Generic placeholder image

Current Traditional Medicine

Editor-in-Chief

ISSN (Print): 2215-0838
ISSN (Online): 2215-0846

Review Article

The Potential Impact of Ayurvedic Traditional Bhasma on SARS-CoV- 2- Induced Pathogenesis

Author(s): Pankaj Kumar*, Remya Jayakumar, Manoj Kumar Dash and Namrata Joshi

Volume 9, Issue 3, 2023

Published on: 30 August, 2022

Article ID: e210322202483 Pages: 16

DOI: 10.2174/2215083808666220321145803

Price: $65

Abstract

The mass casualties caused by the delta variant and the wave of the newer “Omicron” variant of SARS-COV-2 in India have brought about great concern among healthcare officials. The government and healthcare agencies are seeking effective strategies to counter the pandemic. The application of nanotechnology and repurposing of drugs are reported as promising approaches in the management of COVID-19 disease. It has also immensely boomed the search for productive, reliable, cost-effective, and bio-assimilable alternative solutions. Since ancient times, the traditionally employed Ayurvedic bhasmas have been used for diverse infectious diseases, which are now employed as nanomedicine that could be applied for managing COVID-19-related health anomalies. Like currently engineered metal nanoparticles (NPs), the bhasma nanoparticles (BNPs) are also packed with unique physicochemical properties, including multi-elemental nanocrystalline composition, size, shape, dissolution, surface charge, hydrophobicity, and multi-pathway regulatory as well as modulatory effects. Because of these conformational and configurational-based physicochemical advantages, Bhasma NPs may have promising potential to manage the COVID-19 pandemic and reduce the incidence of pneumonia-like common lung infections in children as well as age-related inflammatory diseases via immunomodulatory, anti-inflammatory, antiviral, and adjuvant- related properties.

Keywords: Bhasma, marana, transition metal, nanocrystalline structure, proinflammatory, nanoparticles, gut microbiome.

Graphical Abstract
[1]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[2]
Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 2020; 8(4): 420-2.
[http://dx.doi.org/10.1016/S2213-2600(20)30076-X] [PMID: 32085846]
[3]
Catanzaro M, Fagiani F, Racchi M, Corsini E, Govoni S, Lanni C. Immune response in COVID-19: Addressing a pharmacological challenge by targeting pathways triggered by SARS-CoV-2. Signal Transduct Target Ther 2020; 5(1): 84.
[http://dx.doi.org/10.1038/s41392-020-0191-1] [PMID: 32467561]
[4]
Sharma R, Pk P. Diet and lifestyle guidelines for diabetes: Evidence based ayurvedic perspective. Rom J Diabetes Nutr Metab Dis 2014; 21(4): 335-46.
[http://dx.doi.org/10.2478/rjdnmd-2014-0041]
[5]
Sharma R, Martins N. Telomeres, DNA damage and ageing: Potential leads from ayurvedic rasayana (anti-ageing) drugs. J Clin Med 2020; 9(8): 2544.
[http://dx.doi.org/10.3390/jcm9082544] [PMID: 32781627]
[6]
Kabra A, Sharma R, Kabra R, Baghel US. Emerging and alternative therapies for Parkinson disease: An updated review. Curr Pharm Des 2018; 24(22): 2573-82.
[http://dx.doi.org/10.2174/1381612824666180820150150] [PMID: 30124146]
[7]
Sharma R, Prajapati PK. Remarks on “herbal immune booster-induced liver injury in the COVID-19 pandemic - A case series". J Clin Exp Hepatol 2021.
[http://dx.doi.org/10.1016/j.jceh.2021.08.025] [PMID: 34511810]
[8]
Kakodkar P, Sharma R, Dubewar AP. Classical vs commercial: Is the “efficacy” of chyawanprash lost when tradition is replaced by modernization? J Ayurveda Integr Med 2021; 12(4): 751-2.
[http://dx.doi.org/10.1016/j.jaim.2021.08.014]
[9]
Jha CB, Bhattacharya B, Narang KK. Bhasmas as natural nanorobots: The biorelevant metal complex. J Trad Natural Med 2015; 1: 2-9.
[10]
Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020; 395(10224): 565-74.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[11]
Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-Converting Enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Med 2020; 46(4): 586-90.
[http://dx.doi.org/10.1007/s00134-020-05985-9] [PMID: 32125455]
[12]
Pipeline review (2021) APEIRON’s respiratory drug product to start pilot clinical trial to treat coronavirus disease COVID-19 in China. 2021. Available from: https://pipelinereview.com/index.php/2020022673884/Proteins-and-Peptides/APEIRONs-respiratory-drug-product-to-start-pilot-clinical-trial-to-treat-coronavirus-disease-COVID-19-in-China.html (Accessed 15 Jun 2021).
[13]
Park WB, Kwon NJ, Choi SJ, et al. Virus isolation from the first patient with SARS-CoV-2 in Korea. J Korean Med Sci 2020; 35(7): e84.
[http://dx.doi.org/10.3346/jkms.2020.35.e84] [PMID: 32080990]
[14]
Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: Mechanistic description of dead and dying eukaryotic cells. Infect Immun 2005; 73(4): 1907-16.
[http://dx.doi.org/10.1128/IAI.73.4.1907-1916.2005] [PMID: 15784530]
[15]
Yang M. Cell pyroptosis, a potential pathogenic mechanism of 2019-nCoV infection. SSRN Electron J 2020.
[http://dx.doi.org/10.2139/ssrn.3527420]
[16]
Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: Immunity, inflammation and intervention. Nat Rev Immunol 2020; 20(6): 363-74.
[http://dx.doi.org/10.1038/s41577-020-0311-8] [PMID: 32346093]
[17]
Liu S, Xiao G, Chen Y, et al. Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus: Implications for virus fusogenic mechanism and identification of fusion inhibitors. Lancet 2004; 363(9413): 938-47.
[http://dx.doi.org/10.1016/S0140-6736(04)15788-7] [PMID: 15043961]
[18]
Chen Y, Guo Y, Pan Y, Zhao ZJ. Structure analysis of the receptor binding of 2019-nCoV. Biochem Biophys Res Commun 2020; 525(1): 135-40.
[http://dx.doi.org/10.1016/j.bbrc.2020.02.071] [PMID: 32081428]
[19]
Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis 2020; 71(15): 762-8.
[http://dx.doi.org/10.1093/cid/ciaa248] [PMID: 32161940]
[20]
Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. HLH across speciality collaboration, UK. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 2020; 395(10229): 1033-4.
[http://dx.doi.org/10.1016/S0140-6736(20)30628-0] [PMID: 32192578]
[21]
Tahaghoghi-Hajghorbani S, Zafari P, Masoumi E, et al. The role of dysregulated immune responses in COVID-19 pathogenesis. Virus Res 2020; 290: 198197.
[http://dx.doi.org/10.1016/j.virusres.2020.198197] [PMID: 33069815]
[22]
Mortaz E, Tabarsi P, Varahram M, Folkerts G, Adcock IM. The immune response and immunopathology of COVID-19. Front Immunol 2020; 11: 2037.
[http://dx.doi.org/10.3389/fimmu.2020.02037] [PMID: 32983152]
[23]
García LF. Immune response, inflammation, and the clinical spectrum of COVID-19. Front Immunol 2020; 11: 1441.
[http://dx.doi.org/10.3389/fimmu.2020.01441] [PMID: 32612615]
[24]
Sarkar PK, Das Mukhopadhyay C. Ayurvedic metal nanoparticles could be novel antiviral agents against SARS-CoV-2. Int Nano Lett 2021; 11(3): 1-7.
[http://dx.doi.org/10.1007/s40089-020-00323-9] [PMID: 33425283]
[25]
Uskoković V. Why have nanotechnologies been underutilized in the global uprising against the coronavirus pandemic? Nanomedicine (Lond) 2020; 15(17): 1719-34.
[http://dx.doi.org/10.2217/nnm-2020-0163] [PMID: 32462968]
[26]
Shehu IA, Auwal NM, Musa MK, et al. Innovative nanotechnology a boon for fight against pandemic COVID-19. Front Nanotechnol 2021; 3: 1-19.
[http://dx.doi.org/10.3389/fnano.2021.651308]
[27]
Tharayil A, Rajakumari R, Kumar A, Choudhary MD, Palit P, Thomas S. New insights into application of nanoparticles in the diagnosis and screening of novel coronavirus (SARS-CoV-2). Emergent Mater 2021; 4(1): 1-17.
[http://dx.doi.org/10.1007/s42247-021-00182-w] [PMID: 33817553]
[28]
Barnard DL, Kumaki Y. Recent developments in anti-severe acute respiratory syndrome coronavirus chemotherapy. Future Virol 2011; 6(5): 615-31.
[http://dx.doi.org/10.2217/fvl.11.33] [PMID: 21765859]
[29]
te Velthuis AJW, van den Worm SHE, Sims AC, Baric RS, Snijder EJ, van Hemert MJ. Zn(2+) inhibits coronavirus and arterivirus RNA polymerase activity In vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog 2010; 6(11): e1001176.
[http://dx.doi.org/10.1371/journal.ppat.1001176] [PMID: 21079686]
[30]
Abo-Zeid Y, Ismail NSM, McLean GR, Hamdy NM. A molecular docking study repurposes FDA approved iron oxide nanoparticles to treat and control COVID-19 infection. Eur J Pharm Sci 2020; 153: 105465.
[http://dx.doi.org/10.1016/j.ejps.2020.105465] [PMID: 32668312]
[31]
Ishida T. Antiviral activities of Cu 2+ Ions in viral prevention, replication, RNA degradation, and for antiviral efficacies of lytic virus, ROS-mediated virus, copper chelation. World Sci News 2018; 99: 148-68.
[32]
Garza-Lopez RA, Kozak JJ, Gray HB. 2020.Copper(II) inhibition of the SARS-CoV-2 main protease. ChemRxiv
[http://dx.doi.org/10.26434/chemrxiv.12673436.v1]
[33]
de Jesus JR, de Araújo Andrade T. Understanding the relationship between viral infections and trace elements from a metallomics perspective: Implications for COVID-19. Metallomics 2020; 12(12): 1912-30.
[http://dx.doi.org/10.1039/d0mt00220h] [PMID: 33295922]
[34]
Shionoiri N, Sato T, Fujimori Y, et al. Investigation of the antiviral properties of copper iodide nanoparticles against feline calicivirus. J Biosci Bioeng 2012; 113(5): 580-6.
[http://dx.doi.org/10.1016/j.jbiosc.2011.12.006] [PMID: 22227118]
[35]
Reina G, Peng S, Jacquemin L, Andrade AF, Bianco A. Hard nanomaterials in time of viral pandemics. ACS Nano 2020; 14(8): 9364-88.
[http://dx.doi.org/10.1021/acsnano.0c04117] [PMID: 32667191]
[36]
Sekimukai H, Iwata-Yoshikawa N, Fukushi S, et al. Gold nanoparticle-adjuvanted S protein induces a strong antigen-specific IgG response against severe acute respiratory syndrome-related coronavirus infection, but fails to induce protective antibodies and limit eosinophilic infiltration in lungs. Microbiol Immunol 2020; 64(1): 33-51.
[http://dx.doi.org/10.1111/1348-0421.12754] [PMID: 31692019]
[37]
Di Gianvincenzo P, Marradi M, Martínez-Avila OM, Bedoya LM, Alcamí J, Penadés S. Gold nanoparticles capped with sulfate-ended ligands as anti-HIV agents. Bioorg Med Chem Lett 2010; 20(9): 2718-21.
[http://dx.doi.org/10.1016/j.bmcl.2010.03.079] [PMID: 20382017]
[38]
Rai M, Deshmukh SD, Ingle AP, Gupta IR, Galdiero M, Galdiero S. Metal nanoparticles: The protective nanoshield against virus infection. Crit Rev Microbiol 2016; 42(1): 46-56.
[http://dx.doi.org/10.3109/1040841X.2013.879849] [PMID: 24754250]
[39]
Prajapati PK, Yadav P, Gauri A. Possible potential of Tamra Bhasma (Calcined Copper) in COVID-19 management. J Res Ayurvedic Sci 2020; 4(3): 113-20.
[http://dx.doi.org/10.5005/jras-10064-0111]
[40]
Sagripanti JL, Routson LB, Lytle CD. Virus inactivation by copper or iron ions alone and in the presence of peroxide. Appl Environ Microbiol 1993; 59(12): 4374-6.
[http://dx.doi.org/10.1128/aem.59.12.4374-4376.1993] [PMID: 8285724]
[41]
Kumar A, Nair AGC, Reddy AVR, Garg AN. Bhasmas: Unique ayurvedic metallic-herbal preparations, chemical characterization. Biol Trace Elem Res 2006; 109(3): 231-54.
[http://dx.doi.org/10.1385/BTER:109:3:231] [PMID: 16632893]
[42]
Mishra S, Mucchya R. Chaukhamba orientalia, Varanasi 2019.
[43]
Sharma R, Kabra A, Rao MM, Prajapati PK. Herbal and holistic solutions for neurodegenerative and depressive disorders: Leads from ayurveda. Curr Pharm Des 2018; 24(22): 2597-608.
[http://dx.doi.org/10.2174/1381612824666180821165741] [PMID: 30147009]
[44]
Sharma R, Martins N, Chaudhary A, et al. Adjunct use of honey in diabetes mellitus: A consensus or conundrum? Trends Food Sci Technol 2020; 106: 254-74.
[http://dx.doi.org/10.1016/j.tifs.2020.10.020]
[45]
Sharma R, Bolleddu R, Maji JK, Ruknuddin G, Prajapati PK. In-vitro α-amylase, α-glucosidase inhibitory activities and in-vivo anti-hyperglycemic potential of different dosage forms of guduchi (Tinospora cordifolia [willd.] miers) prepared with ayurvedic bhavana process. Front Pharmacol 2021; 12: 642300.
[http://dx.doi.org/10.3389/fphar.2021.642300] [PMID: 34040519]
[46]
Biswas S, Dhumal R, Selkar N, et al. Physicochemical characterization of Suvarna bhasma, its toxicity profiling in rat and behavioural assessment in zebrafish model. J Ethnopharmacol 2020; 249: 112388.
[http://dx.doi.org/10.1016/j.jep.2019.112388] [PMID: 31730889]
[47]
Khoobchandani M, Katti KK, Karikachery AR, et al. New approaches in breast cancer therapy through green nanotechnology and nano-ayurvedic medicine-pre-clinical and pilot human clinical investigations. Int J Nanomedicine 2020; 15: 181-97.
[http://dx.doi.org/10.2147/IJN.S219042] [PMID: 32021173]
[48]
Mukkavalli S, Chalivendra V, Singh BR. Physico-chemical analysis of herbally prepared silver nanoparticles and its potential as a drug bioenhancer. OpenNano 2017; 2: 19-27.
[http://dx.doi.org/10.1016/j.onano.2017.01.001]
[49]
Pal D, Sahu CK, Haldar A. Bhasma: The ancient Indian nanomedicine. J Adv Pharm Technol Res 2014; 5(1): 4-12.
[http://dx.doi.org/10.4103/2231-4040.126980] [PMID: 24696811]
[50]
Bhat RSV, Vikram S. SEM EDX Analysis of swayamagni Loha bhasma. J Ayurveda Integr Med Sci 2019; 4(4)
[http://dx.doi.org/10.21760/jaims.4.4.23]
[51]
Singh TR, Gupta LN, Kumar N. Standard manufacturing procedure of Teekshna lauha bhasma. J Ayurveda Integr Med 2016; 7(2): 100-8.
[http://dx.doi.org/10.1016/j.jaim.2015.08.003] [PMID: 27450759]
[52]
Singh RK, Kumar S, Aman AK, Karim SM, Kumar S, Kar M. Study on physical properties of Ayurvedic nanocrystalline Tamra Bhasma by employing modern scientific tools. J Ayurveda Integr Med 2019; 10(2): 88-93.
[http://dx.doi.org/10.1016/j.jaim.2017.06.012] [PMID: 29249635]
[53]
Jagtap CY, Prajapati PK, Patgiri B, Shukla VJ. Standard manufacturing procedure of Tamra Bhasma. Ayu 2012; 33(4): 561-8.
[http://dx.doi.org/10.4103/0974-8520.110528] [PMID: 23723677]
[54]
Singh SK, Gautam DNS, Kumar M, Rai SB. Synthesis, characterization and histopathological study of a lead-based Indian traditional drug: Naga bhasma. Indian J Pharm Sci 2010; 72(1): 24-30.
[http://dx.doi.org/10.4103/0250-474X.62232] [PMID: 20582186]
[55]
Nagarajan S, Krishnaswamy S, Pemiah B, Rajan KS, Krishnan U, Sethuraman S. Scientific insights in the preparation and characterisation of a lead-based Naga bhasma. Indian J Pharm Sci 2014; 76(1): 38-45.
[PMID: 24799737]
[56]
Umrani RD, Paknikar KM. Jasada Bhasma, a zinc-based ayurvedic preparation: Contemporary evidence of antidiabetic activity inspires development of a nanomedicine. Evid Based Complement Alternat Med 2015; 2015: 193156.
[http://dx.doi.org/10.1155/2015/193156] [PMID: 25866533]
[57]
Pyrgiotakis G, Bhowmick TK, Finton K, et al. Cell (A549)-particle (Jasada bhasma) interactions using Raman spectroscopy. Biopolymers 2008; 89(6): 555-64.
[http://dx.doi.org/10.1002/bip.20947] [PMID: 18253947]
[58]
Sharma R, Hazra J, Prajapati PK. Knowledge and awareness of pharmacovigilance among ayurveda physicians in Himachal Pradesh. Anc Sci Life 2017; 36(4): 234-5.
[http://dx.doi.org/10.4103/asl.ASL_41_17] [PMID: 29269978]
[59]
Sharma R, Galib R, Prajapati PK. Good pharmacovigilance practice: Accountability of ayurvedic pharmaceutical companies. Anc Sci Life 2017; 36(3): 167-9.
[http://dx.doi.org/10.4103/asl.ASL_10_17] [PMID: 28867862]
[60]
Liu J, Zhang F, Ravikanth V, Olajide OA, Li C, Wei LX. Chemical compositions of metals in bhasmas and Tibetan zuotai are a major determinant of their therapeutic effects and toxicity. Evid Based Complement Alternat Med 2019; 2019: 1697804.
[http://dx.doi.org/10.1155/2019/1697804] [PMID: 30941186]
[61]
Almirantis Y. Homeopathy-between tradition and modern science: Remedies as carriers of significance. Homeopathy 2013; 102(2): 114-22.
[http://dx.doi.org/10.1016/j.homp.2013.01.003] [PMID: 23622261]
[62]
Sharma R, Prajapati P. Liquid media’s in Bhavana Samskara : A pharmaceutico-therapeutic prospect. 2015; 4: 49-57.
[63]
Sharma R, Prajapati PK. Predictive, preventive and personalized medicine: Leads from ayurvedic concept of Prakriti (human constitution). Curr Pharmacol Rep 2020; 6(6): 441-50.
[http://dx.doi.org/10.1007/s40495-020-00244-3]
[64]
Thakur K, Gudi R, Vahalia M, Shitut S, Nadkarni S. Preparation and characterization of Suvarna bhasma parada marit. J Pharmacopuncture 2017; 20(1): 36-44.
[http://dx.doi.org/10.3831/KPI.2017.20.007] [PMID: 28392961]
[65]
B S. Analytical study of Yashada bhasma (zinc based ayurvedic metallic preparation) with reference to ancient and modern parameters. J Allergy Ther 2012; S1(1): 1-7.
[http://dx.doi.org/10.4172/scientificreports.582]
[66]
Gupta KL, Pallavi G, Patgiri BJ, Galib , Prajapati PK. Critical review on the pharmaceutical vistas of Lauha kalpas (Iron formulations). J Ayurveda Integr Med 2012; 3(1): 21-8.
[http://dx.doi.org/10.4103/0975-9476.93944] [PMID: 22529676]
[67]
Mukhi P, Mohapatra SS, Bhattacharjee M, et al. Mercury based drug in ancient India: The red sulfide of mercury in nanoscale. J Ayurveda Integr Med 8: 93-8.
[http://dx.doi.org/10.1016/j.jaim.2017.01.009]
[68]
Kale B, Rajurkar N. Synthesis and characterization of Vanga bhasma. J Ayurveda Integr Med 10: 111-8.
[http://dx.doi.org/10.1016/j.jaim.2017.05.003]
[69]
Kantak S, Rajurkar N, Adhyapak P. Synthesis and characterization of Abhraka (mica) bhasma by two different methods. J Ayurveda Integr Med 2020; 11(3): 236-42.
[http://dx.doi.org/10.1016/j.jaim.2018.11.003] [PMID: 30826258]
[70]
Rasheed A, Naik M, Mohammed-Haneefa KP, Arun-Kumar RP, Azeem AK. Formulation, characterization and comparative evaluation of Trivanga bhasma: A herbo-mineral Indian traditional medicine. Pak J Pharm Sci 2014; 27(4): 793-800.
[PMID: 25015442]
[71]
Williams RJ. Role of transition metal ions in biological processes. R Inst Chem Rev 1968; 1(1): 13.
[http://dx.doi.org/10.1039/rr9680100013]
[72]
Hutchinson DW. Metal chelators as potential antiviral agents. Antiviral Res 1985; 5(4): 193-205.
[http://dx.doi.org/10.1016/0166-3542(85)90024-5] [PMID: 2994561]
[73]
Zhang H, Gilbert B, Huang F, Banfield JF. Water-driven structure transformation in nanoparticles at room temperature. Nature 2003; 424(6952): 1025-9.
[http://dx.doi.org/10.1038/nature01845] [PMID: 12944961]
[74]
Gatoo MA, Naseem S, Arfat MY, Dar AM, Qasim K, Zubair S. Physicochemical properties of nanomaterials: Implication in associated toxic manifestations. BioMed Res Int 2014; 2014: 498420.
[http://dx.doi.org/10.1155/2014/498420] [PMID: 25165707]
[75]
Rugmini RK, Sridurga CH. Analytical study of Tamra Bhasma. Int Ayurvedic Med J 2018; 2: 107-17.
[76]
Chandran S, Patgiri B, Bedarkar P, et al. Particle size estimation and elemental analysis of Yashada bhasma. Int J Green Pharm 2017; 11: S765-73.
[77]
Beaudet D, Badilescu S, Kuruvinashetti K, et al. Comparative study on cellular entry of incinerated ancient gold particles (Swarna Bhasma) and chemically synthesized gold particles. Sci Rep 2017; 7(1): 10678.
[http://dx.doi.org/10.1038/s41598-017-10872-3] [PMID: 28878355]
[78]
Sharma R, Bhatt A, Thakur M. Physicochemical characterization and antibacterial activity of Rajata Bhasma and silver nanoparticle. Ayu 2016; 37(1): 71-5.
[http://dx.doi.org/10.4103/ayu.AYU_167_15] [PMID: 28827959]
[79]
Slavin YN, Asnis J, Häfeli UO, Bach H. Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. J Nanobiotechnology 2017; 15(1): 65.
[http://dx.doi.org/10.1186/s12951-017-0308-z] [PMID: 28974225]
[80]
Pan Y, Neuss S, Leifert A, et al. Size-dependent cytotoxicity of gold nanoparticles. Small 2007; 3(11): 1941-9.
[http://dx.doi.org/10.1002/smll.200700378] [PMID: 17963284]
[81]
Yen HJ, Hsu SH, Tsai CL. Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small 2009; 5(13): 1553-61.
[http://dx.doi.org/10.1002/smll.200900126] [PMID: 19326357]
[82]
Jindal AB. The effect of particle shape on cellular interaction and drug delivery applications of micro- and nanoparticles. Int J Pharm 2017; 532(1): 450-65.
[http://dx.doi.org/10.1016/j.ijpharm.2017.09.028] [PMID: 28917985]
[83]
Azcona P, Zysler R, Lassalle V. Simple and novel strategies to achieve shape and size control of magnetite nanoparticles intended for biomedical applications. Colloids Surf A Physicochem Eng Asp 2016; 504: 320-30.
[http://dx.doi.org/10.1016/j.colsurfa.2016.05.064]
[84]
Champion JA, Walker A, Mitragotri S. Role of particle size in phagocytosis of polymeric microspheres. Pharm Res 2008; 25(8): 1815-21.
[http://dx.doi.org/10.1007/s11095-008-9562-y] [PMID: 18373181]
[85]
Hirota K, Hasegawa T, Hinata H, et al. Optimum conditions for efficient phagocytosis of rifampicin-loaded PLGA microspheres by alveolar macrophages. J Control Release 2007; 119(1): 69-76.
[http://dx.doi.org/10.1016/j.jconrel.2007.01.013] [PMID: 17335927]
[86]
Koval M, Preiter K, Adles C, Stahl PD, Steinberg TH. Size of IgG-opsonized particles determines macrophage response during internalization. Exp Cell Res 1998; 242(1): 265-73.
[http://dx.doi.org/10.1006/excr.1998.4110] [PMID: 9665824]
[87]
Tabata Y, Ikada Y. Effect of the size and surface charge of polymer microspheres on their phagocytosis by macrophage. Biomaterials 1988; 9(4): 356-62.
[http://dx.doi.org/10.1016/0142-9612(88)90033-6] [PMID: 3214660]
[88]
Pacheco P, White D, Sulchek T. Effects of microparticle size and Fc density on macrophage phagocytosis. PLoS One 2013; 8(4): e60989.
[http://dx.doi.org/10.1371/journal.pone.0060989] [PMID: 23630577]
[89]
Tomić S, Ðokić J, Vasilijić S, et al. Size-dependent effects of gold nanoparticles uptake on maturation and antitumor functions of human dendritic cells In vitro. PLoS One 2014; 9(5): e96584.
[http://dx.doi.org/10.1371/journal.pone.0096584] [PMID: 24802102]
[90]
Chen X, Yan Y, Müllner M, et al. Shape-dependent activation of cytokine secretion by polymer capsules in human monocyte-derived macrophages. Biomacromolecules 2016; 17(3): 1205-12.
[http://dx.doi.org/10.1021/acs.biomac.6b00027] [PMID: 26919729]
[91]
Mathaes R, Winter G, Besheer A, Engert J. Non-spherical micro- and nanoparticles: Fabrication, characterization and drug delivery applications. Expert Opin Drug Deliv 2015; 12(3): 481-92.
[http://dx.doi.org/10.1517/17425247.2015.963055] [PMID: 25327886]
[92]
Nambara K, Niikura K, Mitomo H, et al. Reverse size dependences of the cellular uptake of triangular and spherical gold nanoparticles. Langmuir 2016; 32(47): 12559-67.
[http://dx.doi.org/10.1021/acs.langmuir.6b02064] [PMID: 27653187]
[93]
Yue H, Wei W, Yue Z, et al. Particle size affects the cellular response in macrophages. Eur J Pharm Sci 2010; 41(5): 650-7.
[http://dx.doi.org/10.1016/j.ejps.2010.09.006] [PMID: 20870022]
[94]
Baranov MV, Kumar M, Sacanna S, Thutupalli S, van den Bogaart G. Modulation of immune responses by particle size and shape. Front Immunol 2021; 11: 607945.
[http://dx.doi.org/10.3389/fimmu.2020.607945] [PMID: 33679696]
[95]
Joshi N, Dash MK, Dwivedi L, Khilnani GD. Toxicity study of Lauha bhasma (calcined iron) in albino rats. Anc Sci Life 2016; 35(3): 159-66.
[http://dx.doi.org/10.4103/0257-7941.179870] [PMID: 27143800]
[96]
Chaudhari SY, Nariya MB, Galib R, Prajapati PK. Acute and subchronic toxicity study of Tamra Bhasma (incinerated copper) prepared with and without Amritikarana. J Ayurveda Integr Med 2016; 7(1): 23-9.
[http://dx.doi.org/10.1016/j.jaim.2015.11.001] [PMID: 27297506]
[97]
Petrarca C, Clemente E, Amato V, et al. Engineered metal based nanoparticles and innate immunity. Clin Mol Allergy 2015; 13(1): 13.
[http://dx.doi.org/10.1186/s12948-015-0020-1] [PMID: 26180517]
[98]
Bharti SK, Singh SK. Metal based drugs : Current use and future potential. Library 2009; 1: 39-51.
[99]
Attwood SJ, Kershaw R, Uddin S, Bishop SM, Welland ME. Understanding how charge and hydrophobicity influence globular protein adsorption to alkanethiol and material surfaces. J Mater Chem B Mater Biol Med 2019; 7(14): 2349-61.
[http://dx.doi.org/10.1039/C9TB00168A] [PMID: 32254683]
[100]
Walker DA, Kowalczyk B, de la Cruz MO, Grzybowski BA. Electrostatics at the nanoscale. Nanoscale 2011; 3(4): 1316-44.
[http://dx.doi.org/10.1039/C0NR00698J] [PMID: 21321754]
[101]
Netz RR, Andelman D. Neutral and charged polymers at interfaces. Phys Rep 2003; 380(1-2): 1-95.
[http://dx.doi.org/10.1016/S0370-1573(03)00118-2]
[102]
Zdrali E, Okur HI, Roke S. Specific ion effects at the interface of nanometer-sized droplets in water: Structure and stability. J Phys Chem C 2019; 123(27): 16621-30.
[http://dx.doi.org/10.1021/acs.jpcc.9b01001]
[103]
Liang D, Dahal U, Zhang YK, et al. Interfacial water and ion distribution determine ζ potential and binding affinity of nanoparticles to biomolecules. Nanoscale 2020; 12(35): 18106-23.
[http://dx.doi.org/10.1039/D0NR03792C] [PMID: 32852025]
[104]
Murphy CJ, Gole AM, Stone JW, et al. Gold nanoparticles in biology: Beyond toxicity to cellular imaging. Acc Chem Res 2008; 41(12): 1721-30.
[http://dx.doi.org/10.1021/ar800035u] [PMID: 18712884]
[105]
Albanese A, Chan WCW. Effect of gold nanoparticle aggregation on cell uptake and toxicity. ACS Nano 2011; 5(7): 5478-89.
[http://dx.doi.org/10.1021/nn2007496] [PMID: 21692495]
[106]
Hauck TS, Ghazani AA, Chan WC. Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small 2008; 4(1): 153-9.
[http://dx.doi.org/10.1002/smll.200700217] [PMID: 18081130]
[107]
Goodman CM, McCusker CD, Yilmaz T, Rotello VM. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 2004; 15(4): 897-900.
[http://dx.doi.org/10.1021/bc049951i] [PMID: 15264879]
[108]
Li Z, Lei Z, Zhang J, Liu D, Wang Z. Effects of size, shape, surface charge and functionalization on cytotoxicity of gold nanoparticles. Nano Life 2015; 05(1): 1540003.
[http://dx.doi.org/10.1142/S1793984415400036]
[109]
Adabi M, Naghibzadeh M, Adabi M, et al. Biocompatibility and nanostructured materials: Applications in nanomedicine. Artif Cells Nanomed Biotechnol 2017; 45(4): 833-42.
[http://dx.doi.org/10.1080/21691401.2016.1178134] [PMID: 27247194]
[110]
Jiang J, Oberdörster G, Biswas P. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 2009; 11(1): 77-89.
[http://dx.doi.org/10.1007/s11051-008-9446-4]
[111]
Wang N, Hsu C, Zhu L, Tseng S, Hsu JP. Influence of metal oxide nanoparticles concentration on their zeta potential. J Colloid Interface Sci 2013; 407: 22-8.
[http://dx.doi.org/10.1016/j.jcis.2013.05.058] [PMID: 23838331]
[112]
Abbas Z, Labbez C, Nordholm S, Ahlberg E. Size-dependent surface charging of nanoparticles. J Phys Chem C 2008; 112(15): 5715-23.
[http://dx.doi.org/10.1021/jp709667u]
[113]
Guo S, Huang L. Nanoparticles escaping RES and endosome: Challenges for siRNA delivery for cancer therapy. J Nanomater 2011; 2011: 1-12.
[http://dx.doi.org/10.1155/2011/987530]
[114]
Yang Y, Gao N, Hu Y, et al. Gold nanoparticle-enhanced photodynamic therapy: Effects of surface charge and mitochondrial targeting. Ther Deliv 2015; 6(3): 307-21.
[http://dx.doi.org/10.4155/tde.14.115] [PMID: 25853307]
[115]
Otsuka H, Nagasaki Y, Kataoka K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev 2003; 55(3): 403-19.
[http://dx.doi.org/10.1016/S0169-409X(02)00226-0] [PMID: 12628324]
[116]
Storm G, Belliot SO, Daemen T, Lasic DD. Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Deliv Rev 1995; 17(1): 31-48.
[http://dx.doi.org/10.1016/0169-409X(95)00039-A]
[117]
Torchilin VP, Trubetskoy VS. Which polymers can make nanoparticulate drug carriers long-circulating? Adv Drug Deliv Rev 1995; 16(2-3): 141-55.
[http://dx.doi.org/10.1016/0169-409X(95)00022-Y]
[118]
Klibanov AL, Maruyama K, Beckerleg AM, Torchilin VP, Huang L. Activity of amphipathic poly(ethylene glycol) 5000 to prolong the circulation time of liposomes depends on the liposome size and is unfavorable for immunoliposome binding to target. Biochim Biophys Acta 1991; 1062(2): 142-8.
[http://dx.doi.org/10.1016/0005-2736(91)90385-L] [PMID: 2004104]
[119]
Peracchia MT, Fattal E, Desmaële D, et al. Stealth PEGylated polycyanoacrylate nanoparticles for intravenous administration and splenic targeting. J Control Release 1999; 60(1): 121-8.
[http://dx.doi.org/10.1016/S0168-3659(99)00063-2] [PMID: 10370176]
[120]
Cheng LC, Jiang X, Wang J, Chen C, Liu RS. Nano-bio effects: Interaction of nanomaterials with cells. Nanoscale 2013; 5(9): 3547-69.
[http://dx.doi.org/10.1039/c3nr34276j] [PMID: 23532468]
[121]
Braakhuis HM, Park MVDZ, Gosens I, De Jong WH, Cassee FR. Physicochemical characteristics of nanomaterials that affect pulmonary inflammation. Part Fibre Toxicol 2014; 11(1): 18.
[http://dx.doi.org/10.1186/1743-8977-11-18] [PMID: 24725891]
[122]
Naim B, Zbaida D, Dagan S, Kapon R, Reich Z. Cargo surface hydrophobicity is sufficient to overcome the nuclear pore complex selectivity barrier. EMBO J 2009; 28(18): 2697-705.
[http://dx.doi.org/10.1038/emboj.2009.225] [PMID: 19680225]
[123]
Subedi RP, Vartak RR, Kale PG. Modulation of oxidative stress by Abhrak bhasma in drosophila melanogaster. Asian J Pharm Clin Res 2018; 11(5): 247.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i5.24472]
[124]
S A S, Jadar PG. Immunomodulatory effects of Swarnamakshika bhasma : A experimental study. J Ayurveda Integr Med Sci 2019; 4(5)
[125]
Chavare A, Chowdari P, Ghosh S, et al. Safety and bioactivity studies of Jasad bhasma and its in-process intermediate in Swiss mice. J Ethnopharmacol 2017; 197: 73-86.
[http://dx.doi.org/10.1016/j.jep.2016.06.048] [PMID: 27377339]
[126]
Prasad SB. In vitro anti-inflammatory activity of Raupya (Silver) bhasma. J Chem Pharm Res 2013; 5: 194-7.
[http://dx.doi.org/10.13140/2.1.1525.0888]
[127]
Chauhan O, Godhwani JL, Khanna NK, Pendse VK. Antiinflammatory activity of Muktashukti bhasma. Indian J Exp Biol 1998; 36(10): 985-9.
[PMID: 10356960]
[128]
Shah ZA, Gilani RA, Sharma P, Vohora SB. Attenuation of stress-elicited brain catecholamines, serotonin and plasma corticosterone levels by calcined gold preparations used in Indian system of medicine. Basic Clin Pharmacol Toxicol 2005; 96(6): 469-74.
[http://dx.doi.org/10.1111/j.1742-7843.2005.pto_96610.x] [PMID: 15910411]
[129]
Rajput D, Patgiri BJ, Galib R, Prajapati PK. Anti-diabetic formulations of Nāga bhasma (lead calx): A brief review. Anc Sci Life 2013; 33(1): 52-9.
[http://dx.doi.org/10.4103/0257-7941.134609] [PMID: 25161332]
[130]
Jagtap CY, Ashok BK, Patgiri BJ, et al. Comparative anti-hyperlipidemic activity of Tamra Bhasma (incinerated copper) prepared from (purified) and Ashodhita tamra (raw copper). Indian J Nat Prod Resour 2013; 4: 205-11.
[131]
Patgiri B, Galib R, Prasanth D. A review through therapeutic attributes of Yashada bhasma a review through therapeutic attributes of Yashada bhasma. Int J Pharm Biol Arch 2016; 7: 6-11.
[132]
Ekka D, Dubey S, Dhruw DS. Effect of Rajat bhasma with smritisagar rasa in parkinson. J Ayurveda Integr Med Sci 2017; 2(4)
[http://dx.doi.org/10.21760/jaims.v2i4.9341]
[133]
Sharma R, Kuca K, Nepovimova E, Kabra A, Rao MM, Prajapati PK. Traditional Ayurvedic and herbal remedies for Alzheimer’s disease: From bench to bedside. Expert Rev Neurother 2019; 19(5): 359-74.
[http://dx.doi.org/10.1080/14737175.2019.1596803] [PMID: 30884983]
[134]
Datta HS, Mitra SK, Patwardhan B. Wound healing activity of topical application forms based on ayurveda. Evid Based Complement Alternat Med 2011; 2011: 134378.
[http://dx.doi.org/10.1093/ecam/nep015] [PMID: 19252191]
[135]
Chaturvedi UC, Shrivastava R. Interaction of viral proteins with metal ions: Role in maintaining the structure and functions of viruses. FEMS Immunol Med Microbiol 2005; 43(2): 105-14.
[http://dx.doi.org/10.1016/j.femsim.2004.11.004] [PMID: 15681139]
[136]
Rastogi S, Pandey DN, Singh RH. COVID-19 pandemic: A pragmatic plan for ayurveda intervention. J Ayurveda Integr Med 2020.
[http://dx.doi.org/10.1016/j.jaim.2020.04.002] [PMID: 32382220]
[137]
Talwar S, Sood S, Kumar J, Chauhan R, Sharma M, Tuli HS. Ayurveda and allopathic therapeutic strategies in coronavirus pandemic treatment 2020. Curr Pharmacol Rep 2020; 6(6): 1-10.
[http://dx.doi.org/10.1007/s40495-020-00245-2] [PMID: 33106765]
[138]
Balkrishna A, Bhatt AB, Singh P, Haldar S, Varshney A. Comparative retrospective open-label study of ayurvedic medicines and their combination with allopathic drugs on asymptomatic and mildly-symptomatic COVID-19 patients. J Herb Med 2021; 29: 100472.
[http://dx.doi.org/10.1016/j.hermed.2021.100472] [PMID: 34055580]
[139]
Sharma R, Prajapati PK. Nanotechnology in medicine: Leads from Ayurveda. J Pharm Bioallied Sci 2016; 8(1): 80-1.
[http://dx.doi.org/10.4103/0975-7406.171730] [PMID: 26957877]
[140]
Wang B, He X, Zhang Z, Zhao Y, Feng W. Metabolism of nanomaterials in vivo: Blood circulation and organ clearance. Acc Chem Res 2013; 46(3): 761-9.
[http://dx.doi.org/10.1021/ar2003336] [PMID: 23964655]
[141]
Nelaturi P, Nagarajan P, Sabapathy SK, Sambandam R. Swarna bindu prashana-An ancient approach to improve the infant’s immunity. Biol Trace Elem Res 2020.
[http://dx.doi.org/10.1007/s12011-020-02353-y] [PMID: 32856248]
[142]
Dykman L, Khlebtsov N. Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chem Soc Rev 2012; 41(6): 2256-82.
[http://dx.doi.org/10.1039/C1CS15166E] [PMID: 22130549]
[143]
Jyothy KB, Sheshagiri S, Patel KS, Rajagopala S. A critical appraisal on Swarnaprashana in children. Ayu 2014; 35(4): 361-5.
[http://dx.doi.org/10.4103/0974-8520.158978] [PMID: 26195896]
[144]
Chopra A, Saluja M, Tillu G. Ayurveda-modern medicine interface: A critical appraisal of studies of Ayurvedic medicines to treat osteoarthritis and rheumatoid arthritis. J Ayurveda Integr Med 2010; 1(3): 190-8.
[http://dx.doi.org/10.4103/0975-9476.72620] [PMID: 21547047]
[145]
Khedekar S, Priya ABP, B P, M N, Pk P. Immunomodulatory activity of Swarna prashana in charle’s foster albino rats. J Ayurveda Med Sci 2017; 1(2): 90-6.
[http://dx.doi.org/10.5530/jams.2016.1.12]
[146]
Dykman LA, Khlebtsov NG. Immunological properties of gold nanoparticles. Chem Sci (Camb) 2017; 8(3): 1719-35.
[http://dx.doi.org/10.1039/C6SC03631G] [PMID: 28451297]
[147]
Vančo J, Gáliková J, Hošek J, Dvořák Z, Paráková L, Trávníček Z. Gold(I) complexes of 9-deazahypoxanthine as selective antitumor and anti-inflammatory agents. PLoS One 2014; 9(10): e109901.
[http://dx.doi.org/10.1371/journal.pone.0109901] [PMID: 25333949]
[148]
Jeon KI, Jeong JY, Jue DM. Thiol-reactive metal compounds inhibit NF-κ B activation by blocking I κ B kinase. J Immunol 2000; 164(11): 5981-9.
[http://dx.doi.org/10.4049/jimmunol.164.11.5981] [PMID: 10820281]
[149]
Joseph J, Honwad S. Evaluation of immunomodulation activity of somanathi Tamra Bhasma. J Biol Sci Opin 2014; 2(6): 390-5.
[http://dx.doi.org/10.7897/2321-6328.02689]
[150]
Soni H, Sharma S, Malik JK. Synergistic propphylaxis on COVID-19 by nature golden heart (Piper betle) and Swarna Bhasma. Asian J Res Dermatological Sci 2020; 3: 21-7.
[151]
Sadiq IZ, Abubakar FS, Dan-Iya BI. Role of nanoparticles in tackling COVID-19 pandemic: A bio-nanomedical approach. J Taibah Univ Sci 2021; 15(1): 198-207.
[http://dx.doi.org/10.1080/16583655.2021.1944488]
[152]
Tang F, Quan Y, Xin ZT, et al. Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: A six-year follow-up study. J Immunol 2011; 186(12): 7264-8.
[http://dx.doi.org/10.4049/jimmunol.0903490] [PMID: 21576510]
[153]
Peng H, Yang LT, Wang LY, et al. Long-lived memory T lymphocyte responses against SARS coronavirus nucleocapsid protein in SARS-recovered patients. Virology 2006; 351(2): 466-75.
[http://dx.doi.org/10.1016/j.virol.2006.03.036] [PMID: 16690096]
[154]
Sanchez-Guzman D, Le Guen P, Villeret B, et al. Silver nanoparticle-adjuvanted vaccine protects against lethal influenza infection through inducing BALT and IgA-mediated mucosal immunity. Biomaterials 2019; 217: 119308.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119308] [PMID: 31279103]
[155]
Youn HS, Lee JY, Saitoh SI, Miyake K, Hwang DH. Auranofin, as an anti-rheumatic gold compound, suppresses LPS-induced homodimerization of TLR4. Biochem Biophys Res Commun 2006; 350(4): 866-71.
[http://dx.doi.org/10.1016/j.bbrc.2006.09.097] [PMID: 17034761]
[156]
Yue S, Luo M, Liu H, Wei S. Recent advances of gold compounds in anticancer immunity. Front Chem 2020; 8: 543.
[http://dx.doi.org/10.3389/fchem.2020.00543] [PMID: 32695747]
[157]
Jeon KI, Byun MS, Jue DM. Gold compound auranofin inhibits Ikappaβ kinase (IKK) by modifying Cys-179 of IKKbeta subunit. Exp Mol Med 2003; 35(2): 61-6.
[http://dx.doi.org/10.1038/emm.2003.9] [PMID: 12754408]
[158]
Villiers C, Freitas H, Couderc R, Villiers MB, Marche P. Analysis of the toxicity of gold nano particles on the immune system: Effect on dendritic cell functions. J Nanopart Res 2010; 12(1): 55-60.
[http://dx.doi.org/10.1007/s11051-009-9692-0] [PMID: 21841911]
[159]
Ahmad S, Zamry AA, Tan HT, Wong KK, Lim J, Mohamud R. Targeting dendritic cells through gold nanoparticles: A review on the cellular uptake and subsequent immunological properties. Mol Immunol 2017; 91: 123-33.
[http://dx.doi.org/10.1016/j.molimm.2017.09.001] [PMID: 28898717]
[160]
Chen W, Zhang F, Ju Y, Hong J, Ding Y. Gold nanomaterial engineering for macrophage-mediated inflammation and tumor treatment. Adv Healthc Mater 2021; 10(5): e2000818.
[http://dx.doi.org/10.1002/adhm.202000818] [PMID: 33128505]
[161]
Sun J, Sun J, Song B, et al. Fucoidan inhibits CCL22 production through NF-κB pathway in M2 macrophages: A potential therapeutic strategy for cancer. Sci Rep 2016; 6(1): 35855.
[http://dx.doi.org/10.1038/srep35855] [PMID: 27775051]
[162]
Kahmann L, Uciechowski P, Warmuth S, et al. Zinc supplementation in the elderly reduces spontaneous inflammatory cytokine release and restores T cell functions. Rejuvenation Res 2008; 11(1): 227-37.
[http://dx.doi.org/10.1089/rej.2007.0613] [PMID: 18279033]
[163]
Krabbe KS, Pedersen M, Bruunsgaard H. Inflammatory mediators in the elderly. Exp Gerontol 2004; 39(5): 687-99.
[http://dx.doi.org/10.1016/j.exger.2004.01.009] [PMID: 15130663]
[164]
Krenn BM, Gaudernak E, Holzer B, Lanke K, Van Kuppeveld FJ, Seipelt J. Antiviral activity of the zinc ionophores pyrithione and hinokitiol against picornavirus infections. J Virol 2009; 83(1): 58-64.
[http://dx.doi.org/10.1128/JVI.01543-08] [PMID: 18922875]
[165]
Read SA, Obeid S, Ahlenstiel C, Ahlenstiel G. The role of zinc in antiviral immunity. Adv Nutr 2019; 10(4): 696-710.
[http://dx.doi.org/10.1093/advances/nmz013] [PMID: 31305906]
[166]
Suara RO, Crowe JE Jr. Effect of zinc salts on respiratory syncytial virus replication. Antimicrob Agents Chemother 2004; 48(3): 783-90.
[http://dx.doi.org/10.1128/AAC.48.3.783-790.2004] [PMID: 14982765]
[167]
Brieger A, Rink L, Haase H. Differential regulation of TLR-dependent MyD88 and TRIF signaling pathways by free zinc ions. J Immunol 2013; 191(4): 1808-17.
[http://dx.doi.org/10.4049/jimmunol.1301261] [PMID: 23863901]
[168]
Heil F, Hemmi H, Hochrein H, et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 2004; 303(5663): 1526-9.
[http://dx.doi.org/10.1126/science.1093620] [PMID: 14976262]
[169]
Wessels I, Pupke JT, von Trotha K-T, et al. Zinc supplementation ameliorates lung injury by reducing neutrophil recruitment and activity. Thorax 2020; 75(3): 253-61.
[http://dx.doi.org/10.1136/thoraxjnl-2019-213357] [PMID: 31915307]
[170]
Hasan R, Rink L, Haase H. Chelation of free Zn²⁺ impairs chemotaxis, phagocytosis, oxidative burst, degranulation, and cytokine production by neutrophil granulocytes. Biol Trace Elem Res 2016; 171(1): 79-88.
[http://dx.doi.org/10.1007/s12011-015-0515-0] [PMID: 26400651]
[171]
Chen X, Ling J, Mo P, et al. Restoration of leukomonocyte counts is associated with viral clearance in COVID-19 hospitalized patients. medRxiv 2020.
[http://dx.doi.org/10.1101/2020.03.03.20030437]
[172]
Liu J, Li S, Liu J, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine 2020; 55: 102763.
[http://dx.doi.org/10.1016/j.ebiom.2020.102763] [PMID: 32361250]
[173]
Hönscheid A, Rink L, Haase H. T-lymphocytes: A target for stimulatory and inhibitory effects of zinc ions. Endocr Metab Immune Disord Drug Targets 2009; 9(2): 132-44.
[http://dx.doi.org/10.2174/187153009788452390] [PMID: 19519463]
[174]
Liu M, Bao S, Gálvez-Peralta M, et al. The zinc transporter SLC39A8 is a negative feedback regulator of NF-κB through zinc-mediated inhibition of IKK. Cell Rep 2013; 3: 386-400.
[http://dx.doi.org/10.1016/j.celrep.2013.01.009] [PMID: 23403290]
[175]
Liu MJ, Bao S, Gálvez-Peralta M, et al. ZIP8 regulates host defense through zinc-mediated inhibition of NF-κB. Cell Rep 2013; 3(2): 386-400.
[http://dx.doi.org/10.1016/j.celrep.2013.01.009] [PMID: 23403290]
[176]
Wessels I, Maywald M, Rink L. Zinc as a gatekeeper of immune function. Nutrients 2017; 9(12): 9-12.
[http://dx.doi.org/10.3390/nu9121286] [PMID: 29186856]
[177]
Berg K, Bolt G, Andersen H, Owen TC. Zinc potentiates the antiviral action of human IFN-alpha tenfold. J Interferon Cytokine Res 2001; 21(7): 471-4.
[http://dx.doi.org/10.1089/10799900152434330] [PMID: 11506740]
[178]
Cakman I, Kirchner H, Rink L. Zinc supplementation reconstitutes the production of interferon-alpha by leukocytes from elderly persons. J Interferon Cytokine Res 1997; 17(8): 469-72.
[http://dx.doi.org/10.1089/jir.1997.17.469] [PMID: 9282827]
[179]
Hopkins RG, Failla ML. Copper deficiency reduces interleukin-2 (IL-2) production and IL-2 mRNA in human T-lymphocytes. J Nutr 1997; 127(2): 257-62.
[http://dx.doi.org/10.1093/jn/127.2.257] [PMID: 9039825]
[180]
Bala S, Failla ML. Copper deficiency reversibly impairs DNA synthesis in activated T lymphocytes by limiting interleukin 2 activity. Proc Natl Acad Sci USA 1992; 89(15): 6794-7.
[http://dx.doi.org/10.1073/pnas.89.15.6794] [PMID: 1495967]
[181]
Bonham M, O’Connor JM, Hannigan BM, Strain JJ. The immune system as a physiological indicator of marginal copper status? Br J Nutr 2002; 87(5): 393-403.
[http://dx.doi.org/10.1079/BJN2002558] [PMID: 12010579]
[182]
Gao QY, Chen YX, Fang JY. 2019 Novel coronavirus infection and gastrointestinal tract. J Dig Dis 2020; 21(3): 125-6.
[http://dx.doi.org/10.1111/1751-2980.12851] [PMID: 32096611]
[183]
Hanada S, Pirzadeh M, Carver KY, Deng JC. Respiratory viral infection-induced microbiome alterations and secondary bacterial pneumonia. Front Immunol 2018; 9: 2640.
[http://dx.doi.org/10.3389/fimmu.2018.02640] [PMID: 30505304]
[184]
He Y, Wen Q, Yao F, Xu D, Huang Y, Wang J. Gut-lung axis: The microbial contributions and clinical implications. Crit Rev Microbiol 2017; 43(1): 81-95.
[http://dx.doi.org/10.1080/1040841X.2016.1176988] [PMID: 27781554]
[185]
Ahlawat S, Sharma KK. Immunological co-ordination between gut and lungs in SARS-CoV-2 infection. Virus Res 2020; 286: 198103.
[http://dx.doi.org/10.1016/j.virusres.2020.198103] [PMID: 32717345]
[186]
Vabret N, Britton GJ, Gruber C, et al. Sinai Immunology Review Project. Immunology of COVID-19: Current state of the science. Immunity 2020; 52(6): 910-41.
[http://dx.doi.org/10.1016/j.immuni.2020.05.002] [PMID: 32505227]
[187]
Yeoh YK, Zuo T, Lui GCY, et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut 2021; 70(4): 698-706.
[http://dx.doi.org/10.1136/gutjnl-2020-323020] [PMID: 33431578]
[188]
Chattopadhyay I, Shankar EM. SARS-CoV-2-indigenous microbiota nexus: Does gut microbiota contribute to inflammation and disease severity in COVID-19? Front Cell Infect Microbiol 2021; 11: 590874.
[http://dx.doi.org/10.3389/fcimb.2021.590874] [PMID: 33791231]
[189]
Nagpal R, Mainali R, Ahmadi S. Gut microbiome and aging: Physiological and mechanistic insights. Nutr Heal aging 2018; 4(4): 267-85.
[http://dx.doi.org/10.3233/NHA-170030]
[190]
Sharma R, Martins N, Kuca K, et al. Chyawanprash: A traditional Indian bioactive health supplement. Biomolecules 2019; 9(5): E161.
[http://dx.doi.org/10.3390/biom9050161] [PMID: 31035513]
[191]
Sharma R, Amin H, Ruknuddin G, Prajapati P. Efficacy of ayurvedic remedies in type 2 diabetes: A review through works done at Gujarat Ayurved University, Jamnagar. J Med Nutr Nutraceuticals 2015; 4(2): 63.
[http://dx.doi.org/10.4103/2278-019X.151812]
[192]
Shah D, Gandhi M, Kumar A, Cruz-Martins N, Sharma R, Nair S. Current insights into epigenetics, noncoding RNA interactome and clinical pharmacokinetics of dietary polyphenols in cancer chemoprevention. Crit Rev Food Sci Nutr 2021; 1-37.
[http://dx.doi.org/10.1080/10408398.2021.1968786] [PMID: 34433338]
[193]
Sharma R, Amin H, Galib , Prajapati PK. Validation of standard manufacturing procedure of Guḍūcī sattva (aqueous extract of Tinospora cordifolia (Willd.) Miers) and its tablets. Anc Sci Life 2013; 33(1): 27-34.
[http://dx.doi.org/10.4103/0257-7941.134564] [PMID: 25161327]
[194]
Sharma S. Rajatvigyaniyam, verse 49-51. Rasatarangini Motilal banarsidas, Varanasi. (11th.). 2004; p. 394.
[195]
Lauhaverga V. In: Rasratnasamuchaya Chaukhamba Orientale, Varanasi. 2011; p. 155.
[196]
Sharma S. Lauhaadivigyaniyam, verse 84-85. Rasatarangini. (11th.). 1979; p. 508.
[197]
Perumal K, Ahmad S, Mohd-Zahid MH, et al. Nanoparticles and gut microbiota in colorectal cancer. Front Nanotechnol 2021; 3
[http://dx.doi.org/10.3389/fnano.2021.681760]
[198]
Yilmaz B, Li H. Gut microbiota and iron: The crucial actors in health and disease. Pharmaceuticals (Basel) 2018; 11(4): E98.
[http://dx.doi.org/10.3390/ph11040098] [PMID: 30301142]
[199]
Rerksuppaphol S, Rerksuppaphol L. A randomized controlled trial of zinc supplementation in the treatment of acute respiratory tract infection in Thai children. Pediatr Rep 2019; 11(2): 7954.
[http://dx.doi.org/10.4081/pr.2019.7954] [PMID: 31214301]
[200]
Yakoob MY, Theodoratou E, Jabeen A, et al. Preventive zinc supplementation in developing countries: Impact on mortality and morbidity due to diarrhea, pneumonia and malaria. BMC Public Health 2011; 11(S3) (Suppl. 3): S23.
[http://dx.doi.org/10.1186/1471-2458-11-S3-S23] [PMID: 21501441]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy