Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Research Article

Draft Genome Sequence of the Earthworm Eudrilus eugeniae

Author(s): Arun Arumugaperumal, Dinesh Kumar Sudalaimani, Vaithilingaraja Arumugaswami and Sudhakar Sivasubramaniam*

Volume 23, Issue 2, 2022

Published on: 13 April, 2022

Page: [118 - 125] Pages: 8

DOI: 10.2174/1389202923666220401095626

Price: $65

Abstract

Background: Earthworms are annelids. They play a major role in agriculture and soil fertility. Vermicompost is the best organic manure for plant crops. Eudrilus eugeniae is an earthworm well suited for efficient vermicompost production. The worm is also used to study the cell and molecular biology of regeneration, molecular toxicology, developmental biology, etc., because of its abilities like high growth rate, rapid reproduction, tolerability toward wide temperature range, and less cost of maintenance.

Objective: The whole genome has been revealed only for Eisenia andrei and Eisenia fetida.

Methods: In the present work, we sequenced the genome of E. eugeniae using the Illumina platform and generated 160,684,383 paired-end reads.

Results: The reads were assembled into a draft genome of size 488 Mb with 743,870 contigs and successfully annotated 24,599 genes. Further, 208 stem cell-specific genes and 3,432 non-coding genes were identified.

Conclusion: The sequence and annotation details were hosted in a web application available at https://sudhakar-sivasubramaniam-labs.shinyapps.io/eudrilus_genome/.

Keywords: Earthworm, genome, next-generation sequencing, Eudrilus eugeniae, genome resource, gene annotation.

Graphical Abstract
[1]
Mathur, A.; Bhat, R.; Verma, S.; Prakash, A.; Prasad, G.; Dua, V. Standardization of method for genomic DNA extraction in Eudrilus eugeniae. Indian Pharmacists., 2010, 9, 49-51.
[2]
Patel, R.K.; Jain, M. NGS QC Toolkit: A toolkit for quality control of next generation sequencing data. PLoS One, 2012, 7(2), e30619.
[http://dx.doi.org/10.1371/journal.pone.0030619] [PMID: 22312429]
[3]
Boore, J.L.; Brown, W.M. Complete sequence of the mitochondrial DNA of the annelid worm Lumbricus terrestris. Genetics, 1995, 141(1), 305-319.
[http://dx.doi.org/10.1093/genetics/141.1.305] [PMID: 8536978]
[4]
Maguire, C.T.; Demarest, B.L.; Hill, J.T.; Palmer, J.D.; Brothman, A.R.; Yost, H.J.; Condic, M.L. Genome-wide analysis reveals the unique stem cell identity of human amniocytes. PLoS One, 2013, 8(1), e53372.
[http://dx.doi.org/10.1371/journal.pone.0053372] [PMID: 23326421]
[5]
Team, R.C.R. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013.
[6]
Chang, W.; Cheng, J.; Allaire, J.; Sievert, C.; Schloerke, B.; Xie, Y. Shiny: Web application framework for R. R package version 160: 2021.
[7]
Xie, Y.; Cheng, J.; Tan, X. DT A Wrapper of the JavaScript Library 'DataTables'. R package version 018. 2021.
[8]
Arumugaperumal, A.; Paul, S.; Lathakumari, S.; Balasubramani, R.; Sivasubramaniam, S. The draft genome of a new Verminephrobacter eiseniae strain: A nephridial symbiont of earthworms. Ann. Microbiol., 2020, 70(1), 1-18.
[http://dx.doi.org/10.1186/s13213-020-01549-w]
[9]
Zwarycz, A.S.; Nossa, C.W.; Putnam, N.H. Timing and scope of genomic expansion within Annelida: Evidence from homeoboxes in the genome of the earthworm. Eisenia fetida, 2016, 8(1), 271-81.
[10]
Shao, Y.; Wang, X.-B.; Zhang, J.-J.; Li, M.-L.; Wu, S.-S.; Ma, X.-Y. Genome and single-cell RNA-sequencing of the earthworm Eisenia andrei identifies cellular mechanisms underlying regeneration. 2020, 11(1), 1-15.
[http://dx.doi.org/10.1038/s41467-020-16454-8]
[11]
Zhang, L.; Sechi, P.; Yuan, M.; Jiang, J.; Dong, Y.; Qiu, J. Fifteen new earthworm mitogenomes shed new light on phylogeny within the Pheretima complex. Sci. Rep., 2016, 6(1), 20096.
[http://dx.doi.org/10.1038/srep20096] [PMID: 26833286]
[12]
Paul, S.; Arumugaperumal, A.; Rathy, R.; Ponesakki, V.; Arunachalam, P.; Sivasubramaniam, S. Data on genome annotation and analysis of earthworm. Eisenia fetida. Data Brief, 2018, 20, 525-534.
[http://dx.doi.org/10.1016/j.dib.2018.08.067] [PMID: 30191166]
[13]
Kariri, Y.A.; Joseph, C.; Kurozumi, S.; Toss, M.S.; Alsaleem, M.; Raafat, S. Prognostic significance of KN motif and ankyrin repeat domains 1 (KANK1) in invasive breast cancer. Breast Cancer Res. Treat., 2020, 179(2), 349-357.
[14]
Hollenstein, K.; Dawson, R.J. Structure and mechanism of ABC transporter proteins. Curr. Opin. Struct. Biol., 2007, 17(4), 412-418.
[15]
Laity, J.H.; Lee, B.M.; Wright, P.E.J. Zinc finger proteins: New insights into structural and functional diversity. Curr. Opin. Struct. Biol., 2001, 11(1), 39-46.
[16]
Ravindran, B.; Contreras-Ramos, S.; Sekaran, G. Changes in earthworm gut associated enzymes and microbial diversity on the treatment of fermented tannery waste using epigeic earthworm Eudrilus eugeniae. Ecol. Eng., 2015, 74, 394-401.
[http://dx.doi.org/10.1016/j.ecoleng.2014.10.014]
[17]
Davis, S.J.; Ikemizu, S.; Wild, M.K.; van der Merwe, P.A. CD2 and the nature of protein interactions mediating cell-cell recognition. Immunol. Rev., 1998, 163(1), 217-236.
[18]
Johnson Retnaraj Samuel, S.C.; Elaiya Raja, S.; Beryl Vedha, Y.; Edith Arul Jane, A.; Amutha, K.; Dinesh, S.M.; Jackson Durairaj, S.C.; Kalidas, R.M.; Tharmaraj, V.; Pitchumani, K.; Sudhakar, S. Autofluorescence in BrdU-positive cells and augmentation of regeneration kinetics by riboflavin. Stem Cells Dev., 2012, 21(11), 2071-2083.
[http://dx.doi.org/10.1089/scd.2011.0485] [PMID: 22150027]
[19]
