Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Research Article

Identification of Potential Immunogenic Epitopes Against SARS-CoV-2 Using In-Silico Method: An Immunoinformatics Study

Author(s): Subikshaa Sankaralingam, Sathishnath Parthasarathy, Chethan Jaya Sai Nandamuri, Shruti Ramanathan and Shobana Sugumar*

Volume 19, Issue 4, 2022

Published on: 20 August, 2022

Page: [357 - 369] Pages: 13

DOI: 10.2174/1570164619666220401115509

Price: $65

conference banner
Abstract

Background: Severe acute respiratory syndrome (SARS-CoV-2), a zoonotic virus, is the pathogenic causal agent for the ongoing pandemic. Despite the lethality of the disease, there are no therapeutic agents available to combat the disease outbreak, and the vaccines currently accessible are insufficient to control the widespread, fast-mutating virus infection.

Objective: This research study focuses on determining potential epitopes by examining the entire proteome of the SARS-CoV-2 virus using an in-silico approach.

Methods: To develop a vaccine for the deadly virus, researchers screened the whole proteome of the SARS-CoV-2 virus for potential epitopes in order to find a powerful peptide candidate that is both unique and fulfils the vaccine's objective. It is mandatory to identify the suitable B-cell and T-cell epitopes of the observed SARS-CoV-2 surface glycoprotein (QKN61229.1). These epitopes were subjected to various tests, including antigenicity, allergenicity, and other physicochemical properties. The T-cell epitopes that met the criteria were subjected to population coverage analysis. It helped in better understanding epitope responses to the target population, computing peptide conservancy, and clustering epitopes based on sequence match, MHC binding, and T-cell restriction sites. Lastly, the interactions between the T-cell receptor (TCR) and a peptide-MHC were studied to thoroughly understand MHC restriction to design a peptide- vaccine.

Results: The findings revealed that four B-cell epitopes, two MHC-I epitopes, and four MHC-II epitopes qualified for all of the tests and so have antigen affinity.

Conclusion: Based on the results obtained from this study, the estimated peptides are promising candidates for peptide-vaccine design and development.

Keywords: SARS-CoV-2, peptides, immunogenic protein, epitope prediction, immunoinformatics, vaccine.

« Previous
Graphical Abstract
[1]
Abdelmageed, M.I.; Abdelmoneim, A.H.; Mustafa, M.I.; Elfadol, N.M.; Murshed, N.S.; Shantier, S.W.; Makhawi, A.M. Design of a multiepitope-based peptide vaccine against the E protein of human COVID-19: An immunoinformatics approach. BioMed Res. Int., 2020, 2020, 2683286.
[http://dx.doi.org/10.1155/2020/2683286] [PMID: 32461973]
[2]
Sarma, V.R.; Olotu, F.A.; Soliman, M.E.S. Integrative immunoinformatics paradigm for predicting potential B-cell and T-cell epitopes as viable candidates for subunit vaccine design against COVID-19 virulence. Biomed. J., 2021, 44(4), 447-460.
[http://dx.doi.org/10.1016/j.bj.2021.05.001] [PMID: 34489196]
[3]
JJain, R.; Jain, A.; Verma, S.K. Prediction of epitope based peptides for vaccine development from complete proteome of novel corona virus (SARS-COV-2) using immunoinformatics. Int. J. Pept. Res. Ther., 2021, 27(3), 1729-1740.
[PMID: 33897313]
[4]
Abraham Peele, K.; Srihansa, T.; Krupanidhi, S.; Ayyagari, V.S.; Venkateswarulu, T.C. Design of multi-epitope vaccine candidate against SARS-CoV-2: A in-silico study. J. Biomol. Struct. Dyn., 2021, 39(10), 3793-3801.
[http://dx.doi.org/10.1080/07391102.2020.1770127] [PMID: 32419646]
[5]
Yadav, A.R.; Mohite, S.K. A review on novel coronavirus (COVID-19). Available from: http://www.ijpsr.info/docs/IJPSR20-11-05-010.pdf (accessed Jul 31, 2021).
[6]
Bency, J.; Helen, M. Novel Epitope based peptides for vaccine against SARS-CoV-2 virus: Immunoinformatics with docking approach. Int. J. Res. Med. Sci., 2020, 8(7), 2385.
[7]
Ishack, S.; Lipner, S.R. Bioinformatics and immunoinformatics to support COVID-19 vaccine development. J. Med. Virol., 2021, 93(9), 5209-5211.
[http://dx.doi.org/10.1002/jmv.27017] [PMID: 33851735]
[8]
Potocnakova, L.; Bhide, M.; Pulzova, L.B. An introduction to B-cell epitope mapping and in silico epitope prediction. J. Immunol. Res., 2016, 2016, 6760830.
[http://dx.doi.org/10.1155/2016/6760830] [PMID: 28127568]
[9]
Desai, D.V.; Kulkarni-Kale, U. T-cell epitope prediction methods: An overview. Methods Mol. Biol., 2014, 1184, 333-364.
[http://dx.doi.org/10.1007/978-1-4939-1115-8_19] [PMID: 25048134]
[10]
Jensen, K.K.; Andreatta, M.; Marcatili, P.; Buus, S.; Greenbaum, J.A.; Yan, Z.; Sette, A.; Peters, B.; Nielsen, M. Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology, 2018, 154(3), 394-406.
[http://dx.doi.org/10.1111/imm.12889] [PMID: 29315598]
[11]
Welling, G.W.; Weijer, W.J.; van der Zee, R.; Welling-Wester, S. Prediction of sequential antigenic regions in proteins. FEBS Lett., 1985, 188(2), 215-218.
[http://dx.doi.org/10.1016/0014-5793(85)80374-4] [PMID: 2411595]
[12]
Flower, D.R.; Doytchinova, I.; Zaharieva, N.; Dimitrov, I. Immunogenicity prediction by VaxiJen: A ten year overview. J. Proteomics Bioinform., 2017, 10(11), 298-310.
[http://dx.doi.org/10.4172/jpb.1000454]
[13]
Dehghani, B.; Hashempour, T.; Hasanshahi, Z. Using immunoinformatics and structural approaches to design a novel HHV8 vaccine. Int. J. Pept. Res. Ther., 2020, 26(1), 321-331.
[http://dx.doi.org/10.1007/s10989-019-09839-x] [PMID: 32435167]
[14]
Krogh, A.; Larsson, B.; von Heijne, G.; Sonnhammer, E.L. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol., 2001, 305(3), 567-580.
[http://dx.doi.org/10.1006/jmbi.2000.4315] [PMID: 11152613]
[15]
Dimitrov, I.; Bangov, I.; Flower, D.R.; Doytchinova, I. AllerTOP v.2--a server for in silico prediction of allergens. J. Mol. Model., 2014, 20(6), 2278.
[http://dx.doi.org/10.1007/s00894-014-2278-5] [PMID: 24878803]
[16]
Dimitrov, I.; Naneva, L.; Doytchinova, I.; Bangov, I.; Allergen, F.P.; Allergen, FP Allergenicity prediction by descriptor fingerprints. Bioinformatics, 2014, 30(6), 846-851.
[http://dx.doi.org/10.1093/bioinformatics/btt619] [PMID: 24167156]
[17]
Fleri, W.; Paul, S.; Dhanda, S.K.; Mahajan, S.; Xu, X.; Peters, B.; Sette, A. The immune epitope database and analysis resource in epitope discovery and synthetic vaccine design. Front. Immunol., 2017, 8, 278.
[http://dx.doi.org/10.3389/fimmu.2017.00278] [PMID: 28352270]
[18]
Liu, G.; Carter, B.; Gifford, D.K. Predicted cellular immunity population coverage gaps for SARS-CoV-2 subunit vaccines and their augmentation by compact peptide sets. Cell Syst., 2021, 12(1), 102-107.e4.
[http://dx.doi.org/10.1016/j.cels.2020.11.010] [PMID: 33321075]
[19]
Liu, I.-H.; Lo, Y.-S.; Yang, J.-M. PAComplex: A web server to infer peptide antigen families and binding models from TCR-PMHC complexes. Nucleic Acids Res, 2011, 39(Web Server issue), W254-60.
[http://dx.doi.org/10.1093/nar/gkr434]
[20]
Jain, R.; Sonkar, S.C.; Chaudhry, U.; Bala, M.; Saluja, D. In-silico hierarchical approach for the identification of Potential Universal Vaccine Candidates (PUVCs) from Neisseria gonorrhoeae. J. Theor. Biol., 2016, 410, 36-43.
[http://dx.doi.org/10.1016/j.jtbi.2016.09.004] [PMID: 27596531]
[21]
Luo, T.; Patel, J.G.; Zhang, X.; Walker, D.H.; McBride, J.W. Ehrlichia chaffeensis and E. canis hypothetical protein immunoanalysis reveals small secreted immunodominant proteins and conformation-dependent antibody epitopes. NPJ Vaccines, 2020, 5(1), 85.
[http://dx.doi.org/10.1038/s41541-020-00231-1] [PMID: 32963815]
[22]
Majidiani, H.; Soltani, S.; Ghaffari, A.D.; Sabaghan, M.; Taghipour, A.; Foroutan, M. In-depth computational analysis of calcium-dependent protein kinase 3 of Toxoplasma gondii provides promising targets for vaccination. Clin. Exp. Vaccine Res., 2020, 9(2), 146-158.
[http://dx.doi.org/10.7774/cevr.2020.9.2.146] [PMID: 32864371]
[23]
Nourmohammadi, H.; Javanmardi, E.; Shams, M.; Shamsinia, S.; Nosrati, M.C.; Yousefi, A.; Nemati, T.; Fatollahzadeh, M.; Ghasemi, E.; Kordi, B.; Majidiani, H.; Irannejad, H. Multi-epitope vaccine against cystic echinococcosis using immunodominant epitopes from EgA31 and EgG1Y162 antigens. Inform. Med. Unlocked, 2020, 21, 100464.
[http://dx.doi.org/10.1016/j.imu.2020.100464]
[24]
Oli, A.N.; Obialor, W.O.; Ifeanyichukwu, M.O.; Odimegwu, D.C.; Okoyeh, J.N.; Emechebe, G.O.; Adejumo, S.A.; Ibeanu, G.C. Immunoinformatics and vaccine development: An overview. ImmunoTargets Ther., 2020, 9, 13-30.
[http://dx.doi.org/10.2147/ITT.S241064] [PMID: 32161726]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy