[http://dx.doi.org/10.1021/bc500291r] [PMID: 25220352]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy