Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Perspective

Recent Advances in Utilizing Omics Approach to Identify the Bioactive Peptides and Ripening Metabolism in Plant-based Food

Author(s): Kah Yaw Ee*, Ming Quan Lam and Chun Shiong Chong

Volume 29, Issue 5, 2022

Published on: 12 May, 2022

Page: [379 - 383] Pages: 5

DOI: 10.2174/0929866529666220328125151

Abstract

Bioactive peptides with potential health benefits and metabolic functionality have been identified from plant-based food. The aim of this perspective is to report the recent progress in the research of plant-derived bioactive peptides using the combination of omics technologies and bioinformatics tools. Studies examining bioactive peptides with identified amino acid sequences and well-characterized biological functionalities are highlighted. Various software, webtools and workflows for analyzing and interpreting the biological data acquired from different omics approaches are discussed. The emerging evidence from the integration of proteomics and metabolomics data with advanced laboratory analytical methods supports more potential applications in the envisioned development of nutraceutical and therapeutic products. Notwithstanding, much works are mandatory to resolve those lied-ahead challenges before realizing the proposed applications of plant peptides.

Keywords: Omics, bioinformatics, bioactive peptides, fruit ripening, metabolism, plant-based food.

[1]
Chai, T-T.; Ee, K.Y.; Kumar, D.T.; Manan, F.A.; Wong, F-C. Plant bioactive peptides: Current status and prospects towards use on human health. Protein Pept. Lett., 2021, 28(6), 623-642.
[http://dx.doi.org/10.2174/0929866527999201211195936] [PMID: 33319654]
[2]
Prakash, B.; Singh, P.P.; Kumar, A.; Gupta, V. Prospects of omics technologies and bioinformatics approaches in food science. In: Functional and Preservative Properties of Phytochemicals; Elsevier, 2020; pp. 317-340.
[http://dx.doi.org/10.1016/B978-0-12-818593-3.00010-5]
[3]
Barros-Velázquez, J. Foodomics: Omic Strategies and Applications in Food Science; Royal Society of Chemistry: London, UK, 2021. [http://dx.doi.org/10.1039/9781839163005
[4]
Balkir, P.; Kemahlioglu, K.; Yucel, U. Foodomics: A new approach in food quality and safety. Trends Food Sci. Technol., 2021, 108, 49-57.
[http://dx.doi.org/10.1016/j.tifs.2020.11.028]
[5]
Zhu, B.; Li, L.; Wei, H.; Zhou, W.; Zhou, W.; Li, F.; Lin, P.; Sheng, J.; Wang, Q.; Yan, C.; Cheng, Y. A simultaneously quantitative profiling method for 40 endogenous amino acids and derivatives in cell lines using hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry. Talanta, 2020, 207, 120256.
[http://dx.doi.org/10.1016/j.talanta.2019.120256] [PMID: 31594590]
[6]
Koenig, T.; Menze, B.H.; Kirchner, M.; Monigatti, F.; Parker, K.C.; Patterson, T.; Steen, J.J.; Hamprecht, F.A.; Steen, H. Robust prediction of the MASCOT score for an improved quality assessment in mass spectrometric proteomics. J. Proteome Res., 2008, 7(9), 3708-3717.
[http://dx.doi.org/10.1021/pr700859x] [PMID: 18707158]
[7]
Pagadala, N.S.; Syed, K.; Tuszynski, J. Software for molecular docking: A review. Biophys. Rev., 2017, 9(2), 91-102.
[http://dx.doi.org/10.1007/s12551-016-0247-1] [PMID: 28510083]
[8]
Wei, D.; Fan, W-L.; Xu, Y. Identification of water-soluble peptides in distilled spent grain and its angiotensin converting enzyme (ACE) inhibitory activity based on UPLC-Q-TOF-MS and proteomics analysis. Food Chem., 2021, 353, 129521.
[http://dx.doi.org/10.1016/j.foodchem.2021.129521] [PMID: 33735773]
[9]
Li, M.; Zheng, H.; Lin, M.; Zhu, W.; Zhang, J. Characterization of the protein and peptide of excipient zein by the multi-enzyme digestion coupled with nano-LC-MS/MS. Food Chem., 2020, 321, 126712.
[http://dx.doi.org/10.1016/j.foodchem.2020.126712] [PMID: 32247179]
[10]
Memarpoor-Yazdi, M.; Zare-Zardini, H.; Mogharrab, N.; Navapour, L. Purification, characterization and mechanistic evaluation of angiotensin converting enzyme inhibitory peptides derived from Zizyphus jujuba fruit. Sci. Rep., 2020, 10(1), 3976.
[http://dx.doi.org/10.1038/s41598-020-60972-w] [PMID: 32132600]
[11]
Saleh, M.S.; Siddiqui, M.J.; Alshwyeh, H.A.; Al-Mekhlafi, N.A.; Mediani, A.; Ibrahim, Z.; Ismail, N.H.; Kamisah, Y. Metabolomics-based profiling with chemometric approach to identify bioactive compounds in Salacca zalacca fruits extracts and in silico molecular docking. Arab. J. Chem., 2021, 14(4), 103038.
[http://dx.doi.org/10.1016/j.arabjc.2021.103038]
[12]
Shi, J.; Wang, J.; Lv, H.; Peng, Q.; Schreiner, M.; Baldermann, S.; Lin, Z. Integrated proteomic and metabolomic analyses reveal the importance of aroma precursor accumulation and storage in methyl jasmonate-primed tea leaves. Hortic. Res., 2021, 8(1), 95.
[http://dx.doi.org/10.1038/s41438-021-00528-9] [PMID: 33931596]
[13]
Nilo-Poyanco, R.; Moraga, C.; Benedetto, G.; Orellana, A.; Almeida, A.M. Shotgun proteomics of peach fruit reveals major metabolic pathways associated to ripening. BMC Genom., 2021, 22, 17.
[14]
Zeng, S.; Huang, S.; Yang, T.; Ai, P.; Li, L.; Wang, Y. Comparative proteomic and ultrastructural analysis shed light on fruit pigmentation distinct in two Lycium species. Ind. Crops Prod., 2020, 147, 112267.
[http://dx.doi.org/10.1016/j.indcrop.2020.112267]
[15]
Pontiggia, D.; Spinelli, F.; Fabbri, C.; Licursi, V.; Negri, R.; De Lorenzo, G.; Mattei, B. Changes in the microsomal proteome of tomato fruit during ripening. Sci. Rep., 2019, 9(1), 14350.
[http://dx.doi.org/10.1038/s41598-019-50575-5] [PMID: 31586085]
[16]
Wang, P.; Li, X.; Wang, Y.; Wang, W.; Tian, S.; Qin, G. Redox proteomic analysis reveals the involvement of oxidative post-translational modification in tomato fruit ripening. Postharvest Biol. Technol., 2021, 178, 111556.
[http://dx.doi.org/10.1016/j.postharvbio.2021.111556]
[17]
Jamil, I.N.; Sanusi, S.; Mackeen, M.M.; Noor, N.M.; Aizat, W.M. SWATH-MS proteomics and postharvest analyses of mangosteen ripening revealed intricate regulation of carbohydrate metabolism and secondary metabolite biosynthesis. Postharvest Biol. Technol., 2021, 176, 111493.
[http://dx.doi.org/10.1016/j.postharvbio.2021.111493]
[18]
Zhang, Z.; Xia, B.; Li, Y.; Lin, Y.; Xie, J.; Wu, P.; Lin, L.; Liao, D. Comparative proteomic analysis of Prunella vulgaris L. spica ripening. J. Proteomics, 2021, 232, 104028.
[http://dx.doi.org/10.1016/j.jprot.2020.104028] [PMID: 33129985]
[19]
Sosalagere, C.; Adesegun Kehinde, B.; Sharma, P. Isolation and functionalities of bioactive peptides from fruits and vegetables: A reviews. Food Chem., 2022, 366, 130494.
[http://dx.doi.org/10.1016/j.foodchem.2021.130494] [PMID: 34293544]
[20]
Fu, J.; Zhang, L-L.; Li, W.; Zhang, Y.; Zhang, Y.; Liu, F.; Zou, L. Application of metabolomics for revealing the interventional effects of functional foods on metabolic diseases. Food Chem., 2022, 367, 130697.
[http://dx.doi.org/10.1016/j.foodchem.2021.130697] [PMID: 34365248]

© 2022 Bentham Science Publishers | Privacy Policy