Nelson, M.R.; Chazin, W.J.J.B. Structures of EF-hand Ca2+ binding proteins: Diversity in the organization, packing and response to Ca2+ binding. Biometals, 1998, 11(4), 297-318.
[20]
Lansdown, A.B.G. Calcium: A potential central regulator in wound healing in the skin. Wound Repair Regen., 2002, 10(5), 271-285.
[21]
Wei, C.; Wang, X.; Zheng, M.; Cheng, H.J. Calcium gradients underlying cell migration. Curr. Opin. Cell Biol., 2012, 24(2), 254, 61.
[22]
Tiwari, S.; Tiwari, B.; Mishra, R. Microbial populations, enzyme activities and nitrogen-phosphorus-potassium enrichment in earthworm casts and in the surrounding soil of a pineapple plantation. Biol. Fertil. Soils, 1989, 8(2), 178-182.
[http://dx.doi.org/10.1007/BF00257763]
[23]
Yella, V.R.; Bansal, M.J. DNA structural features of eukaryotic TATA-containing and TATA-less promoters. FEBS Open Bio, 2017, 7(3), 324-334.
[24]
Deka, H.; Deka, S.; Baruah, C.K.; Das, J.; Hoque, S.; Sarma, N.S. Vermicomposting of distillation waste of citronella plant (Cymbopogon winterianus Jowitt.) employing Eudrilus eugeniae. Bioresour. Technol., 2011, 102(13), 6944-6950.
[http://dx.doi.org/10.1016/j.biortech.2011.04.027] [PMID: 21550233]
[25]
Balachandar, R.; Baskaran, L.; Yuvaraj, A.; Thangaraj, R.; Subbaiya, R.; Ravindran, B.; Chang, S.W.; Karmegam, N. Enriched pressmud vermicompost production with green manure plants using. Eudrilus eugeniae. Bioresour. Technol., 2020, 299, 122578.
[http://dx.doi.org/10.1016/j.biortech.2019.122578] [PMID: 31865155]
[26]
Coulibaly, S.S.; Bi, I.A.Z. Influence of animal wastes on growth and reproduction of the African earthworm species Eudrilus eugeniae (Oligochaeta). Eur. J. Soil Biol., 2010, 46(3-4), 225-229.
[http://dx.doi.org/10.1016/j.ejsobi.2010.03.004]
[27]
Subramanian, E.R.; Sudalaimani, D.K.; Selvan Christyraj, J.R.S.; Ramamoorthy, K.; Gopi Daisy, N.; Selvan Christyraj, J.D.; Renganathan, K.; Krishnan, S.; Sivasubramaniam, S. Studies on organogenesis during regeneration in the earthworm, Eudrilus eugeniae, in support of symbiotic association with Bacillus endophyticus. Turk. J. Biol., 2017, 41(1), 113-126.
[http://dx.doi.org/10.3906/biy-1604-44]
[28]
Sonia, V.; Felix, S.; Antony, C. Comparative study of growth and reproduction of earthworm Eudrilus eugeniae in different organic substrate. Int. J. Appl. Sci., 2016, 4(1), 7.
[http://dx.doi.org/10.21013/jas.v4.n1.p7]
[29]
Kabi, F.; Kayima, D.; Kigozi, A.; Mpingirika, E.Z.; Kayiwa, R.; Okello, D. Effect of different organic substrates on reproductive biology, growth rate and offtake of the African night crawler earthworm (Eudrilus eugeniae). Org. Agric., 2020, 10(3), 395-407.
[http://dx.doi.org/10.1007/s13165-020-00284-5]
[30]
Ekperusi, O.A.; Aigbodion, I.F. Bioremediation of heavy metals and petroleum hydrocarbons in diesel contaminated soil with the earthworm: Eudrilus eugeniae. Springerplus, 2015, 4(1), 540.
[http://dx.doi.org/10.1186/s40064-015-1328-5] [PMID: 26413446]
[31]
Paul, S.; Balakrishnan, S.; Arumugaperumal, A.; Lathakumari, S.; Syamala, S.S.; Arumugaswami, V.; Sivasubramaniam, S. The transcriptome of anterior regeneration in earthworm Eudrilus eugeniae. Mol. Biol. Rep., 2021, 48(1), 259-283.
[http://dx.doi.org/10.1007/s11033-020-06044-8] [PMID: 33306150]
[32]
Allec, S.I.; Sun, Y.; Sun, J.; Chang, C.A.; Wong, B.M. Chang C-eA, Wong BM. Heterogeneous CPU+ GPU-enabled simulations for DFTB molecular dynamics of large chemical and biological systems. J. Chem. Theory Comput., 2019, 15(5), 2807-2815.
[http://dx.doi.org/10.1021/acs.jctc.8b01239] [PMID: 30916958]
[33]
Bhattacharya, S.; Asati, V.; Mishra, M.; Das, R.; Kashaw, V.; Kashaw, S.K. Integrated computational approach on sodium-glucose co-transporter 2 (SGLT2) Inhibitors for the development of novel antidiabetic agents. J. Mol. Struct., 2021, 1227, 129511.
[http://dx.doi.org/10.1016/j.molstruc.2020.129511]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy