Generic placeholder image

Recent Advances in Drug Delivery and Formulation

Editor-in-Chief

ISSN (Print): 2667-3878
ISSN (Online): 2667-3886

Review Article

Vesicular Approach Review on Nanocarriers bearing Curcumin and Applications

Author(s): Prashant Upadhyay*, Deepak Singh* and Sukirti Upadhyay

Volume 16, Issue 4, 2022

Published on: 22 August, 2022

Page: [256 - 269] Pages: 14

DOI: 10.2174/2667387816666220404092415

Price: $65

Abstract

Phytoconstituents have been used to treat a variety of human diseases for a long time, but their use in pharmaceuticals is limited because of their low aqueous solubility. Researchers have created vesicular systems to address many of the issues associated with the bioavailability and therapeutic efficacy of poorly water-soluble drugs and target the drug to the desired location in the body. Several vesicular nanocarrier systems have been developed. Review contrasts various vesicular drug delivery systems, including liposomes, sphingosomes, emulsomes, niosomes, ethosomes, virosomes, phytosomes, aquasomes, proniosomes, transferosomes, and pharmacosomes. Vesicular drug delivery technologies have sparked a scientific revolution, leading to the creation of innovative dosage forms. The present review focuses on the preparation, characterization, drug release, current market scenarios, and future trends of nanocarriers. A variety of novel drug delivery systems have arisen, involving different routes of administration to achieve safe and targeted drug delivery. This review aims to illustrate the applications, advantages, and disadvantages of the vesicular approach based on nanocarriers bearing curcumin which is widely used in gene delivery, tumor-targeting to the brain, oral formulations, and helps resolve various problems associated with drug stability and permeability issues.

Keywords: Vesicular, nanocarriers, curcumin, liposomes, niosomes, phytosomes, virosomes.

Graphical Abstract
[1]
Akhtar, N.; Pathak, K. Feasibility Assessment of Transdermal Drug Delivery Systems for Treatment of Parkinson’s Disease. Ann. Pharmacol. Pharm., 2017, 2(17), 1-4.
[2]
Bhowmik, D.; Gopinath, H.; Kumar, B. P.; Duraivel, S.; Kumar, K. P.S. Recent Advances In Novel Topical Drug Delivery System. Pharma Innov., 2012, 1(9), 12-31.
[3]
Tiwari, G.; Tiwari, R.; Bannerjee, S.; Bhati, L.; Pandey, S.; Pandey, P.; Sriwastawa, B. Drug Delivery Systems: An Updated Review. Int. J. Pharm. Investig., 2012, 2(1), 2-11.
[http://dx.doi.org/10.4103/2230-973X.96920]
[4]
Jadhav, S. M.; Morey, P.; Karpe, M. M.; Kadam, V. Novel Vesicular System: An Overview. J. Appl. Pharm. Sci., 2012, 2(1), 193-202.
[5]
Ashara, K. C.; Paun, J. S.; Soniwala, M. M.; Chavda, J. R.; Nathawani, S. V.; Mori, N. M.; Mendapara, V. P. Vesicular Drug Delivery System: A Novel Approach. Mintage J. Pharm. Med. Sci., 2014, 3(Suppl. 3), 1-14.
[6]
Bandawane, A.; Saudagar, R. A Review on Novel Drug Delivery System: A Recent Trend. J. Drug Deliv. Ther., 2019, 9(3), 517-521.
[http://dx.doi.org/10.22270/jddt.v9i3.2610]
[7]
Talegaonkar, S.; Mishra, P.; Khar, R.; Biju, S. Vesicular Systems: An Overview. Indian J. Pharm. Sci., 2006, 68(2), 141-153.
[http://dx.doi.org/10.4103/0250-474X.25707]
[8]
Yasam, V. R.; Jakki, S. L.; Natarajan, J.; Kuppusamy, G. A Review on Novel Vesicular Drug Delivery: Proniosomes. Drug Deliv., 2014, 21(4), 243-249.
[http://dx.doi.org/10.3109/10717544.2013.841783]
[9]
Gill, B.; Singh, J.; Sharma, V.; Hari Kumar, S. Emulsomes: An Emerging Vesicular Drug Delivery System. Asian J. Pharm., 2012, 6(2), 87-94.
[http://dx.doi.org/10.4103/0973-8398.102930]
[10]
Sharma, D.; Ali, A. A.E.; Trivedi, L. R. An Updated Review on: Liposomes as Drug Delivery System. PharmaTutor, 2018, 6(2), 50-62.
[11]
Kumar, R.; Kumar, S.; Jha, S. S.; Jha, A. K. Vesicular System-Carrier for Drug Delivery. Pharm. Sin., 2011, 2(4), 192-202.
[12]
Gupta, M.; Sharma, V. Targeted Drug Delivery System: A Review. Res. J. Chem. Sci., 2011, 1(2), 135-138.
[13]
Chandra, D.; Yadav, K. K.; Singh, V. K.; Patel, A.; Chaurasia, S. An Overview: The Novel Carrier for Vesicular Drug Delivery System. World J. Pharm. Res., 2014, 3(6), 1299-1322.
[14]
Khare, S.; Alexander, A.; Amit, N. Biomedical Applications of Nanobiotechnology for Drug Design, Delivery and Diagnostics. Res. J. Pharm. Technol., 2014, 7(8), 915-925.
[15]
Hidayah, R.; Soeratri, W.; Rosita, N. Nano Carrier as a Cosmetic Delivery System. Sun Int. J. Eng. Basic Sci., 2018, 1(3), 45-48.
[16]
Kamboj, S.; Saini, V.; Maggon, N.; Bala, S.; Jhawat, V. Vesicular Drug Delivery Systems: A Novel Approach for Drug Targeting. Int. J. Drug Deliv., 2013, 5(2), 121-130.
[17]
Hassan, S. A.; Bhateja, S.; Arora, G.; Prathyusha, F. Use of Curcumin in Oral Health-a Review. Indian J. Integr. Med., 2020, 2(2), 20-23.
[18]
Agrawal, S.; Goel, R. K. Curcumin and its protective and therapeutic uses. Natl. J. Physiol. Pharm. Pharmacol., 2016, 6(1), 1-8.
[19]
Akram, M.; Shahab-Uddin, A. A.; Usmanghani, K.; Hannan, A.; Mohiuddin, E.; Asif, M. Curcuma Longa and Curcumin: A Review Article. Romanian J. Biol. -. Plant Biol., 2010, 55(2), 65-70.
[20]
Pinto Reis, C.; Neufeld, R. J.; Ribeiro, A. J.; Veiga, F.; Nanoencapsulation, I. Methods for Preparation of Drug-Loaded Polymeric Nanoparticles. Nanomedicine Nanotechnol. Biol. Med., 2006, 2(1), 8-21.
[http://dx.doi.org/10.1016/j.nano.2005.12.003]
[21]
Wu, X.; Mansour, H. M. Nanopharmaceuticals Ii: Application of Nanoparticles and Nanocarrier Systems in Pharmaceutics and Nanomedicine. Int. J. Nanotechnol., 2010, 8(1–2), 115-145.
[http://dx.doi.org/10.1504/IJNT.2011.037173]
[22]
Zylberberg, C.; Matosevic, S. Pharmaceutical Liposomal Drug Delivery: A Review of New Delivery Systems and a Look at the Regulatory Landscape. Drug Deliv., 2016, 23(9), 3319-3329.
[http://dx.doi.org/10.1080/10717544.2016.1177136]
[23]
Shinkar, D. M.; Paralkar, P. S.; Saudagar, R. B. An Overview on Trends and Developments in Liposome-as Drug Delivery System. Asian J. Pharm. Technol., 2015, 5(4), 231-237.
[http://dx.doi.org/10.5958/2231-5713.2015.00033.1]
[24]
Wahid, A. A.; Ravouru, N.; Lakshman, S. R. Ethosomes: A Tool for Transdermal Drug Delivery. Curr. Trends Biotechnol. Pharm., 2011, 5(1), 972-981.
[25]
Sinico, C.; Manconi, M.; Peppi, M.; Lai, F.; Valenti, D.; Fadda, A. M. Liposomes as Carriers for Dermal Delivery of Tretinoin: In Vitro Evaluation of Drug Permeation and Vesicle–Skin Interaction. J. Control. Release, 2005, 103(1), 123-136.
[http://dx.doi.org/10.1016/j.jconrel.2004.11.020]
[26]
Abu Lila, A. S.; Ishida, T. Liposomal Delivery Systems: Design Optimization and Current Applications. Biol. Pharm. Bull., 2017, 40(1), 1-10.
[http://dx.doi.org/10.1248/bpb.b16-00624]
[27]
Watwe, R. M.; Bellare, J. R. Manufacture of Liposomes: A Review. Curr. Sci., 1995, 68(7), 715-724.
[28]
Elhissi, A. Liposomes for Pulmonary Drug Delivery: The Role of Formulation and Inhalation Device Design. Curr. Pharm. Des., 2017, 23(3), 362-372.
[http://dx.doi.org/10.2174/1381612823666161116114732]
[29]
Schwendener, R. A. Liposomes as Vaccine Delivery Systems: A Review of the Recent Advances. Ther. Adv. Vaccines, 2014, 2(6), 159-182.
[30]
Patil, Y. P.; Jadhav, S. Novel Methods for Liposome Preparation. Chem. Phys. Lipids, 2014, 177, 8-18.
[http://dx.doi.org/10.1016/j.chemphyslip.2013.10.011]
[31]
Sharma, D.; Upadhyay, S.; Upadhyay, P. Rutin Trihydrate Loaded Liposomal Gel Formulation and Characterization. Int. J. Pharm. Res., 2021, 13(01), 2852-2862.
[http://dx.doi.org/10.31838/ijpr/2021.13.01.345]
[32]
Chen, Y.; Wu, Q.; Zhang, Z.; Yuan, L.; Liu, X.; Zhou, L. Preparation of Curcumin-Loaded Liposomes and Evaluation of Their Skin Permeation and Pharmacodynamics. Molecules, 2012, 17(5), 5972-5987.
[http://dx.doi.org/10.3390/molecules17055972]
[33]
Begum, M. Y.; Shaik, M. R.; Abbulu, K.; Sudhakar, M. Ketorolac Tromethamine Loaded Liposomes: Development, Characterization and In Vitro Evaluation. Res. J. Pharm. Technol., 2011, 4(11), 1766-1771.
[34]
Kongkaneramit, L.; Aiemsum-ang, P.; Kewsuwan, P. Development of Curcumin Liposome Formulations Using Polyol Dilution Method. Songklanakarin J. Sci. Technol., 2016, 38(6), 605-610.
[35]
Allen, T. M.; Martin, F. J. Advantages of Liposomal Delivery Systems for Anthracyclines. Semin. Oncol., 2004, 31, 5-15.
[http://dx.doi.org/10.1053/j.seminoncol.2004.08.001]
[36]
Rahimpour, Y.; Hamishehkar, H. Liposomes in Cosmeceutics. Expert Opin. Drug Deliv., 2012, 9(4), 443-455.
[http://dx.doi.org/10.1517/17425247.2012.666968]
[37]
Allen, T. M.; Cullis, P. R. Liposomal Drug Delivery Systems: From Concept to Clinical Applications. Adv. Drug Deliv. Rev., 2013, 65(1), 36-48.
[http://dx.doi.org/10.1016/j.addr.2012.09.037]
[38]
Kumar, A.; Kumar, A. R.; Nama, S.; Brahmaiah, B.; Desu, P. K.; Rao, C. B. Sphingosomes: A Novel Vesicular Drug Delivery System. Int. J. Pharm. Res. Biosci., 2013, 2(2), 305-312.
[39]
Chaudhari, S. P.; Gaikwad, S. U. Sphingosomes: A Novel Lipoidal Vesicular Drug Delivery System. J. Sci. Technol., 2020, 5, 261-267.
[http://dx.doi.org/10.46243/jst.2020.v5.i4.pp261-267]
[40]
Kumar, R.; Seth, N. Hari kumar, S. L. Emulsomes: An Emerging Vesicular Drug Delivery System. J. Drug Deliv. Ther., 2013, 3(6), 133-142.
[http://dx.doi.org/10.22270/jddt.v3i6.665]
[41]
Afreen, U.; Krishna, S. A. Pharmacosomes and Emulsomes: An Emerging Novel Vesicular Drug Delivery System. Glob. J. Anesth. Pain Med., 2020, 3(4), 287-297.
[http://dx.doi.org/10.32474/GJAPM.2020.03.000166]
[42]
Supraja, B.; Mulangi, S. An Updated Review on Pharmacosomes, a Vesicular Drug Delivery System. J. Drug Deliv. Ther., 2019, 9(1-s), 393-402.
[http://dx.doi.org/10.22270/jddt.v9i1-s.2234]
[43]
Shefrin, S.; Sreelaxmi, C. S.; Vishnu, V.; Sreeja C., N. Enzymosomes: A Rising Effectual Tool for Targeted Drug Delivery System. Int. J. Appl. Pharm., 2017, 9(6), 1.
[http://dx.doi.org/10.22159/ijap.2017v9i6.22556]
[44]
Durga Bhavani, G.; Veera Lakshmi, P. Recent Advances of Non-Ionic Surfactant-Based Nano-Vesicles (Niosomes and Proniosomes): A Brief Review of These in Enhancing Transdermal Delivery of Drug. Future J. Pharm. Sci., 2020, 6(1), 100.
[http://dx.doi.org/10.1186/s43094-020-00117-y]
[45]
Pola Chandu, V.; Arunachalam, A.; Jeganath, S.; Yamini, K.; Tharangini, K. Niosomes: A Novel Drug Delivery System. Int. J. Novel Trends Pharm. Sci., 2012, 2(1), 25-31.
[46]
Kaur, D.; Kumar, S. Niosomes: Present Scenario and Future Aspects. J. Drug Deliv. Ther., 2018, 8(5), 35-43.
[http://dx.doi.org/10.22270/jddt.v8i5.1886]
[47]
Pandya, K. D.; Patel, S. S.; Seth, A. K.; Shah, C. N.; Aundhia, C. J.; Shah, N. V.; Ramani, V. D.; Javia, A. Niosome: An Unique Drug Delivery System. Pharma Sci. Monitor, 2016, 7(3), 85-99.
[48]
Muzzalupo, R.; Tavano, L. Niosomal Drug Delivery for Transdermal Targeting: Recent Advances. Res. Rep. Transdermal Drug Deliv., 2015, 2015(4), 23-33.
[http://dx.doi.org/10.2147/RRTD.S64773]
[49]
Ghalandarlaki, N.; Alizadeh, A. M.; Ashkani-Esfahani, S. Nanotechnology-Applied Curcumin for Different Diseases Therapy. BioMed Res. Int., 2014, 2014, 1-23.
[http://dx.doi.org/10.1155/2014/394264]
[50]
Singh, M. R.; Nag, M. K.; Patel, S.; Daharwal, S. J.; Singh, D. Novel Approaches for Dermal and Transdermal Delivery of Herbal Drugs. Res. J. Pharmacogn. Phytochem., 2013, 5(6), 271-279.
[51]
Xu, Y- Q.; Chen, W- R.; Tsosie, J. K.; Xie, X.; Li, P.; Wan, J- B.; He, C- W.; Chen, M- W. Niosome Encapsulation of Curcumin: Characterization and Cytotoxic Effect on Ovarian Cancer Cells. J. Nanomater., 2016, 2016, 1-9.
[http://dx.doi.org/10.1155/2016/6365295]
[52]
Yallapu, M. M.; Jaggi, M.; Chauhan, S. C. Curcumin Nanoformulations: A Future Nanomedicine for Cancer. Drug Discov. Today, 2012, 17(1–2), 71-80.
[53]
Ravalika, V.; Sailaja, A. K. Formulation and Evaluation of Etoricoxib Niosomes by Thin Film Hydration Technique and Ether Injection Method. Nano Biomed. Eng., 2017, 9(3), 242-248.
[http://dx.doi.org/10.5101/nbe.v9i3.p242-248]
[54]
Kumar, K.; Rai, A. Development and Evaluation of Proniosome- Encapsulated Curcumin for Transdermal Administration. Trop. J. Pharm. Res., 2011, 10(6), 697-703.
[http://dx.doi.org/10.4314/tjpr.v10i6.1]
[55]
Khan, M. I.; Madni, A.; Ahmad, S.; Mahmood, M. A.; Rehman, M.; Ashfaq, M. Formulation Design and Characterization of a Non-Ionic Surfactant Based Vesicular System for the Sustained Delivery of a New Chondroprotective Agent. Braz. J. Pharm. Sci., 2015, 51(3), 607-615.
[http://dx.doi.org/10.1590/S1984-82502015000300012]
[56]
Kumar, B. S.; Krishna, R.; Ps, L.; Vasudev, D. T.; Nair, S. C. Formulation and Evaluation of Niosomal Suspension of Cefixime. Asian J. Pharm. Clin. Res., 2017, 194-201.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i5.17189]
[57]
Prakash, P. R.; Jayasheela, M. S.; Prasad, R. R.; Chandini, P.; Praveena, A.; Lakshmi, K. S.; Ramesh, P. Candesertan Niosomes-Formulation and Evaluation Using Span 60 as Non-Ionic Surafactant. J. Chem. Pharm. Res., 2015, 7(7), 940-949.
[58]
Rangasamy, M.; Ayyasamy, B.; Raju, S.; Gummadevelly, S.; Shaik, S. Formulation and in Vitro Evaluation of Niosome Encapsulated Acyclovir. J. Pharm. Res., 2008, 1(2), 163-166.
[59]
Kauslya, A.; Borawake, P. D.; Shinde, J. V.; Chavan, R. S. Niosomes: A Novel Carrier Drug Delivery System. J. Drug Deliv. Ther., 2021, 11(1), 162-170.
[http://dx.doi.org/10.22270/jddt.v11i1.4479]
[60]
Lohumi, A.; Rawat, S.; Sarkar, S.; Sipai, A. bhai; Yadav, M. V. A Novel Drug Delivery System: Niosomes Review. J. Drug Deliv. Ther., 2012, 2(5), 129-135.
[http://dx.doi.org/10.22270/jddt.v2i5.274]
[61]
Ag Seleci, D.; Seleci, M.; Walter, J- G.; Stahl, F.; Scheper, T. Niosomes as Nanoparticular Drug Carriers: Fundamentals and Recent Applications. J. Nanomater., 2016, 2016, 1-13.
[http://dx.doi.org/10.1155/2016/7372306]
[62]
Ray, S. K.; Bano, N.; Shukla, T.; Upmanyu, N.; Pandey, S. P.; Parkhe, G. Noisomes: As Novel Vesicular Drug Delivery System. J. Drug Deliv. Ther., 2018, 8(6), 335-341.
[http://dx.doi.org/10.22270/jddt.v8i6.2029]
[63]
Yeo, P. L.; Lim, C. L.; Chye, S. M.; Kiong Ling, A. P.; Koh, R. Y. Niosomes: A Review of Their Structure, Properties, Methods of Preparation, and Medical Applications. Asian Biomed., 2018, 11(4), 301-314.
[http://dx.doi.org/10.1515/abm-2018-0002]
[64]
Sanklecha, V. M.; Pande, V. V.; Pawar, S. S.; Pagar, O. B.; Jadhav, A. C. Review on Niosomes. Austin Pharmacol. Pharm., 2018, 3(2), 1016.
[65]
Mishra, N.; Srivastava, V.; Kaushik, A.; Chauhan, V.; Srivastava, G. Formulation and In-Vitro Evaluation of Niosomes of Aceclofenac. J. Sci. Innov. Res., 2014, 3(3), 337-341.
[66]
Mokale, V. J.; Patil, H. I.; Patil, A. P.; Shirude, P. R.; Naik, J. B. Formulation and Optimisation of Famotidine Proniosomes: An in Vitro and Ex Vivo Study. J. Exp. Nanosci., 2016, 11(2), 97-110.
[http://dx.doi.org/10.1080/17458080.2015.1030711]
[67]
Jain, S. C.; Gowda, D. V.; Gupta, N. V.; Kulkarni, P. K. A Brief Review On Niosomes. J. Pharm. Res., 2017, 11(5), 450-458.
[68]
Sharma, D.; Ali, A. A.E.; Aate, J. R. Niosomes as Novel Drug Delivery System: Review Article. PharmaTutor, 2018, 6(3), 58-65.
[http://dx.doi.org/10.29161/PT.v6.i3.2018.58]
[69]
Akhtar, N.; Varma, A.; Pathak, K. Ethosomes as Vesicles for Effective Transdermal Delivery: From Bench to Clinical Implementation. Curr. Clin. Pharmacol., 2016, 11(3), 168-190.
[http://dx.doi.org/10.2174/1574884711666160813231352]
[70]
Kalra, N.; Dhanya, V.; Saini, V.; Jeyabalan, G. Virosomes: As a Drug Delivery Carrier. Am. J. Adv. Drug Deliv., 2013, 1(1), 29-35.
[71]
Lu, M.; Qiu, Q.; Luo, X.; Liu, X.; Sun, J.; Wang, C.; Lin, X.; Deng, Y.; Song, Y. Phyto-Phospholipid Complexes (Phytosomes): A Novel Strategy to Improve the Bioavailability of Active Constituents. Asian J. Pharm. Sci., 2019, 14(3), 265-274.
[http://dx.doi.org/10.1016/j.ajps.2018.05.011]
[72]
Shinde, N. G.; Aloorkar, N. H.; Kulkarni, A. S. Recent Advances in Vesicular Drug Delivery System. Res. J. Pharm. Dos. Forms Technol., 2014, 6(2), 110-120.
[73]
Kim, Y. M.; Jang, G. H. Method of Preparing Bioactive SubstanceEncapsulated Ethosome, Ethosome Composition, and Cosmetic Composition Including Ethosome Composition, February 4 2021.
[74]
Tyagi, L. K.; Kumar, S.; Maurya, S. S.; Kori, M. L. Ethosomes: Novel Vesicular Carrier for Enhanced Transdermal Drug Delivery System. Bull. Pharm. Res., 2013, 3(1), 6-13.
[75]
Peram, V. S. N. M. R. Development Optimization and Characterization of Ethosomes and Transfersomes of Curcumin for Skin Cancer Treatment via the Transdermal Route, KLE University: Belgaum 2018.
[76]
Babar, M. M.; Najam-us-Sahar Sadaf Zaidi, A.; Kazi, G.; Rehman, A. Virosomes-Hybrid Drug Delivery Systems. In: Liposome Nanotechnol; , 2013; pp. 415-422.
[77]
Inamdar, N. Virosomes  New Frontier for Targeting Drugs and Biological Molecule. Asian J. Pharm. Technol. Innov., 2015, 3(12), 92-103.
[78]
Singh, N.; Gautam, S. P.; Kumari, N.; Kaur, R.; Kaur, M. Virosomes as Novel Drug Delivery System: An Overview. PharmaTutor, 2017, 5(9), 47-55.
[79]
Bagai, S.; Puri, A.; Blumenthal, R.; Sarkar, D. P. Hemagglutinin-Neuraminidase Enhances F Protein-Mediated Membrane Fusion of Reconstituted Sendai Virus Envelopes with Cells. J. Virol., 1993, 67(6), 3312-3318.
[http://dx.doi.org/10.1128/JVI.67.6.3312-3318.1993]
[80]
Scheule, R. K. Novel Preparation of Functional Sindbis Virosomes. Biochemistry, 1986, 25(15), 4223-4232.
[http://dx.doi.org/10.1021/bi00363a009]
[81]
Shaikh, S. N.; Raza, S. Ansari, Mohd. A.; Khan, G. J.; Athar, S. H. M. Overview on Virosomes as a Novel Carrier for Drug Delivery. J. Drug Deliv. Ther., 2019, 8(6-s), 429-434.
[http://dx.doi.org/10.22270/jddt.v8i6-s.2163]
[82]
Ravi, G.; Narayana Charyulu, R.; Dubey, A.; Hebbar, S.; Mathias, A. C. Phytosomes: A Novel Molecular Nano Complex Between Phytomolecule and Phospholipid as a Value Added Herbal Drug Delivery System. Int. J. Pharm. Sci. Rev. Res., 2018, 51(1), 84-90.
[83]
Kumar, A. B.; Habbu, P.; Hullatti, P.; Kumar, R. S. Phytosomes as Novel Drug Delivery System for Herbal Medicine-a Review. Syst. Rev. Pharm., 2017, 8(1), 5-7.
[84]
Tripathy, S.; Patel, D. K.; Barob, L.; Naira, S. K. A Review on Phytosomes, Their Characterization, Advancement and Potential for Transdermal Application. J. Drug Deliv. Ther., 2013, 3(3), 147-152.
[http://dx.doi.org/10.22270/jddt.v3i3.508]
[85]
Amin, T.; Bhat, S. V. A Review on Phytosome Technology as a Novel Approach to Improve The Bioavailability of Nutraceuticals. Int. J. Adv. Res. Technol., 2012, 1(3), 1-15.
[86]
Sawant, R.; Yadav, D. S. Phytosomes: A Novel Herbal Drug Delivery Carrier for Various Treatments. World J. Pharm. Res., 2020, 9(9), 291-309.
[http://dx.doi.org/10.20959/wjpr20209-18358]
[87]
Kareparamban, J. A.; Nikam, P. H.; Jadhav, A. P.; Kadam, V. J. Phytosome: A Novel Revolution in Herbal Drugs. Int. J. Res. Pharm. Chem., 2012, 2(2), 299-310.
[88]
Bhingare, U.; Khadabadi, S.; Shinde, N. Pharmacosomes: A Novel Drug Delivery System. Int. J. Pharm. Res. Allied Sci., 2014, 3(1), 14-20.
[89]
Pandita, A.; Sharma, P. Pharmacosomes: An Emerging Novel Vesicular Drug Delivery System for Poorly Soluble Synthetic and Herbal Drugs. ISRN Pharm., 2013, 2013, 348186.
[http://dx.doi.org/10.1155/2013/348186]
[90]
Gandhi, A.; Dutta, A.; Pal, A.; Bakshi, P. Recent Trends of Phytosomes for Delivering Herbal Extract with Improved Bioavailability. J. Pharmacogn. Phytochem., 2012, 1(4), 6-14.
[91]
Sravanthi, M.; Krishna, J. S. Phytosomes: A Novel Drug Delivery for Herbal Extracts. Int. J. Pharm. Sci. Res., 2013, 4(3), 949-959.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.4(3).949-59]
[92]
Yadav, A. R.; Mohite, S. K. Aquasomes as a Self Assembling Nanobiopharmaceutical Carrier System for Bio-Active Molecules. Res. J. Top. Cosmet. Sci., 2020, 11(2), 89-94.
[http://dx.doi.org/10.5958/2321-5844.2020.00016.3]
[93]
Kumar, S.; Baldi, A.; Sharma, D. Phytosomes: A Modernistic Approach for Novel Herbal Drug Delivery - Enhancing Bioavailability and Revealing Endless Frontier Of Phytopharmaceuticals. J. Dev. Drugs, 2020, 9(2), 1-8.
[94]
Basnet, P.; Hussain, H.; Tho, I.; Skalko-Basnet, N. Liposomal Delivery System Enhances Anti-Inflammatory Properties of Curcumin. J. Pharm. Sci., 2012, 101(2), 598-609.
[95]
Banerjee, S.; Sen, K. K. Aquasomes: A Novel Nanoparticulate Drug Carrier. J. Drug Deliv. Sci. Technol., 2018, 43, 446-452.
[http://dx.doi.org/10.1016/j.jddst.2017.11.011]
[96]
Jain, S.; Jain, V.; Mahajan, S. C. Lipid Based Vesicular Drug Delivery Systems. Adv. Pharm., 2014, 2014, 1-12.
[http://dx.doi.org/10.1155/2014/574673]
[97]
Kumar, J. M.; Kumar, V. V.; Mounica, R.; Bolla, S. P.; Pavani, M. Aquasomes-the Best Carriers for Protein and Peptide Delivery. Asian J. Pharm. Res. Dev., 2013, 1(4), 16-23.
[98]
Patil, A. C.; Shewale, S. S.; Rayate, Y. T.; Nitalikar, M. M.; Mohite, S. K. Review on Aquasome Novel Drug Delivery System. Res. J. Top. Cosmet. Sci., 2018, 9(1), 19-24.
[http://dx.doi.org/10.5958/2321-5844.2018.00005.5]
[99]
Kurzrock, R.; Li, L.; Mehta, K.; Aggarwal, B. B.; Helson, L. Liposomal Curcumin for Treatment of Diseases. US20180318217A1, November 8;2018
[100]
Yatvin, M. B.; Betageri, G. Liposome Drug Delivery. WO2001082897A2, November 8;2001
[101]
Alcantar, N.; Williams, E. C.; Toomey, R. Niosome-Hydrogel Drug Delivery System. US20100068264A1, March 18;2010
[102]
Pierro, F. D. Compositions Containing a Phospholipid-Curcumin Complex and Piperine as Chemosensitizing Agent. EP2228062A1, September 15;2010
[103]
Kim, Y. M.; Jang, G. H.; Park, Y. J.; Oh, G. H. Method of Preparing Bioactive Substance-Encapsulated Ethosome, Ethosome Composition, and Cosmetic Composition Including Ethosome Composition. WO2019004563A1, January 3;2019
[104]
Sanghi, D. D.K.; Tiwle, R. Herbal Drugs an Emerging Tool for Novel Drug Delivery Systems. Res. J. Pharm. Technol., 2013, 6(9), 962-966.
[105]
Moorthi, C.; Krishnan, K.; Manavalan, R.; Kathiresan, K. Preparation and Characterization of Curcumin–Piperine Dual Drug Loaded Nanoparticles. Asian Pac. J. Trop. Biomed., 2012, 2(11), 841-848.
[http://dx.doi.org/10.1016/S2221-1691(12)60241-X]
[106]
Nazari-Vanani, R.; Moezi, L.; Heli, H. In Vivo Evaluation of a Self-Nanoemulsifying Drug Delivery System for Curcumin. Biomed. Pharmacother., 2017, 88, 715-720.
[http://dx.doi.org/10.1016/j.biopha.2017.01.102]
[107]
Shrestha, H.; Bala, R.; Arora, S. Lipid-Based Drug Delivery Systems. J. Pharm., 2014, 2014, 1-10.
[http://dx.doi.org/10.1155/2014/801820]
[108]
Mantripragada, S. A Lipid Based Depot (Depofoam® Technology) for Sustained Release Drug Delivery. Prog. Lipid Res., 2002, 41(5), 392-406.
[http://dx.doi.org/10.1016/S0163-7827(02)00004-8]
[109]
Gluck, R.; Metcalfe, I. C. New Technology Platforms in the Development of Vaccines for the Future. Vaccine, 2002, 20, B10-B16.
[http://dx.doi.org/10.1016/S0264-410X(02)00513-3]
[110]
Mehendale, R.; Joshi, M.; Patravale, V. B. Nanomedicines for Treatment of Viral Diseases. Crit. Rev. Ther. Drug Carrier Syst., 2013, 30(1), 1-49.
[111]
Escobar-Chavez, J.; Diaz-Torres, R.; Rodriguez-Cruz, I. M. Dominguez-Delgado; Sampere-Morales; Angeles-Anguiano; Melgoza-Contreras. Nanocarriers for Transdermal Drug Delivery. Res. Rep. Transdermal Drug Deliv., 2012, 1, 3-17.
[http://dx.doi.org/10.2147/RRTD.S32621]
[112]
Upadhyay, R. K. Drug Delivery Systems, CNS Protection, and the Blood Brain Barrier. BioMed Res. Int., 2014, 2014, 1-37.
[http://dx.doi.org/10.1155/2014/869269]
[113]
Song, C. X.; Labhasetwar, V.; Murphy, H.; Qu, X.; Humphrey, W. R.; Shebuski, R. J.; Levy, R. J. Formulation and Characterization of Biodegradable Nanoparticles for Intravascular Local Drug Delivery. J. Control. Release, 1997, 43(2–3), 197-212.
[http://dx.doi.org/10.1016/S0168-3659(96)01484-8]
[114]
Utreja, S.; Jain, N. K. Chapter 17- Solid Lipid Nanoparticles. In Advances in Controlled and Novel Drug Delivery; CBS Publishers & Distributors, 2001, pp. 408-425.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy