Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Research Article

Probing the Interaction of Selonsertib with Human Serum Albumin: In silico and In vitro Approaches

Author(s): Mohammad Hassan Baig, Preeti Gupta, Mohd. Imran Khan, Mohamed F. Alajmi, Afzal Hussain, Md. Imtaiyaz Hassan* and Jae-June Dong*

Volume 22, Issue 10, 2022

Published on: 12 May, 2022

Page: [879 - 890] Pages: 12

DOI: 10.2174/1568026622666220330012032

Price: $65

Abstract

Introduction: Selonsertib, the most recently developed selective inhibitor of apoptosis signal-regulating kinase 1. We elucidated the binding characteristics, mechanism of interaction, and dynamic behaviors of selonsertib with human serum albumin (HSA), a major circulatory transport protein.

Methods: Different biophysical approaches (fluorescence quenching and isothermal titration calorimetry (ITC) were combined with various in silico techniques to examine the binding of selonsertib to HSA. Molecular docking results, analysis of molecular dynamics trajectories, and essential dynamics investigations indicated the stable binding of selonsertib to HSA. Further in vitro studies were performed to validate the observed interaction.

Results: ITC results confirmed the robust binding and high affinity of selonsertib and HSA. Likewise, the fluorescence quenching results highlighted the binding affinity of selonsertib and HSA. Collectively, our findings offer deeper insight into the binding mechanism of selonsertib and HSA, emphasizing the selonsertib-mediated structural changes within HSA, along with a comprehensive rationale for the biological transport and accumulation of selonsertib in the blood plasma.

Conclusion: Therefore, considering the bioavailability and effectiveness of selonsertib, assessing the interactions of this inhibitor with carrier proteins is crucial to elucidate its biological processes at the molecular level. This evidence carries the considerable scientific potential for future drug design.

Keywords: Human serum albumin, Protein-drug interaction, Selonsertib, Anticancer therapy, Drug development, Molecular level, Dynamics trajectories.

« Previous
Graphical Abstract
[1]
Suzuki, A.; Diehl, A.M. Nonalcoholic steatohepatitis. Annu. Rev. Med., 2017, 68(1), 85-98.
[http://dx.doi.org/10.1146/annurev-med-051215-031109] [PMID: 27732787]
[2]
Pierantonelli, I.; Svegliati-Baroni, G. Nonalcoholic fatty liver disease: Basic pathogenetic mechanisms in the progression from NAFLD to NASH. Transplantation, 2019, 103(1), e1-e13.
[http://dx.doi.org/10.1097/TP.0000000000002480] [PMID: 30300287]
[3]
Brown, G.T.; Kleiner, D.E. Histopathology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Metabolism, 2016, 65(8), 1080-1086.
[http://dx.doi.org/10.1016/j.metabol.2015.11.008] [PMID: 26775559]
[4]
Takahashi, Y.; Fukusato, T. Histopathology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J. Gastroenterol., 2014, 20(42), 15539-15548.
[http://dx.doi.org/10.3748/wjg.v20.i42.15539] [PMID: 25400438]
[5]
Tesfay, M.; Goldkamp, W.J.; Neuschwander-Tetri, B.A. NASH: The emerging most common form of chronic liver disease. Mo. Med., 2018, 115(3), 225-229.
[PMID: 30228727]
[6]
Kleiner, D.E.; Brunt, E.M.; Van Natta, M.; Behling, C.; Contos, M.J.; Cummings, O.W.; Ferrell, L.D.; Liu, Y.C.; Torbenson, M.S.; Unalp-Arida, A.; Yeh, M.; McCullough, A.J.; Sanyal, A.J. Nonalcoholic Steatohepatitis Clinical Research Network. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology, 2005, 41(6), 1313-1321.
[http://dx.doi.org/10.1002/hep.20701] [PMID: 15915461]
[7]
Loomba, R.; Lawitz, E.; Mantry, P.S.; Jayakumar, S.; Caldwell, S.H.; Arnold, H.; Diehl, A.M.; Djedjos, C.S.; Han, L.; Myers, R.P.; Subramanian, G.M.; McHutchison, J.G.; Goodman, Z.D.; Afdhal, N.H.; Charlton, M.R. GS-US-384-1497 Investigators. The ASK1 inhibitor selonsertib in patients with nonalcoholic steatohepatitis: A randomized, phase 2 trial. Hepatology, 2018, 67(2), 549-559.
[http://dx.doi.org/10.1002/hep.29514] [PMID: 28892558]
[8]
Kaya, E. Yilmaz, Y. Non-alcoholic fatty liver disease: A growing public health problem in Turkey. Turk. J. Gastroenterol., 2019, 30(10), 865-871.
[http://dx.doi.org/10.5152/tjg.2019.18045] [PMID: 31258135]
[9]
Lindenmeyer, C.C.; McCullough, A.J. The natural history of nonalcoholic fatty liver disease-an evolving view. Clin. Liver Dis., 2018, 22(1), 11-21.
[http://dx.doi.org/10.1016/j.cld.2017.08.003] [PMID: 29128051]
[10]
Ahmed, M. Non-alcoholic fatty liver disease in 2015. World J. Hepatol., 2015, 7(11), 1450-1459.
[http://dx.doi.org/10.4254/wjh.v7.i11.1450] [PMID: 26085906]
[11]
Choudhury, J.; Sanyal, A.J. Clinical aspects of fatty liver disease. Semin. Liver Dis., 2004, 24(4), 349-362.
[http://dx.doi.org/10.1055/s-2004-860864] [PMID: 15605303]
[12]
Loomba, R.; Sanyal, A.J. The global NAFLD epidemic. Nat. Rev. Gastroenterol. Hepatol., 2013, 10(11), 686-690.
[http://dx.doi.org/10.1038/nrgastro.2013.171] [PMID: 24042449]
[13]
Ratziu, V.; Goodman, Z.; Sanyal, A. Current efforts and trends in the treatment of NASH. J. Hepatol., 2015, 62(1)(Suppl.), S65-S75.
[http://dx.doi.org/10.1016/j.jhep.2015.02.041] [PMID: 25920092]
[14]
Wong, R.J.; Aguilar, M.; Cheung, R.; Perumpail, R.B.; Harrison, S.A.; Younossi, Z.M.; Ahmed, A. Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States. Gastroenterology, 2015, 148(3), 547-555.
[http://dx.doi.org/10.1053/j.gastro.2014.11.039] [PMID: 25461851]
[15]
Söderberg, C.; Stål, P.; Askling, J.; Glaumann, H.; Lindberg, G.; Marmur, J.; Hultcrantz, R. Decreased survival of subjects with elevated liver function tests during a 28-year follow-up. Hepatology, 2010, 51(2), 595-602.
[http://dx.doi.org/10.1002/hep.23314] [PMID: 20014114]
[16]
Angulo, P.; Kleiner, D.E.; Dam-Larsen, S.; Adams, L.A.; Bjornsson, E.S.; Charatcharoenwitthaya, P.; Mills, P.R.; Keach, J.C.; Lafferty, H.D.; Stahler, A.; Haflidadottir, S.; Bendtsen, F. Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology, 2015, 149(2), 389-97.e10.
[http://dx.doi.org/10.1053/j.gastro.2015.04.043] [PMID: 25935633]
[17]
Ekstedt, M.; Hagström, H.; Nasr, P.; Fredrikson, M.; Stål, P.; Kechagias, S.; Hultcrantz, R. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology, 2015, 61(5), 1547-1554.
[http://dx.doi.org/10.1002/hep.27368] [PMID: 25125077]
[18]
Sumida, Y.; Okanoue, T.; Nakajima, A. Japan Study Group of NAFLD (JSG-NAFLD). Phase 3 drug pipelines in the treatment of non-alcoholic steatohepatitis. Hepatol. Res., 2019, 49(11), 1256-1262.
[http://dx.doi.org/10.1111/hepr.13425] [PMID: 31495973]
[19]
Younossi, Z.M.; Stepanova, M.; Lawitz, E.; Charlton, M.; Loomba, R.; Myers, R.P.; Subramanian, M.; McHutchison, J.G.; Goodman, Z. Improvement of hepatic fibrosis and patient-reported outcomes in non-alcoholic steatohepatitis treated with selonsertib. Liver Int., 2018, 38(10), 1849-1859.
[http://dx.doi.org/10.1111/liv.13706] [PMID: 29377462]
[20]
Connolly, J.J.; Ooka, K.; Lim, J.K. Future pharmacotherapy for non-alcoholic steatohepatitis (NASH): Review of phase 2 and 3 trials. J. Clin. Transl. Hepatol., 2018, 6(3), 264-275.
[http://dx.doi.org/10.14218/JCTH.2017.00056] [PMID: 30271738]
[21]
Baig, M.H.; Rahman, S.; Rabbani, G.; Imran, M.; Ahmad, K.; Choi, I. Multi-spectroscopic characterization of human serum albumin binding with cyclobenzaprine hydrochloride: Insights from biophysical and in silico approaches. Int. J. Mol. Sci., 2019, 20(3), 20.
[http://dx.doi.org/10.3390/ijms20030662] [PMID: 30717459]
[22]
Evans, T.W. Review article: Albumin as a drug--biological effects of albumin unrelated to oncotic pressure. Aliment. Pharmacol. Ther., 2002, 16(Suppl. 5), 6-11.
[http://dx.doi.org/10.1046/j.1365-2036.16.s5.2.x] [PMID: 12423448]
[23]
Lee, P.; Wu, X. Review: Modifications of human serum albumin and their binding effect. Curr. Pharm. Des., 2015, 21(14), 1862-1865.
[http://dx.doi.org/10.2174/1381612821666150302115025] [PMID: 25732553]
[24]
Wang, Y.; Wang, S.; Huang, M. Structure and enzymatic activities of human serum albumin. Curr. Pharm. Des., 2015, 21(14), 1831-1836.
[http://dx.doi.org/10.2174/1381612821666150302113906] [PMID: 25732556]
[25]
Fasano, M.; Curry, S.; Terreno, E.; Galliano, M.; Fanali, G.; Narciso, P.; Notari, S.; Ascenzi, P. The extraordinary ligand binding properties of human serum albumin. IUBMB Life, 2005, 57(12), 787-796.
[http://dx.doi.org/10.1080/15216540500404093] [PMID: 16393781]
[26]
Sugio, S.; Kashima, A.; Mochizuki, S.; Noda, M.; Kobayashi, K. Crystal structure of human serum albumin at 2.5 A resolution. Protein Eng., 1999, 12(6), 439-446.
[http://dx.doi.org/10.1093/protein/12.6.439] [PMID: 10388840]
[27]
Sudlow, G.; Birkett, D.J.; Wade, D.N. The characterization of two specific drug binding sites on human serum albumin. Mol. Pharmacol., 1975, 11(6), 824-832.
[PMID: 1207674]
[28]
Rodriguez, E.L.; Poddar, S.; Choksi, M.; Hage, D.S. Development of an on-line immunoextraction/entrapment system for protein capture and use in drug binding studies by high-performance affinity chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2020, 1136, 121812.
[http://dx.doi.org/10.1016/j.jchromb.2019.121812] [PMID: 31841979]
[29]
Ghuman, J.; Zunszain, P.A.; Petitpas, I.; Bhattacharya, A.A.; Otagiri, M.; Curry, S. Structural basis of the drug-binding specificity of human serum albumin. J. Mol. Biol., 2005, 353(1), 38-52.
[http://dx.doi.org/10.1016/j.jmb.2005.07.075] [PMID: 16169013]
[30]
Rahman, S.; Rehman, M.T.; Rabbani, G.; Khan, P.; AlAjmi, M.F.; Hassan, M.I.; Muteeb, G.; Kim, J. Insight of the interaction between 2,4-thiazolidinedione and human serum albumin: A spectroscopic, thermodynamic and molecular docking study. Int. J. Mol. Sci., 2019, 20(11), 20.
[http://dx.doi.org/10.3390/ijms20112727] [PMID: 31163649]
[31]
Ojha, H.; Murari, B.M.; Anand, S.; Hassan, M.I.; Ahmad, F.; Chaudhury, N.K. Interaction of DNA minor groove binder Hoechst 33258 with bovine serum albumin. Chem. Pharm. Bull. (Tokyo), 2009, 57(5), 481-486.
[http://dx.doi.org/10.1248/cpb.57.481] [PMID: 19420779]
[32]
Morris, G.M.; Huey, R.; Olson, A.J. Using autodock for ligandreceptor docking. Curr. Protoc. Bioinformatics, 2008, 24, 8.14.1- 8.14.40.
[http://dx.doi.org/10.1002/0471250953.bi0814s24]
[33]
Rose, P.W. Prlic A.; Bi, C.; Bluhm, W.F.; Christie, C.H.; Dutta, S.; Green, R.K.; Goodsell, D.S.; Westbrook, J.D.; Woo, J.; Young, J.; Zardecki, C.; Berman, H.M.; Bourne, P.E.; Burley, S.K. The RCSB protein data bank: Views of structural biology for basic and applied research and education. Nucleic Acids Res., 2015, 43(Database issue), D345-D356.
[http://dx.doi.org/10.1093/nar/gku1214] [PMID: 25428375]
[34]
Anwar, S.; Mohammad, T.; Shamsi, A.; Queen, A.; Parveen, S.; Luqman, S.; Hasan, G.M.; Alamry, K.A.; Azum, N.; Asiri, A.M.; Hassan, M.I. Discovery of hordenine as a potential inhibitor of pyruvate dehydrogenase kinase 3: Implication in lung cancer therapy. Biomedicines, 2020, 8(5), 8.
[http://dx.doi.org/10.3390/biomedicines8050119] [PMID: 32422877]
[35]
Baig, M.H.; Ahmad, K.; Roy, S.; Ashraf, J.M.; Adil, M.; Siddiqui, M.H.; Khan, S.; Kamal, M.A.; Provazník, I.; Choi, I. Computer aided drug design: Success and limitations. Curr. Pharm. Des., 2016, 22(5), 572-581.
[http://dx.doi.org/10.2174/1381612822666151125000550] [PMID: 26601966]
[36]
Amir, M.; Ahamad, S.; Mohammad, T.; Jairajpuri, D.S.; Hasan, G.M.; Dohare, R.; Islam, A.; Ahmad, F.; Hassan, M.I. Investigation of conformational dynamics of Tyr89Cys mutation in protection of telomeres 1 gene associated with familial melanoma. J. Biomol. Struct. Dyn., 2021, 39(1), 35-44.
[http://dx.doi.org/10.1080/07391102.2019.1705186] [PMID: 31847782]
[37]
De Vivo, M.; Masetti, M.; Bottegoni, G.; Cavalli, A. Role of molecular dynamics and related methods in drug discovery. J. Med. Chem., 2016, 59(9), 4035-4061.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01684] [PMID: 26807648]
[38]
Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J. GROMACS: Fast, flexible, and free. J. Comput. Chem., 2005, 26(16), 1701-1718.
[http://dx.doi.org/10.1002/jcc.20291] [PMID: 16211538]
[39]
Pronk, S.; Páll, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M.R.; Smith, J.C.; Kasson, P.M.; van der Spoel, D.; Hess, B.; Lindahl, E. GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics, 2013, 29(7), 845-854.
[http://dx.doi.org/10.1093/bioinformatics/btt055] [PMID: 23407358]
[40]
Oostenbrink, C.; Villa, A.; Mark, A.E.; van Gunsteren, W.F. A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem., 2004, 25(13), 1656-1676.
[http://dx.doi.org/10.1002/jcc.20090] [PMID: 15264259]
[41]
Toukan, K.; Rahman, A. Molecular-dynamics study of atomic motions in water. Phys. Rev. B Condens. Matter, 1985, 31(5), 2643-2648.
[http://dx.doi.org/10.1103/PhysRevB.31.2643] [PMID: 9936106]
[42]
Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N. log (N) method for Ewald sums in large systems. J. Chem. Phys., 1993, 98, 10089-10092.
[43]
Hess, B. P-LINCS:A parallel linear constraint solver for molecular simulation. J. Chem. Theory Comput., 2008, 4(1), 116-122.
[http://dx.doi.org/10.1021/ct700200b] [PMID: 26619985]
[44]
Eslami, H.; Mojahedi, F.; Moghadasi, J. Molecular dynamics simulation with weak coupling to heat and material baths. J. Chem. Phys., 2010, 133(8), 084105.
[http://dx.doi.org/10.1063/1.3474951] [PMID: 20815558]
[45]
David, C.C.; Jacobs, D.J. Principal component analysis: A method for determining the essential dynamics of proteins. Methods Mol. Biol., 2014, 1084, 193-226.
[http://dx.doi.org/10.1007/978-1-62703-658-0_11] [PMID: 24061923]
[46]
Gupta, P.; Khan, S.; Fakhar, Z.; Hussain, A.; Rehman, M.T.; AlAjmi, M.F.; Islam, A.; Ahmad, F.; Hassan, M.I. Identification of potential inhibitors of calcium/calmodulin-dependent protein kinase iv from bioactive phytoconstituents. Oxid. Med. Cell. Longev., 2020, 2020, 2094635.
[http://dx.doi.org/10.1155/2020/2094635] [PMID: 32724490]
[47]
Wang, E.; Sun, H.; Wang, J.; Wang, Z.; Liu, H.; Zhang, J.Z.H.; Hou, T. End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chem. Rev., 2019, 119(16), 9478-9508.
[http://dx.doi.org/10.1021/acs.chemrev.9b00055] [PMID: 31244000]
[48]
Roy, S.; Khan, S.; Jairajpuri, D.S.; Hussain, A.; Alajmi, M.F.; Islam, A.; Luqman, S.; Parvez, S.; Hassan, M.I. Investigation of sphingosine kinase 1 inhibitory potential of cinchonine and colcemid targeting anticancer therapy. J. Biomol. Struct. Dyn., 2021, 1-13.
[http://dx.doi.org/10.1080/07391102.2021.1882341] [PMID: 33565370]
[49]
Khan, A.; Khan, F.; Shahwan, M.; Khan, M.S.; Husain, F.M.; Rehman, M.T.; Hassan, M.I.; Islam, A.; Shamsi, A. Mechanistic insight into the binding of graphene oxide with human serum albumin: Multispectroscopic and molecular docking approach. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 256, 119750.
[http://dx.doi.org/10.1016/j.saa.2021.119750] [PMID: 33838551]
[50]
Di, L. An update on the importance of plasma protein binding in drug discovery and development. Expert Opin. Drug Discov., 2021, 16(12), 1453-1465.
[http://dx.doi.org/10.1080/17460441.2021.1961741] [PMID: 34403271]
[51]
Mohammad, T.; Batra, S.; Dahiya, R.; Baig, M.H.; Rather, I.A.; Dong, J.J.; Hassan, I. Identification of high-affinity inhibitors of cyclin-dependent kinase 2 towards anticancer therapy. Molecules, 2019, 24(24), 24.
[http://dx.doi.org/10.3390/molecules24244589] [PMID: 31847444]
[52]
Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Computeraided Drug Des., 2011, 7(2), 146-157.
[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]
[53]
Kragh-Hansen, U. Structure and ligand binding properties of human serum albumin. Dan. Med. Bull., 1990, 37(1), 57-84.
[PMID: 2155760]
[54]
Sudlow, G.; Birkett, D.J.; Wade, D.N. Further characterization of specific drug binding sites on human serum albumin. Mol. Pharmacol., 1976, 12(6), 1052-1061.
[PMID: 1004490]
[55]
Chaves, O.A.; Tavares, M.T.; Cunha, M.R.; Parise-Filho, R.; Sant’Anna, C.M.R.; Netto-Ferreira, J.C. Multi-spectroscopic and theoretical analysis on the interaction between human serum albumin and a capsaicin derivative-RPF101. Biomolecules, 2018, 8(3), 8.
[http://dx.doi.org/10.3390/biom8030078] [PMID: 30142945]
[56]
Awang, T.; Wiriyatanakorn, N.; Saparpakorn, P.; Japrung, D.; Pongprayoon, P. Understanding the effects of two bound glucose in Sudlow site I on structure and function of human serum albumin: Theoretical studies. J. Biomol. Struct. Dyn., 2017, 35(4), 781-790.
[http://dx.doi.org/10.1080/07391102.2016.1160841] [PMID: 26942862]
[57]
Perry, J.L.; Goldsmith, M.R.; Williams, T.R.; Radack, K.P.; Christensen, T.; Gorham, J.; Pasquinelli, M.A.; Toone, E.J.; Beratan, D.N.; Simon, J.D. Binding of warfarin influences the acid-base equilibrium of H242 in sudlow site I of human serum albumin. Photochem. Photobiol., 2006, 82(5), 1365-1369.
[http://dx.doi.org/10.1562/2006-02-23-RA-811] [PMID: 16563025]
[58]
Xu, L.; Hu, Y.X.; Li, Y.C.; Liu, Y.F.; Zhang, L.; Ai, H.X.; Liu, H.S. Study on the interaction of paeoniflorin with human serum albumin (HSA) by spectroscopic and molecular docking techniques. Chem. Cent. J., 2017, 11(1), 116.
[http://dx.doi.org/10.1186/s13065-017-0348-3] [PMID: 29150749]
[59]
Yeggoni, D.P.; Kuehne, C.; Rachamallu, A.; Subramanyam, R. Elucidating the binding interaction of andrographolide with the plasma proteins: biophysical and computational approach. RSC Advances, 2017, 7, 5002-5012.
[60]
Baig, M.H.; Sudhakar, D.R.; Kalaiarasan, P.; Subbarao, N.; Wadhawa, G.; Lohani, M.; Khan, M.K.; Khan, A.U. Insight into the effect of inhibitor resistant S130G mutant on physico-chemical properties of SHV type beta-lactamase: A molecular dynamics study. PLoS One, 2014, 9(12), e112456.
[http://dx.doi.org/10.1371/journal.pone.0112456] [PMID: 25479359]
[61]
Zaman, N.; Azam, S.S. From normal to competo-allosteric regulation: Insights into the binding pattern dynamics of DSPI protein of Pseudomonas aeruginosa. J. Biomol. Struct. Dyn., 2021, 39(2), 538-557.
[http://dx.doi.org/10.1080/07391102.2020.1711805] [PMID: 31903856]
[62]
Durham, E.; Dorr, B.; Woetzel, N.; Staritzbichler, R.; Meiler, J. Solvent accessible surface area approximations for rapid and accurate protein structure prediction. J. Mol. Model., 2009, 15(9), 1093-1108.
[http://dx.doi.org/10.1007/s00894-009-0454-9] [PMID: 19234730]
[63]
Ali, S.A.; Hassan, M.I.; Islam, A.; Ahmad, F. A review of methods available to estimate solvent-accessible surface areas of soluble proteins in the folded and unfolded states. Curr. Protein Pept. Sci., 2014, 15(5), 456-476.
[http://dx.doi.org/10.2174/1389203715666140327114232] [PMID: 24678666]
[64]
Millan, S.; Satish, L.; Bera, K.; Susrisweta, B.; Singh, D.V.; Sahoo, H. A spectroscopic and molecular simulation approach toward the binding affinity between lysozyme and phenazinium dyes: An effect on protein conformation. J. Phys. Chem. B, 2017, 121(7), 1475-1484.
[http://dx.doi.org/10.1021/acs.jpcb.6b10991] [PMID: 28146352]
[65]
Das, S.; Pahari, S.; Sarmah, S.; Rohman, M.A.; Paul, D.; Jana, M.; Singha Roy, A. Lysozyme-luteolin binding: Molecular insights into the complexation process and the inhibitory effects of luteolin towards protein modification. Phys. Chem. Chem. Phys., 2019, 21(23), 12649-12666.
[http://dx.doi.org/10.1039/C9CP01128E] [PMID: 31157335]
[66]
Rabbani, G.; Ahmad, E.; Zaidi, N.; Khan, R.H. pH-dependent conformational transitions in conalbumin (ovotransferrin), a metalloproteinase from hen egg white. Cell Biochem. Biophys., 2011, 61(3), 551-560.
[http://dx.doi.org/10.1007/s12013-011-9237-x] [PMID: 21833676]
[67]
Tayyab, S.; Izzudin, M.M.; Kabir, M.Z.; Feroz, S.R.; Tee, W.V.; Mohamad, S.B.; Alias, Z. Binding of an anticancer drug, axitinib to human serum albumin: Fluorescence quenching and molecular docking study. J. Photochem. Photobiol. B, 2016, 162, 386-394.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.06.049] [PMID: 27424099]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy