Generic placeholder image

Current Drug Discovery Technologies

Editor-in-Chief

ISSN (Print): 1570-1638
ISSN (Online): 1875-6220

Review Article

Cancer Chemotherapy via Natural Bioactive Compounds

Author(s): Kalyani Pathak*, Manash P. Pathak, Riya Saikia, Urvashee Gogoi, Jon J. Sahariah, James H. Zothantluanga, Abhishek Samanta and Aparoop Das

Volume 19, Issue 4, 2022

Published on: 10 May, 2022

Article ID: e310322202888 Pages: 20

DOI: 10.2174/1570163819666220331095744

Price: $65

conference banner
Abstract

Background: Cancer-induced mortality is increasingly prevalent globally, which skyrocketed the necessity to discover new/novel, safe and effective anticancer drugs. Cancer is characterized by the continuous multiplication of cells in the human, which is unable to control. Scientific research is drawing its attention toward naturally-derived bioactive compounds as they have fewer side effects compared to the current synthetic drugs used for chemotherapy.

Objective: Drugs isolated from natural sources and their role in the manipulation of epigenetic markers in cancer are discussed briefly in this review article.

Methods: With advancing medicinal plant biotechnology and microbiology in the past century, several anticancer phytomedicines were developed. Modern pharmacopeia contains at least 25% herbal-based remedies, including clinically used anticancer drugs. These drugs mainly include the podophyllotoxin derivatives vinca alkaloids, curcumin, mistletoe plant extracts, taxanes, camptothecin, combretastatin, and colchicine artesunate, homoharringtonine, ellipticine, roscovitine, maytansine, tapsigargin,and bruceantin.

Results: Compounds (psammaplin, didemnin, dolastin, ecteinascidin, and halichondrin) isolated from marine sources and animals such as microalgae, cyanobacteria, heterotrophic bacteria, invertebrates. They have been evaluated for their anticancer activity on cells and experimental animal models and used chemotherapy.Drug-induced manipulation of epigenetic markers plays an important role in the treatment of cancer.

Conclusion: The development of a new drug from isolated bioactive compounds of plant sources has been a feasible way to lower the toxicity and increase their effectiveness against cancer. Potential anticancer therapeutic leads obtained from various ethnomedicinal plants, foods, marine, and microorganisms are showing effective yet realistically safe pharmacological activity. This review will highlight important plant-based bioactive compounds like curcumin, stilbenes, terpenes, other polyphenolic phyto-compounds, and structurally related families that are used to prevent/ ameliorate cancer. However, a contribution from all possible fields of science is still a prerequisite for discovering safe and effective anticancer drugs.

Keywords: Bioactive, cancer, chemotherapy, neoplasm, vincristine, curcumin.

[1]
Bray, F.; Ren, J.S.; Masuyer, E.; Ferlay, J. Global estimates of cancer prevalence for 27 sites in the adult population in 2008. Int. J. Cancer, 2013, 132(5), 1133-1145.
[http://dx.doi.org/10.1002/ijc.27711] [PMID: 22752881]
[2]
Ferlay, J.; Shin, H.R.; Bray, F.; Forman, D.; Mathers, C.; Parkin, D.M. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer, 2010, 127(12), 2893-2917.
[http://dx.doi.org/10.1002/ijc.25516] [PMID: 21351269]
[3]
Ferlay, J.; Soerjomataram, I.; Dikshit, R. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[4]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[5]
Snellenberg, S.; Cillessen, S.A.; Van Criekinge, W. Methylation-mediated repression of PRDM14 contributes to apoptosis evasion in HPV-positive cancers. Carcinogenesis, 2014, 35(11), 2611-2618.
[http://dx.doi.org/10.1093/carcin/bgu197] [PMID: 25233927]
[6]
Redondo-Blanco, S.; Fernandez, J.; Gutierrez-del-Rio, I.; Villar, C.J.; Lombo, F. New insights toward colorectal cancer chemotherapy using natural bioactive compounds. Front. Pharmacol., 2017, 8, 109.
[http://dx.doi.org/10.3389/fphar.2017.00109]
[7]
Baraya, Y.S.; Wong, K.K.; Yaacob, N.S. The Immunomodulatory Potential of Selected Bioactive Plant-Based Compounds in Breast Cancer: A Review. Anticancer. Agents Med. Chem., 2017, 17(6), 770-783.
[http://dx.doi.org/10.2174/1871520616666160817111242] [PMID: 27539316]
[8]
Reddivari, L.; Charepalli, V.; Radhakrishnan, S. Grape compounds suppress colon cancer stem cells in vitro and in a rodent model of colon carcinogenesis. BMC Compl Alterna Medi, 2016, 16, 278.
[http://dx.doi.org/10.1186/s12906-016-1254-2]
[9]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[10]
Shigematsu, H.; Gazdar, A.F. Somatic mutations of epidermal growth factor receptor signaling pathway in lung cancers. Int. J. Cancer, 2006, 118(2), 257-262.
[http://dx.doi.org/10.1002/ijc.21496] [PMID: 16231326]
[11]
Leone, F.; Cavalloni, G.; Pignochino, Y. Somatic mutations of epidermal growth factor receptor in bile duct and gallbladder carcinoma. Clin. Cancer Res., 2006, 12(6), 1680-1685.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1692] [PMID: 16551849]
[12]
Xiang, Z.; Zhao, Y.; Mitaksov, V. Identification of somatic JAK1 mutations in patients with acute myeloid leukemia. Blood, 2008, 111(9), 4809-4812.
[http://dx.doi.org/10.1182/blood-2007-05-090308] [PMID: 18160671]
[13]
Foulds, C.E. Disrupting a negative feedback loop drives endocrine therapy-resistant breast cancer. Proc. Natl. Acad. Sci. USA, 2018, 115(33), 8236-8238.
[http://dx.doi.org/10.1073/pnas.1811263115] [PMID: 30082387]
[14]
Cooper, G.M.; Hausman, R.E. The cell: A molecular approach, 2004. Available from: www.ncbi.nlm.nih.gov/books/NBK9839
[15]
Chen, Z.; Fan, Z.; Dou, X. Inactivation of tumor suppressor gene Clusterin leads to hyperactivation of TAK1-NF-κB signaling axis in lung cancer cells and denotes a therapeutic opportunity. Theranostics, 2020, 10(25), 11520-11534.
[http://dx.doi.org/10.7150/thno.44829] [PMID: 33052230]
[16]
Li, Y.; Li, S.; Meng, X.; Gan, R.Y.; Zhang, J.J.; Li, H.B. Dietary Natural Products for Prevention and Treatment of Breast Cancer. Nutrients, 2017, 9(7), 1-38.
[http://dx.doi.org/10.3390/nu9070728] [PMID: 28698459]
[17]
Strunk, M.A.; Zopf, E.M.; Steck, J.; Hamacher, S.; Hallek, M.; Baumann, F.T. Effects of kyusho jitsu on physical activity-levels and quality of life in breast cancer patients. In Vivo, 2018, 32(4), 819-824.
[http://dx.doi.org/10.21873/invivo.11313] [PMID: 29936464]
[18]
Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin., 2011, 61(2), 69-90.
[http://dx.doi.org/10.3322/caac.20107] [PMID: 21296855]
[19]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin., 2018, 68(1), 7-30.
[http://dx.doi.org/10.3322/caac.21442] [PMID: 29313949]
[20]
Chen, L.; Li, C.I. Racial disparities in breast cancer diagnosis and treatment by hormone receptor and HER2 status. Cancer Epidemiol. Biomarkers Prev., 2015, 24(11), 1666-1672.
[http://dx.doi.org/10.1158/1055-9965.EPI-15-0293] [PMID: 26464428]
[21]
Ko, E.Y.; Moon, A. Natural products for chemoprevention of breast cancer. J. Cancer Prev., 2015, 20(4), 223-231.
[http://dx.doi.org/10.15430/JCP.2015.20.4.223] [PMID: 26734584]
[22]
Kamaruzman, N.I.; Tiash, S.; Ashaie, M.; Chowdhury, E.H. siRNAs targeting growth factor receptor and anti-apoptotic genes synergistically kill breast cancer cells through inhibition of MAPK and PI-3 kinase pathways. Biomedicines, 2018, 6(3), 1-17.
[http://dx.doi.org/10.3390/biomedicines6030073] [PMID: 29932151]
[23]
Singh, S.K.; Singh, S.; Lillard, J.W., Jr; Singh, R. Drug delivery approaches for breast cancer. Int. J. Nanomedicine, 2017, 12, 6205-6218.
[http://dx.doi.org/10.2147/IJN.S140325] [PMID: 28883730]
[24]
Mitra, S.; Dash, R. Natural products for the management and prevention of breast cancer. Evid. Based Complement. Alternat. Med., 2018, 2018, 8324696.
[http://dx.doi.org/10.1155/2018/8324696] [PMID: 29681985]
[25]
Ijaz, S.; Akhtar, N.; Khan, M.S. Plant derived anticancer agents: A green approach towards skin cancers. Biomed. Pharmacother., 2018, 103, 1643-1651.
[http://dx.doi.org/10.1016/j.biopha.2018.04.113] [PMID: 29864953]
[26]
Aung, T.N.; Qu, Z.; Kortschak, R.D.; Adelson, D.L. Understanding the effectiveness of natural compound mixtures in cancer through their molecular mode of action. Int. J. Mol. Sci., 2017, 18(3), E656.
[http://dx.doi.org/10.3390/ijms18030656] [PMID: 28304343]
[27]
Aghapour, F.; Moghadamnia, A.A.; Nicolini, A. Quercetin conjugated with silica nanoparticles inhibits tumor growth in MCF-7 breast cancer cell lines. Biochem. Biophys. Res. Commun., 2018, 500(4), 860-865.
[http://dx.doi.org/10.1016/j.bbrc.2018.04.174] [PMID: 29698680]
[28]
Li, J.; Zhu, F.; Lubet, R.A. Quercetin-3-methyl ether inhibits lapatinib-sensitive and -resistant breast cancer cell growth by inducing G(2)/M arrest and apoptosis. Mol. Carcinog., 2013, 52(2), 134-143.
[http://dx.doi.org/10.1002/mc.21839] [PMID: 22086611]
[29]
Anand David, A.V.; Arulmoli, R.; Parasuraman, S. Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacogn. Rev., 2016, 10(20), 84-89.
[http://dx.doi.org/10.4103/0973-7847.194044] [PMID: 28082789]
[30]
Manouchehri, J.M.; Turner, K.A.; Kalafatis, M. TRAIL-induced apoptosis in TRAIL-resistant breast carcinoma through quercetin cotreatment. Breast Cancer (Auckl.), 2018, 12, 1178223417749855.
[http://dx.doi.org/10.1177/1178223417749855] [PMID: 29434473]
[31]
Patra, A.; Satpathy, S.; Shenoy, A.K.; Bush, J.A.; Kazi, M.; Hussain, M.D. Formulation and evaluation of mixed polymeric micelles of quercetin for treatment of breast, ovarian, and multidrug resistant cancers. Int. J. Nanomedicine, 2018, 13, 2869-2881.
[http://dx.doi.org/10.2147/IJN.S153094] [PMID: 29844670]
[32]
Wang, R.; Yang, L.; Li, S. Quercetin inhibits breast cancer stem cells via downregulation of aldehyde dehydrogenase 1A1 (ALDH1A1), chemokine receptor type 4 (CXCR4), Mucin 1 (MUC1), and epithelial cell adhesion molecule (EpCAM). Med. Sci. Monit., 2018, 24, 412-420.
[http://dx.doi.org/10.12659/MSM.908022] [PMID: 29353288]
[33]
Lan, J.; Huang, L.; Lou, H. Design and synthesis of novel C14-urea-tetrandrine derivatives with potent anti-cancer activity. Eur. J. Med. Chem., 2018, 143, 1968-1980.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.007] [PMID: 29133049]
[34]
Xu, W.; Debeb, B.G.; Lacerda, L.; Li, J.; Woodward, W.A. Tetrandrine, a compound common in chinese traditional medicine, preferentially kills breast cancer tumor initiating cells (TICs) in vitro. Cancers (Basel), 2011, 3(2), 2274-2285.
[http://dx.doi.org/10.3390/cancers3022274] [PMID: 24212809]
[35]
Jiang, M.; Zhang, R.; Wang, Y. Reduction-sensitive paclitaxel prodrug self-assembled nanoparticles with tetrandrine effectively promote synergistic therapy against drug-sensitive and multidrug-resistant breast cancer. Mol. Pharm., 2017, 14(11), 3628-3635.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00381] [PMID: 28895735]
[36]
Chen, H.Y.; Chen, X.Y. Tetrandrine reversed the resistance of tamoxifen in human breast cancer MCF-7/TAM cells: an experimental research. Zhongguo Zhong Xi Yi Jie He Za Zhi, 2013, 33(4), 488-491.
[PMID: 23841269]
[37]
Wong, V.K.W.; Zeng, W.; Chen, J. Tetrandrine, an activator of autophagy, induces autophagic cell death via PKC-α inhibition and mTOR-dependent mechanisms. Front. Pharmacol., 2017, 8, 351.
[http://dx.doi.org/10.3389/fphar.2017.00351] [PMID: 28642707]
[38]
Kim, H.Y.; Choi, T.W.; Kim, H.J. A methylene chloride fraction of Saururus chinensis induces apoptosis through the activation of caspase-3 in prostate and breast cancer cells. Phytomedicine, 2011, 18(7), 567-574.
[http://dx.doi.org/10.1016/j.phymed.2010.10.013] [PMID: 21111586]
[39]
Chung, B.S.; Shin, M.G. Dictionary of Korean folk medicine; Young Lim Sa: Seoul, 1990, pp. 813-814.
[40]
Bae, H.B.; Li, M.; Son, J.K. Sauchinone, a lignan from Saururus chinensis, reduces tumor necrosis factor-alpha production through the inhibition of c-raf/MEK1/2/ERK 1/2 pathway activation. Int. Immunopharmacol., 2010, 10(9), 1022-1028.
[http://dx.doi.org/10.1016/j.intimp.2010.06.001] [PMID: 20601190]
[41]
Cagnol, S.; Chambard, J.C. ERK and cell death: mechanisms of ERK-induced cell death--apoptosis, autophagy and senescence. FEBS J., 2010, 277(1), 2-21.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07366.x] [PMID: 19843174]
[42]
Escárcega, R.O.; Fuentes-Alexandro, S.; García-Carrasco, M.; Gatica, A.; Zamora, A. The transcription factor nuclear factor-kappa B and cancer. Clin. Oncol., 2007, 19(2), 154-161.
[43]
Hwang, B.Y.; Lee, J.H.; Jung, H.S. Sauchinone, a lignan from Saururus chinensis, suppresses iNOS expression through the inhibition of transactivation activity of RelA of NF-kappaB. Planta Med., 2003, 69(12), 1096-1101.
[http://dx.doi.org/10.1055/s-2003-45189] [PMID: 14750024]
[44]
Kim, E.S.; Jeong, C.S.; Moon, A. Genipin, a constituent of Gardenia jasminoides Ellis, induces apoptosis and inhibits invasion in MDA-MB-231 breast cancer cells. Oncol. Rep., 2012, 27(2), 567-572.
[PMID: 22020372]
[45]
Koriyama, Y.; Chiba, K.; Yamazaki, M.; Suzuki, H.; Muramoto, K.; Kato, S. Long-acting genipin derivative protects retinal ganglion cells from oxidative stress models in vitro and in vivo through the Nrf2/antioxidant response element signaling pathway. J. Neurochem., 2010, 115(1), 79-91.
[http://dx.doi.org/10.1111/j.1471-4159.2010.06903.x] [PMID: 20681953]
[46]
Yang, X.; Yao, J.; Luo, Y.; Han, Y.; Wang, Z.; Du, L. P38 MAP kinase mediates apoptosis after genipin treatment in non-small-cell lung cancer H1299 cells via a mitochondrial apoptotic cascade. J. Pharmacol. Sci., 2013, 121(4), 272-281.
[http://dx.doi.org/10.1254/jphs.12234FP] [PMID: 23603895]
[47]
Bhattacharya, S.; Ahir, M.; Patra, P. PEGylated-thymoquinone-nanoparticle mediated retardation of breast cancer cell migration by deregulation of cytoskeletal actin polymerization through miR-34a. Biomaterials, 2015, 51, 91-107.
[http://dx.doi.org/10.1016/j.biomaterials.2015.01.007] [PMID: 25771001]
[48]
Dehghani, H.; Hashemi, M.; Entezari, M.; Mohsenifar, A. The comparison of anticancer activity of thymoquinone and nanothymoquinone on human breast adenocarcinoma. Iran. J. Pharm. Res., 2015, 14(2), 539-546.
[PMID: 25901162]
[49]
Motaghed, M.; Al-Hassan, F.M.; Hamid, S.S. Thymoquinone regulates gene expression levels in the estrogen metabolic and interferon pathways in MCF7 breast cancer cells. Int. J. Mol. Med., 2014, 33(1), 8-16.
[http://dx.doi.org/10.3892/ijmm.2013.1563] [PMID: 24270600]
[50]
Odeh, F.; Ismail, S.I.; Abu-Dahab, R.; Mahmoud, I.S.; Al Bawab, A. Thymoquinone in liposomes: a study of loading efficiency and biological activity towards breast cancer. Drug Deliv., 2012, 19(8), 371-377.
[http://dx.doi.org/10.3109/10717544.2012.727500] [PMID: 23043626]
[51]
Woo, C.C.; Hsu, A.; Kumar, A.P.; Sethi, G.; Tan, K.H. Thymoquinone inhibits tumor growth and induces apoptosis in a breast cancer xenograft mouse model: the role of p38 MAPK and ROS. PLoS One, 2013, 8(10), e75356.
[http://dx.doi.org/10.1371/journal.pone.0075356] [PMID: 24098377]
[52]
Motaghed, M.; Al-Hassan, F.M.; Hamid, S.S. Cellular responses with thymoquinone treatment in human breast cancer cell line MCF-7. Pharmacognosy Res., 2013, 5(3), 200-206.
[http://dx.doi.org/10.4103/0974-8490.112428] [PMID: 23900121]
[53]
World Health Organization. GLOBOCAN 2000: Cancer incidence, mortality and prevalence worldwide. 2001.. Available from: http://www-dep.iarc.fr/globocan/globocan.html[23.03.2021]
[54]
Asaduzzaman Khan, M.; Tania, M.; Fu, S.; Fu, J. Thymoquinone, as an anticancer molecule: from basic research to clinical investigation. Oncotarget, 2017, 8(31), 51907-51919.
[http://dx.doi.org/10.18632/oncotarget.17206] [PMID: 28881699]
[55]
Strassheim, D.; Shafer, S.H.; Phelps, S.H.; Williams, C.L. Small cell lung carcinoma exhibits greater phospholipase C-beta1 expression and edelfosine resistance compared with non-small cell lung carcinoma. Cancer Res., 2000, 60(10), 2730-2736.
[PMID: 10825148]
[56]
Clegg, A.; Scott, D.A.; Hewitson, P.; Sidhu, M.; Waugh, N. Clinical and cost effectiveness of paclitaxel, docetaxel, gemcitabine, and vinorelbine in non-small cell lung cancer: a systematic review. Thorax, 2002, 57(1), 20-28.
[http://dx.doi.org/10.1136/thorax.57.1.20] [PMID: 11809985]
[57]
Toyooka, S.; Toyooka, K.O.; Maruyama, R. DNA methylation profiles of lung tumors. Mol. Cancer Ther., 2001, 1(1), 61-67.
[PMID: 12467239]
[58]
Chan, D.; Gera, L.; Stewart, J. Bradykinin antagonist dimer, CU201, inhibits the growth of human lung cancer cell lines by a “biased agonist” mechanism. Proc. Natl. Acad. Sci. USA, 2002, 99(7), 4608-4613.
[http://dx.doi.org/10.1073/pnas.072077299] [PMID: 11930011]
[59]
Young, L.C.; Campling, B.G.; Cole, S.P.C.; Deeley, R.G.; Gerlach, J.H. Multidrug resistance proteins MRP3, MRP1, and MRP2 in lung cancer: correlation of protein levels with drug response and messenger RNA levels. Clin. Cancer Res., 2001, 7(6), 1798-1804.
[PMID: 11410522]
[60]
Hecht, S.S. Tobacco smoke carcinogens and lung cancer. J. Natl. Cancer Inst., 1999, 91(14), 1194-1210.
[http://dx.doi.org/10.1093/jnci/91.14.1194] [PMID: 10413421]
[61]
Alberg, A.J.; Samet, J.M. Epidemiology of lung cancer. Chest, 2003, 123(1)(Suppl.), 21S-49S.
[http://dx.doi.org/10.1378/chest.123.1_suppl.21S] [PMID: 12527563]
[62]
Tang, W.; Hemm, I.; Bertram, B. Recent development of antitumor agents from chinese herbal medicines; part I. Low molecular compounds. Planta Med., 2003, 69(2), 97-108.
[http://dx.doi.org/10.1055/s-2003-37718] [PMID: 12624812]
[63]
Barthelmes, H.U.; Niederberger, E.; Roth, T. Lycobetaine acts as a selective topoisomerase II beta poison and inhibits the growth of human tumour cells. Br. J. Cancer, 2001, 85(10), 1585-1591.
[http://dx.doi.org/10.1054/bjoc.2001.2142] [PMID: 11720449]
[64]
American Cancer Society. Cancer Facts & Figures, 2004. Available from: http://www.cancer.org[24.03.2021]
[65]
Wang, P.; Shi, G.B.; Song, G.Q.; Chen, K.X.; Ji, R.Y. Assignment of proton resonances and conformational characterization of oligodeoxyribonucleic acid d (CCGTACGG) in solution. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao , 1996, 28(6), 703-705.
[66]
Liu, J.; Yang, S.L.; Xu, B. Characteristics of the interaction of lycobetaine with DNA. Chung Kuo Yao Li Hsueh Pao, 1989, 10(5), 437-442.
[PMID: 2618733]
[67]
Eckardt, J.; Eckhardt, G.; Villalona-Calero, M.; Drengler, R.; Von Hoff, D. New anticancer agents in clinical development. Oncology (Williston Park), 1995, 9(11), 1191-1199.
[PMID: 8703688]
[68]
Kimura, Y.; Okuda, H. Effects of naturally occurring stilbene glucosides from medicinal plants and wine, on tumour growth and lung metastasis in Lewis lung carcinoma-bearing mice. J. Pharm. Pharmacol., 2000, 52(10), 1287-1295.
[http://dx.doi.org/10.1211/0022357001777270] [PMID: 11092574]
[69]
Gusman, J.; Malonne, H.; Atassi, G. A reappraisal of the potential chemopreventive and chemotherapeutic properties of resveratrol. Carcinogenesis, 2001, 22(8), 1111-1117.
[http://dx.doi.org/10.1093/carcin/22.8.1111] [PMID: 11470738]
[70]
Kimura, Y.; Okuda, H. Resveratrol isolated from Polygonum cuspidatum root prevents tumor growth and metastasis to lung and tumor-induced neovascularization in Lewis lung carcinoma-bearing mice. J. Nutr., 2001, 131(6), 1844-1849.
[http://dx.doi.org/10.1093/jn/131.6.1844] [PMID: 11385077]
[71]
Mans, D.R.; da Rocha, A.B.; Schwartsmann, G. Anti-cancer drug discovery and development in Brazil: targeted plant collection as a rational strategy to acquire candidate anti-cancer compounds. Oncologist, 2000, 5(3), 185-198.
[http://dx.doi.org/10.1634/theoncologist.5-3-185] [PMID: 10884497]
[72]
Rowinsky, E.K.; Noe, D.A.; Ettinger, D.S. Phase I and pharmacological study of the pulmonary cytotoxin 4-ipomeanol on a single dose schedule in lung cancer patients: hepatotoxicity is dose limiting in humans. Cancer Res., 1993, 53(8), 1794-1801.
[PMID: 8467498]
[73]
Falzon, M.; McMahon, J.B.; Schuller, H.M.; Boyd, M.R. Metabolic activation and cytotoxicity of 4-ipomeanol in human non-small cell lung cancer lines. Cancer Res., 1986, 46(7), 3484-3489.
[PMID: 3011249]
[74]
Trela, B.A.; Carlson, G.P.; Turek, J.; Rebar, A.; Mathews, J.M. Effect of carbon monoxide on the cytochrome P-450-mediated activation of 4-ipomeanol by the isolated perfused rabbit lung. J. Toxicol. Environ. Health, 1989, 27(3), 341-350.
[http://dx.doi.org/10.1080/15287398909531305] [PMID: 2754758]
[75]
Boyd, M.R.; Burka, L.T. In vivo studies on the relationship between target organ alkylation and the pulmonary toxicity of a chemically reactive metabolite of 4-ipomeanol. J. Pharmacol. Exp. Ther., 1978, 207(3), 687-697.
[PMID: 731424]
[76]
Alexandrova, R.; Alexandrov, I.; Velcheva, M.; Varadinova, T. Phytoproducts and cancer. Exp Pathol Parasitol, 2000, 4, 15-26.
[77]
Wilkoff, L.J.; Dulmadge, E.A.; Vasanthakumar, G.; Donahue, J.P. Etoposide-resistant human colon and lung adenocarcinoma cell lines exhibit sensitivity to homoharringtonine. Cancer Chemother. Pharmacol., 1993, 33(2), 149-153.
[http://dx.doi.org/10.1007/BF00685333] [PMID: 8261574]
[78]
Efferth, T.; Sauerbrey, A.; Halatsch, M.E.; Ross, D.D.; Gebhart, E. Molecular modes of action of cephalotaxine and homoharringtonine from the coniferous tree Cephalotaxus hainanensis in human tumor cell lines. Naunyn Schmiedebergs Arch. Pharmacol., 2003, 367(1), 56-67.
[http://dx.doi.org/10.1007/s00210-002-0632-0] [PMID: 12616342]
[79]
Roth, MT; Cardin, DB; Berlin, JD Recent advances in the treatment of pancreatic cancer. F1000Res 2020; 9 F1000 Faculty Rev-13..
[http://dx.doi.org/10.12688/f1000research.21981.1]
[80]
Mizrahi, J.D.; Surana, R.; Valle, J.W.; Shroff, R.T. Pancreatic cancer. Lancet, 2020, 395(10242), 2008-2020.
[http://dx.doi.org/10.1016/S0140-6736(20)30974-0] [PMID: 32593337]
[81]
Goral, V. Pancreatic Cancer: Pathogenesis and Diagnosis. Asian Pac. J. Cancer Prev., 2015, 16(14), 5619-5624.
[http://dx.doi.org/10.7314/APJCP.2015.16.14.5619] [PMID: 26320426]
[82]
Midha, S.; Chawla, S.; Garg, P.K. Modifiable and non-modifiable risk factors for pancreatic cancer: A review. Cancer Lett., 2016, 381(1), 269-277.
[http://dx.doi.org/10.1016/j.canlet.2016.07.022] [PMID: 27461582]
[83]
Vincent, A.; Herman, J.; Schulick, R.; Hruban, R.H.; Goggins, M. Pancreatic cancer. Lancet, 2011, 378(9791), 607-620.
[http://dx.doi.org/10.1016/S0140-6736(10)62307-0] [PMID: 21620466]
[84]
Ríos, J.L.; Máñez, S. New Pharmacological Opportunities for Betulinic Acid. Planta Med., 2018, 84(1), 8-19.
[http://dx.doi.org/10.1055/s-0043-123472] [PMID: 29202513]
[85]
An, T.; Zha, W.; Zi, J. Biotechnological production of betulinic acid and derivatives and their applications. Appl. Microbiol. Biotechnol., 2020, 104(8), 3339-3348.
[http://dx.doi.org/10.1007/s00253-020-10495-1] [PMID: 32112133]
[86]
Cheng, Y.; Shao, Y.; Yan, W. Solubilities of betulinic acid in thirteen organic solvents at different temperatures. J. Chem. Eng. Data, 2011, 56(12), 4587-4591.
[http://dx.doi.org/10.1021/je200531k]
[87]
Gauthier, C.; Legault, J.; Lebrun, M.; Dufour, P.; Pichette, A. Glycosidation of lupane-type triterpenoids as potent in vitro cytotoxic agents. Bioorg. Med. Chem., 2006, 14(19), 6713-6725.
[http://dx.doi.org/10.1016/j.bmc.2006.05.075] [PMID: 16787747]
[88]
Aiken, C.; Chen, C.H. Betulinic acid derivatives as HIV-1 antivirals. Trends Mol. Med., 2005, 11(1), 31-36.
[http://dx.doi.org/10.1016/j.molmed.2004.11.001] [PMID: 15649820]
[89]
Rajendran, P.; Jaggi, M.; Singh, M.K.; Mukherjee, R.; Burman, A.C. Pharmacological evaluation of C-3 modified Betulinic acid derivatives with potent anticancer activity. Invest. New Drugs, 2008, 26(1), 25-34.
[http://dx.doi.org/10.1007/s10637-007-9081-4] [PMID: 17851638]
[90]
Silva, F.S.; Oliveira, P.J.; Duarte, M.F. Oleanolic, ursolic, and betulinic acids as food supplements or pharmaceutical agents for type 2 diabetes: promise or illusion? J. Agric. Food Chem., 2016, 64(15), 2991-3008.
[http://dx.doi.org/10.1021/acs.jafc.5b06021] [PMID: 27012451]
[91]
Kim, J.; Lee, Y.S.; Kim, C.S.; Kim, J.S. Betulinic acid has an inhibitory effect on pancreatic lipase and induces adipocyte lipolysis. Phytother. Res., 2012, 26(7), 1103-1106.
[http://dx.doi.org/10.1002/ptr.3672] [PMID: 22114077]
[92]
Gautam, R.; Jachak, S.M. Recent developments in anti-inflammatory natural products. Med. Res. Rev., 2009, 29(5), 767-820.
[http://dx.doi.org/10.1002/med.20156] [PMID: 19378317]
[93]
Moghaddam, M.G.; Ahmad, J.B.H.; Samzadeh-Kermani, A. Biological activity of betulinic acid: a review. Pharmacol. Pharm., 2012, 3, 119-123.
[http://dx.doi.org/10.4236/pp.2012.32018]
[94]
Waechter, F.; da Silva, G.N.S.; Willig, J.B. Design, synthesis and biological evaluation of betulinic acid derivatives as new antitumor agents for leukemia. Anticancer. Agents Med. Chem., 2017, 17(13), 1777-1785.
[PMID: 28403779]
[95]
Pandita, A.; Kumar, B.; Manvati, S.; Vaishnavi, S.; Singh, S.K.; Bamezai, R.N. Synergistic combination of gemcitabine and dietary molecule induces apoptosis in pancreatic cancer cells and down regulates PKM2 expression. PLoS One, 2014, 9(9), e107154.
[http://dx.doi.org/10.1371/journal.pone.0107154] [PMID: 25197966]
[96]
Pandita, A.; Manvati, S.; Singh, S.K.; Vaishnavi, S.; Bamezai, R.N. Combined effect of microRNA, nutraceuticals and drug on pancreatic cancer cell lines. Chem. Biol. Interact., 2015, 233, 56-64.
[http://dx.doi.org/10.1016/j.cbi.2015.03.018] [PMID: 25841339]
[97]
Arai, M.A.; Tateno, C.; Hosoya, T.; Koyano, T.; Kowithayakorn, T.; Ishibashi, M. Hedgehog/GLI-mediated transcriptional inhibitors from Zizyphus cambodiana. Bioorg. Med. Chem., 2008, 16(21), 9420-9424.
[http://dx.doi.org/10.1016/j.bmc.2008.09.053] [PMID: 18842418]
[98]
Jiang, M.; Zhou, Y.; Yang, M. Influence of betulinic acid on proliferation, migration, cell cycle and apoptosis of pancreatic cancer cells. Zhongguo Zhongyao Zazhi, 2010, 35(22), 3056-3059.
[PMID: 21355282]
[99]
Kutkowska, J.; Strzadala, L.; Rapak, A. Sorafenib in combination with betulinic acid synergistically induces cell cycle arrest and inhibits clonogenic activity in pancreatic ductal adenocarcinoma cells. Int. J. Mol. Sci., 2018, 19(10), 3234.
[http://dx.doi.org/10.3390/ijms19103234] [PMID: 30347681]
[100]
Gao, Y.; Jia, Z.; Kong, X. Combining betulinic acid and mithramycin a effectively suppresses pancreatic cancer by inhibiting proliferation, invasion, and angiogenesis. Cancer Res., 2011, 71(15), 5182-5193.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2016] [PMID: 21673052]
[101]
Chintharlapalli, S.; Papineni, S.; Liu, S. 2-cyano-lup-1-en-3-oxo-20-oic acid, a cyano derivative of betulinic acid, activates peroxisome proliferator-activated receptor gamma in colon and pancreatic cancer cells. Carcinogenesis, 2007, 28(11), 2337-2346.
[http://dx.doi.org/10.1093/carcin/bgm189] [PMID: 17724373]
[102]
Li, L.; Du, Y.; Kong, X. Lamin B1 is a novel therapeutic target of betulinic acid in pancreatic cancer. Clin. Cancer Res., 2013, 19(17), 4651-4661.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-3630] [PMID: 23857605]
[103]
Sun, L.; Cao, J.; Chen, K. Betulinic acid inhibits stemness and EMT of pancreatic cancer cells via activation of AMPK signaling. Int. J. Oncol., 2019, 54(1), 98-110.
[PMID: 30365057]
[104]
Padhye, S.; Ahmad, A.; Oswal, N.; Sarkar, F.H. Emerging role of Garcinol, the antioxidant chalcone from Garcinia indica Choisy and its synthetic analogs. J. Hematol. Oncol., 2009, 2, 38.
[http://dx.doi.org/10.1186/1756-8722-2-38] [PMID: 19725977]
[105]
Krishnamurthy, N.; Lewis, Y.S.; Ravindranath, B. On the structures of garcinol, isogarcinol and camboginol. Tetrahedron Lett., 1981, 22(8), 793-796.
[http://dx.doi.org/10.1016/0040-4039(81)80154-2]
[106]
Schobert, R.; Biersack, B. Chemical and biological aspects of garcinol and isogarcinol: Recent developments. Chem. Biodivers., 2019, 16(9), e1900366.
[http://dx.doi.org/10.1002/cbdv.201900366] [PMID: 31386266]
[107]
Espirito Santo, B.L.S.D.; Santana, L.F.; Kato, Junior W.H. Medicinal potential of garcinia species and their compounds. Molecules, 2020, 25(19), 4513.
[http://dx.doi.org/10.3390/molecules25194513] [PMID: 33019745]
[108]
Nayak, C.A.; Rastogi, N.K.; Raghavarao, K.S.M.S. Bioactive constituents present in Garcinia indica Choisy and its potential food applications: A review. Int. J. Food Prop., 2010, 13(3), 441-453.
[http://dx.doi.org/10.1080/10942910802626754]
[109]
Aggarwal, V.; Tuli, H.S.; Kaur, J. Garcinol exhibits anti-neoplastic effects by targeting diverse oncogenic factors in tumor cells. Biomedicines, 2020, 8(5), 103.
[http://dx.doi.org/10.3390/biomedicines8050103] [PMID: 32365899]
[110]
Yamaguchi, F.; Saito, M.; Ariga, T.; Yoshimura, Y.; Nakazawa, H. Free radical scavenging activity and antiulcer activity of garcinol from Garcinia indica fruit rind. J. Agric. Food Chem., 2000, 48(6), 2320-2325.
[http://dx.doi.org/10.1021/jf990908c] [PMID: 10888544]
[111]
Hong, J.; Sang, S.; Park, H.J. Modulation of arachidonic acid metabolism and nitric oxide synthesis by garcinol and its derivatives. Carcinogenesis, 2006, 27(2), 278-286.
[http://dx.doi.org/10.1093/carcin/bgi208] [PMID: 16093250]
[112]
Hong, J.; Kwon, S.J.; Sang, S. Effects of garcinol and its derivatives on intestinal cell growth: Inhibitory effects and autoxidation-dependent growth-stimulatory effects. Free Radic. Biol. Med., 2007, 42(8), 1211-1221.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.01.016] [PMID: 17382202]
[113]
Iinuma, M.; Tosa, H.; Tanaka, T. Antibacterial activity of some Garcinia benzophenone derivatives against methicillin-resistant Staphylococcus aureus. Biol. Pharm. Bull., 1996, 19(2), 311-314.
[http://dx.doi.org/10.1248/bpb.19.311] [PMID: 8850331]
[114]
Balasubramanyam, K.; Altaf, M.; Varier, R.A. Polyisoprenylated benzophenone, garcinol, a natural histone acetyltransferase inhibitor, represses chromatin transcription and alters global gene expression. J. Biol. Chem., 2004, 279(32), 33716-33726.
[http://dx.doi.org/10.1074/jbc.M402839200] [PMID: 15155757]
[115]
Padhye, S.; Ahmad, A.; Oswal, N. Fluorinated 2′-hydroxychalcones as garcinol analogs with enhanced antioxidant and anticancer activities. Bioorg. Med. Chem. Lett., 2010, 20(19), 5818-5821.
[http://dx.doi.org/10.1016/j.bmcl.2010.07.128] [PMID: 20729081]
[116]
Parasramka, M.A.; Gupta, S.V. Garcinol inhibits cell proliferation and promotes apoptosis in pancreatic adenocarcinoma cells. Nutr. Cancer, 2011, 63(3), 456-465.
[http://dx.doi.org/10.1080/01635581.2011.535962] [PMID: 21462088]
[117]
Ahmad, A.; Wang, Z.; Wojewoda, C. Garcinol-induced apoptosis in prostate and pancreatic cancer cells is mediated by NF- kappaB signaling. Front. Biosci. (Elite Ed.), 2011, 3, 1483-1492.
[PMID: 21622152]
[118]
Pan, M.H.; Chang, W.L.; Lin-Shiau, S.Y.; Ho, C.T.; Lin, J.K. Induction of apoptosis by garcinol and curcumin through cytochrome c release and activation of caspases in human leukemia HL-60 cells. J. Agric. Food Chem., 2001, 49(3), 1464-1474.
[http://dx.doi.org/10.1021/jf001129v] [PMID: 11312881]
[119]
Parasramka, M.A.; Gupta, S.V. Synergistic effect of garcinol and curcumin on antiproliferative and apoptotic activity in pancreatic cancer cells. J. Oncol., 2012, 2012, 709739. [Erratum in: J Oncol 2019; 2019: 7469284
[http://dx.doi.org/10.1155/2012/709739] [PMID: 22685460]
[120]
Parasramka, M.A.; Ali, S.; Banerjee, S.; Deryavoush, T.; Sarkar, F.H.; Gupta, S. Garcinol sensitizes human pancreatic adenocarcinoma cells to gemcitabine in association with microRNA signatures. Mol. Nutr. Food Res., 2013, 57(2), 235-248.
[http://dx.doi.org/10.1002/mnfr.201200297] [PMID: 23293055]
[121]
Huang, C.C.; Lin, C.M.; Huang, Y.J. Garcinol downregulates Notch1 signaling via modulating miR-200c and suppresses oncogenic properties of PANC-1 cancer stem-like cells. Biotechnol. Appl. Biochem., 2017, 64(2), 165-173.
[http://dx.doi.org/10.1002/bab.1446] [PMID: 26400206]
[122]
Saadat, N.; Akhtar, S.; Goja, A. Dietary garcinol arrests pancreatic cancer in p53 and K-ras conditional mutant mouse model. Nutr. Cancer, 2018, 70(7), 1075-1087.
[http://dx.doi.org/10.1080/01635581.2018.1502327] [PMID: 30273070]
[123]
Jaiswal, N.; Akhtar, J.; Singh, S.P.; Ahsan, F. Badruddeen. An overview on genistein and its various formulations. Drug Res. (Stuttg.), 2019, 69(6), 305-313.
[http://dx.doi.org/10.1055/a-0797-3657] [PMID: 30517965]
[124]
Dixon, R.A.; Ferreira, D. Genistein. Phytochemistry, 2002, 60(3), 205-211.
[http://dx.doi.org/10.1016/S0031-9422(02)00116-4] [PMID: 12031439]
[125]
Ganai, A.A.; Farooqi, H. Bioactivity of genistein: A review of in vitro and in vivo studies. Biomed. Pharmacother., 2015, 76, 30-38.
[http://dx.doi.org/10.1016/j.biopha.2015.10.026] [PMID: 26653547]
[126]
Wu, J.G.; Ge, J.; Zhang, Y.P.; Yu, Y.; Zhang, X.Y. Solubility of genistein in water, methanol, ethanol, propan-2-ol, 1-butanol, and ethyl acetate from (280 to 333) K. J. Chem. Eng. Data, 2010, 55(11), 5286-5288.
[http://dx.doi.org/10.1021/je100261w]
[127]
Ruiz-Larrea, M.B.; Mohan, A.R.; Paganga, G.; Miller, N.J.; Bolwell, G.P.; Rice-Evans, C.A. Antioxidant activity of phytoestrogenic isoflavones. Free Radic. Res., 1997, 26(1), 63-70.
[http://dx.doi.org/10.3109/10715769709097785] [PMID: 9018473]
[128]
Yellayi, S.; Naaz, A.; Szewczykowski, M.A. The phytoestrogen genistein induces thymic and immune changes: a human health concern? Proc. Natl. Acad. Sci. USA, 2002, 99(11), 7616-7621.
[http://dx.doi.org/10.1073/pnas.102650199] [PMID: 12032332]
[129]
Qi, W.; Weber, C.R.; Wasland, K.; Savkovic, S.D. Genistein inhibits proliferation of colon cancer cells by attenuating a negative effect of epidermal growth factor on tumor suppressor FOXO3 activity. BMC Cancer, 2011, 11, 219.
[http://dx.doi.org/10.1186/1471-2407-11-219] [PMID: 21639915]
[130]
Vitolins, M.Z.; Anthony, M.; Burke, G.L. Soy protein isoflavones, lipids and arterial disease. Curr. Opin. Lipidol., 2001, 12(4), 433-437.
[http://dx.doi.org/10.1097/00041433-200108000-00010] [PMID: 11507329]
[131]
Deodato, B.; Altavilla, D.; Squadrito, G. Cardioprotection by the phytoestrogen genistein in experimental myocardial ischaemia-reperfusion injury. Br. J. Pharmacol., 1999, 128(8), 1683-1690.
[http://dx.doi.org/10.1038/sj.bjp.0702973] [PMID: 10588923]
[132]
Xiong, P.; Wang, R.; Zhang, X. Design, synthesis, and evaluation of genistein analogues as anti-cancer agents. Anticancer. Agents Med. Chem., 2015, 15(9), 1197-1203.
[http://dx.doi.org/10.2174/1871520615666150520142437] [PMID: 25991428]
[133]
Boros, L.G.; Bassilian, S.; Lim, S.; Lee, W.N. Genistein inhibits nonoxidative ribose synthesis in MIA pancreatic adenocarcinoma cells: a new mechanism of controlling tumor growth. Pancreas, 2001, 22(1), 1-7.
[http://dx.doi.org/10.1097/00006676-200101000-00001] [PMID: 11138960]
[134]
Bi, Y.L.; Min, M.; Shen, W.; Liu, Y. Genistein induced anticancer effects on pancreatic cancer cell lines involves mitochondrial apoptosis, G0/G1cell cycle arrest and regulation of STAT3 signalling pathway. Phytomedicine, 2018, 39, 10-16.
[http://dx.doi.org/10.1016/j.phymed.2017.12.001] [PMID: 29433670]
[135]
Bai, J.; Sata, N.; Nagai, H. Genistein-induced changes in gene expression in Panc 1 cells at physiological concentrations of genistein. Pancreas, 2004, 29(2), 93-98.
[http://dx.doi.org/10.1097/00006676-200408000-00002] [PMID: 15257099]
[136]
Xia, J.; Duan, Q.; Ahmad, A. Genistein inhibits cell growth and induces apoptosis through up-regulation of miR-34a in pancreatic cancer cells. Curr. Drug Targets, 2012, 13(14), 1750-1756.
[http://dx.doi.org/10.2174/138945012804545597] [PMID: 23140286]
[137]
Ma, J.; Cheng, L.; Liu, H. Genistein down-regulates miR-223 expression in pancreatic cancer cells. Curr. Drug Targets, 2013, 14(10), 1150-1156.
[http://dx.doi.org/10.2174/13894501113149990187] [PMID: 23834147]
[138]
Dias, D.A.; Urban, S.; Roessner, U. A historical overview of natural products in drug discovery. Metabolites, 2012, 2(2), 303-336.
[http://dx.doi.org/10.3390/metabo2020303] [PMID: 24957513]
[139]
Han, L.; Zhang, H.W.; Zhou, W.P.; Chen, G.M.; Guo, K.J. The effects of genistein on transforming growth factor-β1-induced invasion and metastasis in human pancreatic cancer cell line Panc-1 in vitro. Chin. Med. J. (Engl.), 2012, 125(11), 2032-2040.
[PMID: 22884073]
[140]
Büchler, P.; Reber, H.A.; Büchler, M.W.; Friess, H.; Lavey, R.S.; Hines, O.J. Antiangiogenic activity of genistein in pancreatic carcinoma cells is mediated by the inhibition of hypoxia-inducible factor-1 and the down-regulation of VEGF gene expression. Cancer, 2004, 100(1), 201-210.
[http://dx.doi.org/10.1002/cncr.11873] [PMID: 14692041]
[141]
Banerjee, S.; Zhang, Y.; Ali, S. Molecular evidence for increased antitumor activity of gemcitabine by genistein in vitro and in vivo using an orthotopic model of pancreatic cancer. Cancer Res., 2005, 65(19), 9064-9072.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1330] [PMID: 16204081]
[142]
Nozawa, F.; Itami, A.; Saruc, M. The combination of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L) and Genistein is effective in inhibiting pancreatic cancer growth. Pancreas, 2004, 29(1), 45-52.
[http://dx.doi.org/10.1097/00006676-200407000-00055] [PMID: 15211111]
[143]
Suzuki, R.; Kang, Y.; Li, X.; Roife, D.; Zhang, R.; Fleming, J.B. Genistein potentiates the antitumor effect of 5-Fluorouracil by inducing apoptosis and autophagy in human pancreatic cancer cells. Anticancer Res., 2014, 34(9), 4685-4692.
[PMID: 25202045]
[144]
Labianca, R.; Beretta, G.D.; Kildani, B. Colon cancer. Crit. Rev. Oncol. Hematol., 2010, 74(2), 106-133.
[http://dx.doi.org/10.1016/j.critrevonc.2010.01.010] [PMID: 20138539]
[145]
Grande, E.; Inghelmann, R.; Francisci, S. Regional estimates of colorectal cancer burden in Italy. Tumori, 2007, 93(4), 352-359.
[http://dx.doi.org/10.1177/030089160709300405] [PMID: 17899865]
[146]
White, A.; Ironmonger, L.; Steele, R.J.C.; Ormiston-Smith, N.; Crawford, C.; Seims, A. A review of sex-related differences in colorectal cancer incidence, screening uptake, routes to diagnosis, cancer stage and survival in the UK. BMC Cancer, 2018, 18(1), 906.
[http://dx.doi.org/10.1186/s12885-018-4786-7] [PMID: 30236083]
[147]
Abotchie, P.N.; Vernon, S.W.; Du, X.L. Gender differences in colorectal cancer incidence in the United States, 1975-2006. J. Womens Health (Larchmt.), 2012, 21(4), 393-400.
[http://dx.doi.org/10.1089/jwh.2011.2992] [PMID: 22149014]
[148]
Siegel, R.L.; Miller, K.D.; Goding Sauer, A. Colorectal cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(3), 145-164.
[http://dx.doi.org/10.3322/caac.21601] [PMID: 32133645]
[149]
Giovannucci, E. An updated review of the epidemiological evidence that cigarette smoking increases risk of colorectal cancer. Cancer Epidemiol. Biomarkers Prev., 2001, 10(7), 725-731.
[PMID: 11440957]
[150]
Hmar, E.B.L.; Paul, S.; Boruah, N.; Sarkar, P.; Borah, S.; Sharma, H.K. Apprehending ulcerative colitis management with springing up therapeutic approaches: Can nanotechnology play a nascent role? Curr. Pathobiol. Rep., 2021, 9, 9-32.
[http://dx.doi.org/10.1007/s40139-020-00218-6]
[151]
Bin Sayeed, M.S.; Ameen, S.S. Beta-sitosterol: A promising but orphan nutraceutical to fight against cancer. Nutr. Cancer, 2015, 67(8), 1214-1220.
[http://dx.doi.org/10.1080/01635581.2015.1087042] [PMID: 26473555]
[152]
Babu, S.; Jayaraman, S. An update on β-sitosterol: A potential herbal nutraceutical for diabetic management. Biomed. Pharmacother., 2020, 131, 110702.
[http://dx.doi.org/10.1016/j.biopha.2020.110702] [PMID: 32882583]
[153]
Ma, R.M.; Schaffer, P.S. Beta-Sitosteryl D-glucoside and beta-sitosterol from commercially dried grapefruit pulp. Arch. Biochem. Biophys., 1953, 47(2), 419-423.
[http://dx.doi.org/10.1016/0003-9861(53)90478-0] [PMID: 13114911]
[154]
Soleimanian, Y; Goli, SAH; Varshosaz, J β-Sitosterol loaded nanostructured lipid carrier: Physical and oxidative stability, in vitro simulated digestion and hypocholesterolemic activity. Pharmaceutics, 2020, 12(4), 386.
[http://dx.doi.org/10.3390/pharmaceutics12040386] [PMID: 32331384]
[155]
Wei, D; Wang, L; Liu, C; Wang, B. β-Sitosterol solubility in selected organic solvents. J. Chem. Eng. Data, 2010, 55(8), 2917-2919.
[http://dx.doi.org/10.1021/je9009909]
[156]
Ododo, M.M.; Choudhury, M.K.; Dekebo, A.H. Structure elucidation of β-sitosterol with antibacterial activity from the root bark of Malva parviflora. Springerplus, 2016, 5(1), 1210.
[http://dx.doi.org/10.1186/s40064-016-2894-x] [PMID: 27516948]
[157]
Ponnulakshmi, R.; Shyamaladevi, B.; Vijayalakshmi, P.; Selvaraj, J. In silico and in vivo analysis to identify the antidiabetic activity of beta sitosterol in adipose tissue of high fat diet and sucrose induced type-2 diabetic experimental rats. Toxicol. Mech. Methods, 2019, 29(4), 276-290.
[http://dx.doi.org/10.1080/15376516.2018.1545815] [PMID: 30461321]
[158]
Babu, S.; Krishnan, M.; Rajagopal, P. Beta-sitosterol attenuates insulin resistance in adipose tissue via IRS-1/Akt mediated insulin signaling in high fat diet and sucrose induced type-2 diabetic rats. Eur. J. Pharmacol., 2020, 873, 173004.
[http://dx.doi.org/10.1016/j.ejphar.2020.173004] [PMID: 32045603]
[159]
Abdou, E.M.; Fayed, M.A.A.; Helal, D.; Ahmed, K.A. Assessment of the hepatoprotective effect of developed lipid-polymer hybrid nanoparticles (LPHNPs) encapsulating naturally extracted β-Sitosterol against CCl4 induced hepatotoxicity in rats. Sci. Rep., 2019, 9(1), 19779.
[http://dx.doi.org/10.1038/s41598-019-56320-2] [PMID: 31875004]
[160]
Yuan, C.; Zhang, X.; Long, X.; Jin, J.; Jin, R. Effect of β-sitosterol self-microemulsion and β-sitosterol ester with linoleic acid on lipid-lowering in hyperlipidemic mice. Lipids Health Dis., 2019, 18(1), 157.
[http://dx.doi.org/10.1186/s12944-019-1096-2] [PMID: 31351498]
[161]
Paniagua-Pérez, R.; Flores-Mondragón, G.; Reyes-Legorreta, C. Evaluation of the anti-inflammatory capacity of beta-sitosterol in rodent assays. Afr. J. Tradit. Complement. Altern. Med., 2016, 14(1), 123-130.
[http://dx.doi.org/10.21010/ajtcam.v14i1.13] [PMID: 28480389]
[162]
Sharmila, R.; Sindhu, G. Evaluate the antigenotoxicity and anticancer role of β-Sitosterol by determining oxidative DNA damage and the expression of phosphorylated mitogen-activated protein kinases’, C-fos, C-jun, and endothelial growth factor receptor. Pharmacogn. Mag., 2017, 13(49), 95-101.
[PMID: 28216890]
[163]
Dighe, S.; Kuchekar, B.; Wankhede, S. Analgesic and anti-inflammatory activity of β-sitosterol isolated from leaves of Oxalis corniculata. Int. J. Clin. Pharmacol. Res., 2016, 6(3)
[164]
López-Rubalcava, C.; Piña-Medina, B.; Estrada-Reyes, R.; Heinze, G.; Martínez-Vázquez, M. Anxiolytic-like actions of the hexane extract from leaves of Annona cherimolia in two anxiety paradigms: possible involvement of the GABA/benzodiazepine receptor complex. Life Sci., 2006, 78(7), 730-737.
[http://dx.doi.org/10.1016/j.lfs.2005.05.078] [PMID: 16122763]
[165]
Abbas, M.M.; Al-Rawi, N.; Abbas, M.A.; Al-Khateeb, I. Naringenin potentiated β-sitosterol healing effect on the scratch wound assay. Res. Pharm. Sci., 2019, 14(6), 566-573.
[http://dx.doi.org/10.4103/1735-5362.272565] [PMID: 32038736]
[166]
Fraile, L.; Crisci, E.; Córdoba, L.; Navarro, M.A.; Osada, J.; Montoya, M. Immunomodulatory properties of beta-sitosterol in pig immune responses. Int. Immunopharmacol., 2012, 13(3), 316-321.
[http://dx.doi.org/10.1016/j.intimp.2012.04.017] [PMID: 22595193]
[167]
Park, Y.J.; Bang, I.J.; Jeong, M.H. Effects of β-Sitosterol from corn silk on TGF-β1-Induced epithelial–Mesenchymal transition in lung alveolar epithelial cells. J. Agric. Food Chem., 2019, 67(35), 9789-9795.
[http://dx.doi.org/10.1021/acs.jafc.9b02730] [PMID: 31373816]
[168]
Awad, A.B.; Chen, Y.C.; Fink, C.S.; Hennessey, T. beta-Sitosterol inhibits HT-29 human colon cancer cell growth and alters membrane lipids. Anticancer Res., 1996, 16(5A), 2797-2804.
[PMID: 8917388]
[169]
Awad, A.B.; von Holtz, R.L.; Cone, J.P.; Fink, C.S.; Chen, Y.C. beta-Sitosterol inhibits growth of HT-29 human colon cancer cells by activating the sphingomyelin cycle. Anticancer Res., 1998, 18(1A), 471-473.
[PMID: 9568122]
[170]
Choi, Y.H.; Kong, K.R.; Kim, Y.A. Induction of Bax and activation of caspases during beta-sitosterol-mediated apoptosis in human colon cancer cells. Int. J. Oncol., 2003, 23(6), 1657-1662.
[PMID: 14612938]
[171]
Baskar, A.A.; Ignacimuthu, S.; Paulraj, G.M.; Al Numair, K.S. Chemopreventive potential of beta-Sitosterol in experimental colon cancer model--an in vitro and In vivo study. BMC Complement. Altern. Med., 2010, 10, 24.
[http://dx.doi.org/10.1186/1472-6882-10-24] [PMID: 20525330]
[172]
Baskar, AA; Al Numair, KS; Gabriel Paulraj, M; Alsaif, MA; Muamar, MA; Ignacimuthu, S β-sitosterol prevents lipid peroxidation and improves antioxidant status and histoarchitecture in rats with 1,2-dimethylhydrazine-induced colon cancer. . J. Med. Food, 2012, 15(4), 335-343.
[http://dx.doi.org/10.1089/jmf.2011.1780] [PMID: 22353013]
[173]
Wang, Z; Zhan, Y; Xu, J β-sitosterol reverses multidrug resistance via BCRP suppression by inhibiting the p53-MDM2 interaction in colorectal cancer.. J. Agric. Food Chem., 2020, 68(12), 3850-3858.
[http://dx.doi.org/10.1021/acs.jafc.0c00107] [PMID: 32167760]
[174]
Shathviha, PC; Ezhilarasan, D; Rajeshkumar, S; Selvaraj, J β- sitosterol mediated silver nanoparticles induce cytotoxicity in human colon cancer HT-29 cells. . Avicenna J. Med. Biotechnol., 2021, 13(1), 42-46.
[PMID: 33680372]
[175]
Li, H.; Ji, H.S.; Kang, J.H. Soy leaf extract containing kaempferol glycosides and pheophorbides improves glucose homeostasis by enhancing pancreatic β-cell function and suppressing hepatic lipid accumulation in db/db Mice. J. Agric. Food Chem., 2015, 63(32), 7198-7210.
[http://dx.doi.org/10.1021/acs.jafc.5b01639] [PMID: 26211813]
[176]
Rajendran, P.; Rengarajan, T.; Nandakumar, N.; Palaniswami, R.; Nishigaki, Y.; Nishigaki, I. Kaempferol, a potential cytostatic and cure for inflammatory disorders. Eur. J. Med. Chem., 2014, 86, 103-112.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.011] [PMID: 25147152]
[177]
Sharifi-Rad, M.; Fokou, P.V.T.; Sharopov, F. Antiulcer agents: From plant extracts to phytochemicals in healing promotion. Molecules, 2018, 23(7), 1751.
[http://dx.doi.org/10.3390/molecules23071751] [PMID: 30018251]
[178]
Idris, S.A.; Markom, M.; Rahman, N.A.; Ali, J.M. Quantitative HPLC analysis of flavonoids in three different solvent extracts in leaves of Gynura procumbens. J. Phys. Conf. Ser., 2019, 1349, 012003.
[http://dx.doi.org/10.1088/1742-6596/1349/1/012003]
[179]
Imran, M.; Salehi, B.; Sharifi-Rad, J. Kaempferol: A key emphasis to its anticancer potential. Molecules, 2019, 24(12), 2277.
[http://dx.doi.org/10.3390/molecules24122277] [PMID: 31248102]
[180]
Kampkötter, A.; Gombitang Nkwonkam, C.; Zurawski, R.F. Effects of the flavonoids kaempferol and fisetin on thermotolerance, oxidative stress and FoxO transcription factor DAF-16 in the model organism Caenorhabditis elegans. Arch. Toxicol., 2007, 81(12), 849-858.
[http://dx.doi.org/10.1007/s00204-007-0215-4] [PMID: 17551714]
[181]
De Melo, G.O.; Malvar Ddo, C.; Vanderlinde, F.A. Antinociceptive and anti-inflammatory kaempferol glycosides from Sedum dendroideum. J. Ethnopharmacol., 2009, 124(2), 228-232.
[http://dx.doi.org/10.1016/j.jep.2009.04.024] [PMID: 19397977]
[182]
Luo, H.; Rankin, G.O.; Liu, L.; Daddysman, M.K.; Jiang, B.H.; Chen, Y.C. Kaempferol inhibits angiogenesis and VEGF expression through both HIF dependent and independent pathways in human ovarian cancer cells. Nutr. Cancer, 2009, 61(4), 554-563.
[http://dx.doi.org/10.1080/01635580802666281] [PMID: 19838928]
[183]
Kataoka, M.; Hirata, K.; Kunikata, T. Antibacterial action of tryptanthrin and kaempferol, isolated from the indigo plant (Polygonum tinctorium Lour.), against Helicobacter pylori-infected Mongolian gerbils. J. Gastroenterol., 2001, 36(1), 5-9.
[http://dx.doi.org/10.1007/s005350170147] [PMID: 11211212]
[184]
Mitrocotsa, D.; Mitaku, S.; Axarlis, S.; Harvala, C.; Malamas, M. Evaluation of the antiviral activity of kaempferol and its glycosides against human cytomegalovirus. Planta Med., 2000, 66(4), 377-379.
[http://dx.doi.org/10.1055/s-2000-8550] [PMID: 10865462]
[185]
Hertog, M.G.; Feskens, E.J.; Hollman, P.C.; Katan, M.B.; Kromhout, D. Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet, 1993, 342(8878), 1007-1011.
[http://dx.doi.org/10.1016/0140-6736(93)92876-U] [PMID: 8105262]
[186]
Geleijnse, J.M.; Launer, L.J.; Van der Kuip, D.A.; Hofman, A.; Witteman, J.C. Inverse association of tea and flavonoid intakes with incident myocardial infarction: the Rotterdam Study. Am. J. Clin. Nutr., 2002, 75(5), 880-886.
[http://dx.doi.org/10.1093/ajcn/75.5.880] [PMID: 11976162]
[187]
Lin, J.; Rexrode, K.M.; Hu, F. Dietary intakes of flavonols and flavones and coronary heart disease in US women. Am. J. Epidemiol., 2007, 165(11), 1305-1313.
[http://dx.doi.org/10.1093/aje/kwm016] [PMID: 17379619]
[188]
Hannum, S.M. Potential impact of strawberries on human health: a review of the science. Crit. Rev. Food Sci. Nutr., 2004, 44(1), 1-17.
[http://dx.doi.org/10.1080/10408690490263756] [PMID: 15077879]
[189]
Yu, S.F.; Shun, C.T.; Chen, T.M.; Chen, Y.H. 3-O-beta-D-glucosyl-(1-->6)-beta-D-glucosyl-kaempferol isolated from Sauropus androgenus reduces body weight gain in Wistar rats. Biol. Pharm. Bull., 2006, 29(12), 2510-2513.
[http://dx.doi.org/10.1248/bpb.29.2510] [PMID: 17142992]
[190]
de Sousa, E.; Zanatta, L.; Seifriz, I. Hypoglycemic effect and antioxidant potential of kaempferol-3,7-O-(alpha)-dirhamnoside from Bauhinia forficata leaves. J. Nat. Prod., 2004, 67(5), 829-832.
[http://dx.doi.org/10.1021/np030513u] [PMID: 15165145]
[191]
Nakamura, Y.; Chang, C.C.; Mori, T. Augmentation of differentiation and gap junction function by kaempferol in partially differentiated colon cancer cells. Carcinogenesis, 2005, 26(3), 665-671.
[http://dx.doi.org/10.1093/carcin/bgi003] [PMID: 15618237]
[192]
Li, W.; Du, B.; Wang, T.; Wang, S.; Zhang, J. Kaempferol induces apoptosis in human HCT116 colon cancer cells via the Ataxia-Telangiectasia Mutated-p53 pathway with the involvement of p53 Upregulated Modulator of Apoptosis. Chem. Biol. Interact., 2009, 177(2), 121-127.
[http://dx.doi.org/10.1016/j.cbi.2008.10.048] [PMID: 19028473]
[193]
Nirmala, P.; Ramanathan, M. Effect of kaempferol on lipid peroxidation and antioxidant status in 1,2-dimethyl hydrazine induced colorectal carcinoma in rats. Eur. J. Pharmacol., 2011, 654(1), 75-79.
[http://dx.doi.org/10.1016/j.ejphar.2010.11.034] [PMID: 21172346]
[194]
Lee, H.S.; Cho, H.J.; Yu, R.; Lee, K.W.; Chun, H.S.; Park, J.H. Mechanisms underlying apoptosis-inducing effects of Kaempferol in HT-29 human colon cancer cells. Int. J. Mol. Sci., 2014, 15(2), 2722-2737.
[http://dx.doi.org/10.3390/ijms15022722] [PMID: 24549175]
[195]
Li, Q.; Wei, L.; Lin, S.; Chen, Y.; Lin, J.; Peng, J. Synergistic effect of kaempferol and 5 fluorouracil on the growth of colorectal cancer cells by regulating the PI3K/Akt signaling pathway. Mol. Med. Rep., 2019, 20(1), 728-734.
[http://dx.doi.org/10.3892/mmr.2019.10296] [PMID: 31180555]
[196]
Riahi-Chebbi, I.; Souid, S.; Othman, H. The Phenolic compound Kaempferol overcomes 5-fluorouracil resistance in human resistant LS174 colon cancer cells. Sci. Rep., 2019, 9(1), 195.
[http://dx.doi.org/10.1038/s41598-018-36808-z] [PMID: 30655588]
[197]
Choi, J.B.; Kim, J.H.; Lee, H.; Pak, J.N.; Shim, B.S.; Kim, S.H. Reactive oxygen species and p53 mediated activation of p38 and caspases is critically involved in kaempferol induced apoptosis in colorectal cancer cells. J. Agric. Food Chem., 2018, 66(38), 9960-9967.
[http://dx.doi.org/10.1021/acs.jafc.8b02656] [PMID: 30211553]
[198]
Gutierrez-Uribe, J.A.; Salinas-Santander, M.; Serna-Guerrero, D.; Serna-Saldivar, S.R.O.; Rivas-Estilla, A.M.; Rios-Ibarra, C.P. Inhibition of miR31 and miR92a as oncological biomarkers in RKO colon cancer cells treated with kaempferol-3-O-glycoside isolated from black bean. J. Med. Food, 2020, 23(1), 50-55.
[http://dx.doi.org/10.1089/jmf.2019.0059] [PMID: 31441682]
[199]
Lu, L.; Guo, Q.; Zhao, L. Overview of oroxylin A: A promising flavonoid compound. Phytother. Res., 2016, 30(11), 1765-1774.
[http://dx.doi.org/10.1002/ptr.5694] [PMID: 27539056]
[200]
Osofsky, H.J. Efficacious treatments of PMS: a need for further research. JAMA, 1990, 264(3), 387.
[http://dx.doi.org/10.1001/jama.1990.03450030111043] [PMID: 2362336]
[201]
Gao, Y. Process on anti-cancer effects of oroxylin A. Fujian Med. J., 2009, 31(3), 79-81.
[202]
Guo, Y.; Qu, J.; Zhao, Y.; Wang, H. Progress in research of the natural product oroxylin A. Liaoning J Trad Chin Med, 2012, 39(12), 2512-2515.
[203]
Yu, H.; Chang, J.S.; Kim, S.Y.; Kim, Y.G.; Choi, H.K. Enhancement of solubility and dissolution rate of baicalein, wogonin and oroxylin A extracted from Radix scutellariae. Int. J. Pharm., 2017, 528(1-2), 602-610.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.068] [PMID: 28642200]
[204]
Liu, C.H.; Chen, M.F.; Tseng, T.L.; Chen, L.G.; Kuo, J.S.; Lee, T.J. Oroxylin a, but not vasopressin, ameliorates cardiac dysfunction of endotoxemic rats. Evid. Based Complement. Alternat. Med., 2012, 2012, 408187.
[http://dx.doi.org/10.1155/2012/408187] [PMID: 23193421]
[205]
Hu, Y.; Yang, Y.; You, Q.D. Oroxylin A induced apoptosis of human hepatocellular carcinoma cell line HepG2 was involved in its antitumor activity. Biochem. Biophys. Res. Commun., 2006, 351(2), 521-527.
[http://dx.doi.org/10.1016/j.bbrc.2006.10.064] [PMID: 17069758]
[206]
Ye, M.; Wang, Q.; Zhang, W.; Li, Z.; Wang, Y.; Hu, R. Oroxylin A exerts anti-inflammatory activity on lipopolysaccharide-induced mouse macrophage via Nrf2/ARE activation. Biochem. Cell Biol., 2014, 92(5), 337-348.
[http://dx.doi.org/10.1139/bcb-2014-0030] [PMID: 25247252]
[207]
Jeon, S.J.; Rhee, S.Y.; Seo, J.E. Oroxylin A increases BDNF production by activation of MAPK-CREB pathway in rat primary cortical neuronal culture. Neurosci. Res., 2011, 69(3), 214-222.
[http://dx.doi.org/10.1016/j.neures.2010.11.008] [PMID: 21145362]
[208]
Ku, S.K.; Lee, I.C.; Bae, J.S. Antithrombotic activities of oroxylin Ain vitro and in vivo. Arch. Pharm. Res., 2014, 37(5), 679-686.
[http://dx.doi.org/10.1007/s12272-013-0233-0] [PMID: 23963976]
[209]
Singh, J.; Kakkar, P. Oroxylin A, a constituent of Oroxylum indicum inhibits adipogenesis and induces apoptosis in 3T3-L1 cells. Phytomedicine, 2014, 21(12), 1733-1741.
[http://dx.doi.org/10.1016/j.phymed.2014.08.014] [PMID: 25442284]
[210]
Yang, X.; Zhang, F.; Wang, Y. Oroxylin A inhibits colitis-associated carcinogenesis through modulating the IL-6/STAT3 signaling pathway. Inflamm. Bowel Dis., 2013, 19(9), 1990-2000.
[http://dx.doi.org/10.1097/MIB.0b013e318293c5e0] [PMID: 23823704]
[211]
Hu, R.; Chen, N.; Yao, J. The role of Nrf2 and apoptotic signaling pathways in oroxylin A-mediated responses in HCT-116 colorectal adenocarcinoma cells and xenograft tumors. Anticancer Drugs, 2012, 23(6), 651-658.
[http://dx.doi.org/10.1097/CAD.0b013e3283512703] [PMID: 22526619]
[212]
Qiao, C.; Wei, L.; Dai, Q. UCP2-related mitochondrial pathway participates in oroxylin A-induced apoptosis in human colon cancer cells. J. Cell. Physiol., 2015, 230(5), 1054-1063.
[http://dx.doi.org/10.1002/jcp.24833] [PMID: 25251374]
[213]
Qiao, C.; Lu, N.; Zhou, Y. Oroxylin A modulates mitochondrial function and apoptosis in human colon cancer cells by inducing mitochondrial translocation of wild-type p53. Oncotarget, 2016, 7(13), 17009-17020.
[http://dx.doi.org/10.18632/oncotarget.7927] [PMID: 26958937]
[214]
Ha, J.; Zhao, L.; Zhao, Q. Oroxylin A improves the sensitivity of HT-29 human colon cancer cells to 5-FU through modulation of the COX-2 signaling pathway. Biochem. Cell Biol., 2012, 90(4), 521-531.
[http://dx.doi.org/10.1139/o2012-005] [PMID: 22607196]
[215]
Ni, T.; He, Z.; Dai, Y.; Yao, J.; Guo, Q.; Wei, L. Oroxylin A suppresses the development and growth of colorectal cancer through reprogram of HIF1&-modulated fatty acid metabolism. Cell Death Dis., 2017, 8(6), e2865.
[http://dx.doi.org/10.1038/cddis.2017.261] [PMID: 28594405]
[216]
Etemadi, A.; Sadjadi, A.; Semnani, S.; Nouraie, S.M.; Khademi, H.; Bahadori, M. Cancer registry in Iran: a brief overview. Arch. Iran Med., 2008, 11(5), 577-580.
[PMID: 18759534]
[217]
Salehi, B.; Valere, P.; Fokou, T. Phytochemicals in prostate cancer& From bioactive molecules to upcoming therapeutic agents. Nutrients, 2019, 11(7), 1483.
[http://dx.doi.org/10.3390/nu11071483]
[218]
Packer, J.R.; Maitland, N.J. The molecular and cellular origin of human prostate cancer. Biochim. Biophys. Acta, 2016, 1863(6 Pt A), 1238-1260.
[http://dx.doi.org/10.1016/j.bbamcr.2016.02.016] [PMID: 26921821]
[219]
Giovannucci, E.; Harlan, D.M.; Archer, M.C. Diabetes and cancer: a consensus report. Diabetes Care, 2010, 33(7), 1674-1685.
[http://dx.doi.org/10.2337/dc10-0666] [PMID: 20587728]
[220]
Jahn, J.L.; Giovannucci, E.L.; Stampfer, M.J. The high prevalence of undiagnosed prostate cancer at autopsy: Implications for epidemiology and treatment of prostate cancer in the prostate-specific antigen-Era. Int. J. Cancer, 2015, 137(12), 2795-2802.
[http://dx.doi.org/10.1002/ijc.29408]
[221]
Barve, A.; Khor, T.O.; Hao, X. Murine prostate cancer inhibition by dietary phytochemicals - Curcumin and phenyethylisothiocyanate. Pharm. Res., 2008, 25(9), 2181-2189.
[http://dx.doi.org/10.1007/s11095-008-9574-7]
[222]
Mohd Yusof, Y.A. Gingerol and its role in chronic diseases. Adv. Exp. Med. Biol., 2016, 929, 177-207.
[http://dx.doi.org/10.1007/978-3-319-41342-6_8] [PMID: 27771925]
[223]
Lall, R.K.; Adhami, V.M.; Mukhtar, H. Dietary flavonoid fisetin for cancer prevention and treatment. Mol. Nutr. Food Res., 2016, 60(6), 1396-1405.
[http://dx.doi.org/10.1002/mnfr.201600025] [PMID: 27059089]
[224]
Imran, M.; Rauf, A.; Abu-Izneid, T. Luteolin, a flavonoid, as an anticancer agent: A review. Biomed. Pharmacother., 2019, 112, 108612.
[http://dx.doi.org/10.1016/j.biopha.2019.108612] [PMID: 30798142]
[225]
Nabavi, SF; Braidy, N; Gortzi, O Luteolin as an anti-inflammatory and neuroprotective agent: A brief review., . Brain Res Bull 2015; 119(Pt A): 1-11..
[http://dx.doi.org/10.1016/j.brainresbull.2015.09.002] [PMID: 26361743]
[226]
Yao, J.; Kong, W.; Jiang, J. Learning from berberine: Treating chronic diseases through multiple targets. Sci. China Life Sci., 2015, 58(9), 854-859.
[http://dx.doi.org/10.1007/s11427-013-4568-z] [PMID: 24174332]
[227]
Zhang, R.; Qiao, H.; Chen, S. Berberine reverses lapatinib resistance of HER2-positive breast cancer cells by increasing the level of ROS. Cancer Biol. Ther., 2016, 17(9), 925-934.
[http://dx.doi.org/10.1080/15384047.2016.1210728] [PMID: 27416292]
[228]
Imenshahidi, M.; Hosseinzadeh, H. Berberis vulgaris and berberine: An update review. Phytother. Res., 2016, 30(11), 1745-1764.
[http://dx.doi.org/10.1002/ptr.5693] [PMID: 27528198]
[229]
Zhang, C.; Sheng, J.; Li, G. Effects of berberine and its derivatives on cancer: A systems pharmacology review. Front. Pharmacol., 2020, 10, 1461.
[http://dx.doi.org/10.3389/fphar.2019.01461] [PMID: 32009943]
[230]
Zhang, L.Y.; Wu, Y.L.; Gao, X.H.; Guo, F. Mitochondrial protein cyclophilin-D-mediated programmed necrosis attributes to berberine-induced cytotoxicity in cultured prostate cancer cells. Biochem. Biophys. Res. Commun., 2014, 450(1), 697-703.
[http://dx.doi.org/10.1016/j.bbrc.2014.06.039] [PMID: 24946211]
[231]
Kang, D.; Park, W.; Lee, S.; Kim, J.H.; Song, J.J. Crosstalk from survival to necrotic death coexists in DU-145 cells by curcumin treatment. Cell. Signal., 2013, 25(5), 1288-1300.
[http://dx.doi.org/10.1016/j.cellsig.2013.01.014] [PMID: 23353183]
[232]
Fontana, F.; Raimondi, M.; Marzagalli, M.; Di Domizio, A.; Limonta, P. Natural compounds in prostate cancer prevention and treatment: Mechanisms of action and molecular targets. Cells, 2020, 9(2), E460.
[http://dx.doi.org/10.3390/cells9020460] [PMID: 32085497]
[233]
Stefanska, B.; Karlic, H.; Varga, F.; Fabianowska-Majewska, K.; Haslberger, A. Epigenetic mechanisms in anti-cancer actions of bioactive food components--the implications in cancer prevention. Br. J. Pharmacol., 2012, 167(2), 279-297.
[http://dx.doi.org/10.1111/j.1476-5381.2012.02002.x] [PMID: 22536923]
[234]
Meeran, S.M.; Ahmed, A.; Tollefsbol, T.O. Epigenetic targets of bioactive dietary components for cancer prevention and therapy. Clin. Epigenetics, 2010, 1(3-4), 101-116.
[http://dx.doi.org/10.1007/s13148-010-0011-5] [PMID: 21258631]
[235]
Hassan, F.U.; Rehman, M.S.U.; Khan, M.S. Curcumin as an alternative epigenetic modulator: Mechanism of action and potential effects. Front. Genet., 2019, 10, 514.
[http://dx.doi.org/10.3389/fgene.2019.00514] [PMID: 31214247]
[236]
Farhan, M.; Ullah, M.F.; Faisal, M. Differential methylation and acetylation as the epigenetic basis of resveratrol’s anticancer activity. Medicines (Basel), 2019, 6(1), 24.
[http://dx.doi.org/10.3390/medicines6010024] [PMID: 30781847]
[237]
Zhang, Y.; Chen, H. Genistein, an epigenome modifier during cancer prevention. Epigenetics, 2011, 6(7), 888-891.
[http://dx.doi.org/10.4161/epi.6.7.16315] [PMID: 21610327]
[238]
Martinelli, C.; Pucci, C.; Ciofani, G. Nanostructured carriers as innovative tools for cancer diagnosis and therapy. APL Bioeng., 2019, 3(1), 011502.
[http://dx.doi.org/10.1063/1.5079943] [PMID: 31069332]
[239]
Matea, C.T.; Mocan, T.; Tabaran, F. Quantum dots in imaging, drug delivery and sensor applications. Int. J. Nanomedicine, 2017, 12, 5421-5431.
[http://dx.doi.org/10.2147/IJN.S138624] [PMID: 28814860]
[240]
Leiner, T.; Gerretsen, S.; Botnar, R. Magnetic resonance imaging of atherosclerosis. Eur. Radiol., 2005, 15(6), 1087-1099.
[http://dx.doi.org/10.1007/s00330-005-2646-8] [PMID: 15723215]
[241]
Gubernator, J. Active methods of drug loading into liposomes: recent strategies for stable drug entrapment and increased in vivo activity. Expert Opin. Drug Deliv., 2011, 8(5), 565-580.
[http://dx.doi.org/10.1517/17425247.2011.566552] [PMID: 21492058]
[242]
Kumar, B.; Garcia, M.; Murakami, J.L.; Chen, C.C. Exosome-mediated microenvironment dysregulation in leukemia. Biochim. Biophys. Acta, 2016, 1863(3), 464-470.
[http://dx.doi.org/10.1016/j.bbamcr.2015.09.017] [PMID: 26384870]
[243]
Martinelli, C. Exosomes: new biomarkers for targeted cancer therapy. Molecular oncology: Underlying mechanisms and translational advancements. Switzerland. Springer Nature AG, 2017, Vol. 1: pp., 129-157.
[http://dx.doi.org/10.1007/978-3-319-53082-6_6]
[244]
Chikara, S.; Nagaprashantha, L.D.; Singhal, J.; Horne, D.; Awasthi, S.; Singhal, S.S. Oxidative stress and dietary phytochemicals: Role in cancer chemoprevention and treatment. Cancer Lett., 2018, 413, 122-134.
[http://dx.doi.org/10.1016/j.canlet.2017.11.002] [PMID: 29113871]
[245]
Singh, S.; Sharma, B.; Kanwar, S.S.; Kumar, A. Lead phytochemicals for anticancer drug development. Front Plant Sci, 2016, 7, 1667.
[http://dx.doi.org/10.3389/fpls.2016.01667] [PMID: 27877185]
[246]
Imran, M.; Ullah, A.; Saeed, F.; Nadeem, M.; Arshad, M.U.; Suleria, H.A.R. Cucurmin, anticancer, & antitumor perspectives: A comprehensive review. Crit. Rev. Food Sci. Nutr., 2018, 58(8), 1271-1293.
[http://dx.doi.org/10.1080/10408398.2016.1252711] [PMID: 27874279]
[247]
Liu, Y.; Tang, Z.G.; Lin, Y. Effects of quercetin on proliferation and migration of human glioblastoma U251 cells. Biomed. Pharmacother., 2017, 92, 33-38.
[http://dx.doi.org/10.1016/j.biopha.2017.05.044] [PMID: 28528183]
[248]
Bazak, R.; Houri, M.; El Achy, S.; Kamel, S.; Refaat, T. Cancer active targeting by nanoparticles: a comprehensive review of literature. J. Cancer Res. Clin. Oncol., 2015, 141(5), 769-784.
[http://dx.doi.org/10.1007/s00432-014-1767-3] [PMID: 25005786]
[249]
Huang, S.; Li, J.; Han, L. Dual targeting effect of Angiopep-2-modified, DNA-loaded nanoparticles for glioma. Biomaterials, 2011, 32(28), 6832-6838.
[http://dx.doi.org/10.1016/j.biomaterials.2011.05.064] [PMID: 21700333]
[250]
Ulbrich, K.; Hekmatara, T.; Herbert, E.; Kreuter, J. Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood-brain barrier (BBB). Eur. J. Pharm. Biopharm., 2009, 71(2), 251-256.
[http://dx.doi.org/10.1016/j.ejpb.2008.08.021] [PMID: 18805484]
[251]
Friedmann, T. A brief history of gene therapy. Nat. Genet., 1992, 2(2), 93-98.
[http://dx.doi.org/10.1038/ng1092-93] [PMID: 1303270]
[252]
Ginn, S.L.; Amaya, A.K.; Alexander, I.E.; Edelstein, M.; Abedi, M.R. Gene therapy clinical trials worldwide to 2017: An update. J. Gene Med., 2018, 20(5), e3015.
[http://dx.doi.org/10.1002/jgm.3015] [PMID: 29575374]
[253]
Brace, C. Thermal tumor ablation in clinical use. IEEE Pulse, 2011, 2(5), 28-38.
[http://dx.doi.org/10.1109/MPUL.2011.942603] [PMID: 25372967]
[254]
Yu, K.H.; Zhang, C.; Berry, G.J. Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nat. Commun., 2016, 7(1), 12474.
[http://dx.doi.org/10.1038/ncomms12474] [PMID: 27527408]
[255]
Aerts, H.J. The potential of radiomic-based phenotyping in precision medicine: a review. JAMA Oncol., 2016, 2(12), 1636-1642.
[http://dx.doi.org/10.1001/jamaoncol.2016.2631] [PMID: 27541161]
[256]
Frangioni, J.V. New technologies for human cancer imaging. J. Clin. Oncol., 2008, 26(24), 4012-4021.
[http://dx.doi.org/10.1200/JCO.2007.14.3065] [PMID: 18711192]
[257]
Heuckmann, J.M.; Thomas, R.K. A new generation of cancer genome diagnostics for routine clinical use: overcoming the roadblocks to personalized cancer medicine. Ann. Oncol., 2015, 26(9), 1830-1837.
[http://dx.doi.org/10.1093/annonc/mdv184] [PMID: 25899787]
[258]
Gagan, J.; Van Allen, E.M. Next-generation sequencing to guide cancer therapy. Genome Med., 2015, 7(1), 80.
[http://dx.doi.org/10.1186/s13073-015-0203-x] [PMID: 26221189]
[259]
Zugazagoitia, J.; Guedes, C.; Ponce, S.; Ferrer, I.; Molina-Pinelo, S.; Paz-Ares, L. Current challenges in cancer treatment. Clin. Ther., 2016, 38(7), 1551-1566.
[http://dx.doi.org/10.1016/j.clinthera.2016.03.026] [PMID: 27158009]
[260]
Arnedos, M.; Soria, J.C.; Andre, F.; Tursz, T. Personalized treatments of cancer patients: a reality in daily practice, a costly dream or a shared vision of the future from the oncology community? Cancer Treat. Rev., 2014, 40(10), 1192-1198.
[http://dx.doi.org/10.1016/j.ctrv.2014.07.002] [PMID: 25441102]
[261]
McKean, W.B.; Moser, J.C.; Rimm, D.; Hu-Lieskovan, S. Biomarkers in precision cancer immunotherapy: Promise and challenges. Am. Soc. Clin. Oncol. Educ. Book, 2020, 40, e275-e291.
[http://dx.doi.org/10.1200/EDBK_280571] [PMID: 32453632]
[262]
Agrawal, L.; Engel, K.B.; Greytak, S.R.; Moore, H.M. Understanding preanalytical variables and their effects on clinical biomarkers of oncology and immunotherapy.In: Seminars in cancer biology. Academic Press 2018; 52: pp. 26-38..
[http://dx.doi.org/10.1016/j.semcancer.2017.12.008]
[263]
Chiriva-Internati, M.; Bot, A. A new era in cancer immunotherapy: discovering novel targets and reprogramming the immune system. Int. Rev. Immunol., 2015, 34(2), 101-103.
[http://dx.doi.org/10.3109/08830185.2015.1015888] [PMID: 25901856]
[264]
Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The different mechanisms of cancer drug resistance: a brief review. Adv. Pharm. Bull., 2017, 7(3), 339-348.
[http://dx.doi.org/10.15171/apb.2017.041] [PMID: 29071215]
[265]
Li, Z.W.; Dalton, W.S. Tumor microenvironment and drug resistance in hematologic malignancies. Blood Rev., 2006, 20(6), 333-342.
[http://dx.doi.org/10.1016/j.blre.2005.08.003] [PMID: 16920238]
[266]
Das, C.K.; Linder, B.; Bonn, F. BAG3 overexpression and cytoprotective autophagy mediate apoptosis resistance in chemoresistant breast cancer cells. Neoplasia, 2018, 20(3), 263-279.
[http://dx.doi.org/10.1016/j.neo.2018.01.001] [PMID: 29462756]
[267]
Kharwar, R.N.; Mishra, A.; Gond, S.K.; Stierle, A.; Stierle, D. Anticancer compounds derived from fungal endophytes: their importance and future challenges. Nat. Prod. Rep., 2011, 28(7), 1208-1228.
[http://dx.doi.org/10.1039/c1np00008j] [PMID: 21455524]
[268]
Chandra, S. Endophytic fungi: novel sources of anticancer lead molecules. Appl. Microbiol. Biotechnol., 2012, 95(1), 47-59.
[http://dx.doi.org/10.1007/s00253-012-4128-7] [PMID: 22622838]
[269]
Abdelmohsen, U.R.; Bayer, K.; Hentschel, U. Diversity, abundance and natural products of marine sponge-associated actinomycetes. Nat. Prod. Rep., 2014, 31(3), 381-399.
[http://dx.doi.org/10.1039/C3NP70111E] [PMID: 24496105]
[270]
Crawford, J.M.; Clardy, J. Bacterial symbionts and natural products. Chem. Commun. (Camb.), 2011, 47(27), 7559-7566.
[http://dx.doi.org/10.1039/c1cc11574j] [PMID: 21594283]
[271]
Ramadhar, T.R.; Beemelmanns, C.; Currie, C.R.; Clardy, J. Bacterial symbionts in agricultural systems provide a strategic source for antibiotic discovery. J. Antibiot. (Tokyo), 2014, 67(1), 53-58.
[http://dx.doi.org/10.1038/ja.2013.77] [PMID: 23921819]
[272]
Bachmann, B.O.; Van Lanen, S.G.; Baltz, R.H. Microbial genome mining for accelerated natural products discovery: is a renaissance in the making? J. Ind. Microbiol. Biotechnol., 2014, 41(2), 175-184.
[http://dx.doi.org/10.1007/s10295-013-1389-9] [PMID: 24342967]
[273]
Brady, S.F.; Simmons, L.; Kim, J.H.; Schmidt, E.W. Metagenomic approaches to natural products from free-living and symbiotic organisms. Nat. Prod. Rep., 2009, 26(11), 1488-1503.
[http://dx.doi.org/10.1039/b817078a] [PMID: 19844642]
[274]
Leis, B.; Angelov, A.; Liebl, W. Screening and expression of genes from metagenomes. Adv. Appl. Microbiol., 2013, 83, 1-68.
[http://dx.doi.org/10.1016/B978-0-12-407678-5.00001-5] [PMID: 23651593]
[275]
Charlop-Powers, Z.; Milshteyn, A.; Brady, S.F. Metagenomic small molecule discovery methods. Curr. Opin. Microbiol., 2014, 19, 70-75.
[http://dx.doi.org/10.1016/j.mib.2014.05.021] [PMID: 25000402]
[276]
Potts, B.C.; Lam, K.S. Generating a generation of proteasome inhibitors: from microbial fermentation to total synthesis of salinosporamide a (marizomib) and other salinosporamides. Mar. Drugs, 2010, 8(4), 835-880.
[http://dx.doi.org/10.3390/md8040835] [PMID: 20479958]
[277]
Andrianasolo, E.H.; Haramaty, L.; McPhail, K.L. Bathymodiolamides A and B, ceramide derivatives from a deep-sea hydrothermal vent invertebrate mussel, Bathymodiolus thermophilus. J. Nat. Prod., 2011, 74(4), 842-846.
[http://dx.doi.org/10.1021/np100601w] [PMID: 21222464]
[278]
Margesin, R.; Feller, G. Biotechnological applications of psychrophiles. Environ. Technol., 2010, 31(8-9), 835-844.
[http://dx.doi.org/10.1080/09593331003663328] [PMID: 20662375]
[279]
Stierle, A.A.; Stierle, D.B.; Girtsman, T. Caspase-1 inhibitors from an extremophilic fungus that target specific leukemia cell lines. J. Nat. Prod., 2012, 75(3), 344-350.
[http://dx.doi.org/10.1021/np200414c] [PMID: 22295871]
[280]
King, GF Venoms as a platform for human drugs: translating toxins into therapeutics., . Expert Opin Biol Ther 2011; 11(11): 1469-84..
[http://dx.doi.org/10.1517/14712598.2011.621940 ] [PMID: 21939428]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy