Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Medicinal Chemistry of Inhibitors Targeting Resistant Bacteria

Author(s): Kadja Luana Chagas Monteiro, Osmar Nascimento Silva, Igor José dos Santos Nascimento*, Francisco Jaime Bezerra Mendonça Júnior, Pedro Gregório Vieira Aquino, Edeildo Ferreira da Silva-Júnior and Thiago Mendonça de Aquino

Volume 22, Issue 24, 2022

Published on: 10 May, 2022

Page: [1983 - 2028] Pages: 46

DOI: 10.2174/1568026622666220321124452

Price: $65

Abstract

The discovery of antibiotics was a revolutionary feat that provided countless health benefits. The identification of penicillin by Alexander Fleming initiated the era of antibiotics, represented by constant discoveries that enabled effective treatments for the different classes of diseases caused by bacteria. However, the indiscriminate use of these drugs allowed the emergence of resistance mechanisms of these microorganisms against the available drugs. In addition, the constant discoveries in the 20th century generated a shortage of new molecules, worrying health agencies and professionals about the appearance of multidrug-resistant strains against available drugs. In this context, the advances of recent years in molecular biology and microbiology have allowed new perspectives in drug design and development, using the findings related to the mechanisms of bacterial resistance to generate new drugs that are not affected by such mechanisms and supply new molecules to be used to treat resistant bacterial infections. Besides, a promising strategy against bacterial resistance is the combination of drugs through adjuvants, providing new expectations in designing new antibiotics and new antimicrobial therapies. Thus, this manuscript will address the main mechanisms of bacterial resistance under the understanding of medicinal chemistry, showing the main active compounds against efflux mechanisms, and also the application of the use of drug delivery systems, and finally, the main potential natural products as adjuvants or with promising activity against resistant strains.

Keywords: Resistant bacteria, Antibiotics adjuvants, Drug discovery, Drug delivery, Natural compounds, Medicinal chemistry, Drug resistance.

Graphical Abstract
[1]
Dietvorst, J.; Vilaplana, L.; Uria, N.; Marco, M.P.; Muñoz-Berbel, X. Current and near-future technologies for antibiotic susceptibility testing and resistant bacteria detection. TrAC -. Trends Analyt. Chem., 2020, 127, 1-13.
[http://dx.doi.org/10.1016/j.trac.2020.115891]
[2]
González-Bello, C. Antibiotic adjuvants - A strategy to unlock bacterial resistance to antibiotics. Bioorg. Med. Chem. Lett., 2017, 27(18), 4221-4228.
[http://dx.doi.org/10.1016/j.bmcl.2017.08.027] [PMID: 28827113]
[3]
Oliver, J.P.; Gooch, C.A.; Lansing, S.; Schueler, J.; Hurst, J.J.; Sassoubre, L.; Crossette, E.M.; Aga, D.S. Invited review: Fate of antibiotic residues, antibiotic-resistant bacteria, and antibiotic resistance genes in US dairy manure management systems. J. Dairy Sci., 2020, 103(2), 1051-1071.
[http://dx.doi.org/10.3168/jds.2019-16778] [PMID: 31837779]
[4]
Hassoun-Kheir, N.; Stabholz, Y.; Kreft, J.U.; de la Cruz, R.; Romalde, J.L.; Nesme, J.; Sørensen, S.J.; Smets, B.F.; Graham, D.; Paul, M. Comparison of antibiotic-resistant bacteria and antibiotic resistance genes abundance in hospital and community wastewater: A systematic review. Sci. Total Environ., 2020, 743, 140804.
[http://dx.doi.org/10.1016/j.scitotenv.2020.140804] [PMID: 32758846]
[5]
Zhang, C.; Sun, R.; Xia, T. Adaption/resistance to antimicrobial nanoparticles: Will it be a problem? Nano Today, 2020, 34, 100909.
[http://dx.doi.org/10.1016/j.nantod.2020.100909]
[6]
Mc Carlie, S.; Boucher, C.E.; Bragg, R.R. Molecular basis of bacterial disinfectant resistance. Drug Resist. Updat., 2020, 48, 100672.
[http://dx.doi.org/10.1016/j.drup.2019.100672] [PMID: 31830738]
[7]
Maria-Neto, S.; de Almeida, K.C.; Macedo, M.L.R.; Franco, O.L. Understanding bacterial resistance to antimicrobial peptides: From the surface to deep inside. Biochim. Biophys. Acta, 2015, 1848(11 Pt B), 3078-3088.
[http://dx.doi.org/10.1016/j.bbamem.2015.02.017] [PMID: 25724815]
[8]
Zhang, J.; Li, W.; Chen, J.; Qi, W.; Wang, F.; Zhou, Y. Impact of biofilm formation and detachment on the transmission of bacterial antibiotic resistance in drinking water distribution systems. Chemosphere, 2018, 203, 368-380.
[http://dx.doi.org/10.1016/j.chemosphere.2018.03.143] [PMID: 29627603]
[9]
Chatzopoulou, M.; Reynolds, L. Role of antimicrobial restrictions in bacterial resistance control: A systematic literature review. J. Hosp. Infect., 2020, 104(2), 125-136.
[http://dx.doi.org/10.1016/j.jhin.2019.09.011] [PMID: 31542456]
[10]
Cândido, E.S.; de Barros, E.; Cardoso, M.H.; Franco, O.L. Bacterial cross-resistance to anti-infective compounds. Is it a real problem? Curr. Opin. Pharmacol., 2019, 48, 76-81.
[http://dx.doi.org/10.1016/j.coph.2019.05.004] [PMID: 31212242]
[11]
Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; Ouellette, M.; Outterson, K.; Patel, J.; Cavaleri, M.; Cox, E.M.; Houchens, C.R.; Grayson, M.L.; Hansen, P.; Singh, N.; Theuretzbacher, U.; Magrini, N.; Aboderin, A.O.; Al-Abri, S.S.; Awang Jalil, N.; Benzonana, N.; Bhattacharya, S.; Brink, A.J.; Burkert, F.R.; Cars, O.; Cornaglia, G.; Dyar, O.J.; Friedrich, A.W.; Gales, A.C.; Gandra, S.; Giske, C.G.; Goff, D.A.; Goossens, H.; Gottlieb, T.; Guzman Blanco, M.; Hryniewicz, W.; Kattula, D.; Jinks, T.; Kanj, S.S.; Kerr, L.; Kieny, M-P.; Kim, Y.S.; Kozlov, R.S.; Labarca, J.; Laxminarayan, R.; Leder, K.; Leibovici, L.; Levy-Hara, G.; Littman, J.; Malhotra-Kumar, S.; Manchanda, V.; Moja, L.; Ndoye, B.; Pan, A.; Paterson, D.L.; Paul, M.; Qiu, H.; Ramon-Pardo, P.; Rodríguez-Baño, J.; Sanguinetti, M.; Sengupta, S.; Sharland, M.; Si-Mehand, M.; Silver, L.L.; Song, W.; Steinbakk, M.; Thomsen, J.; Thwaites, G.E.; van der Meer, J.W.; Van Kinh, N.; Vega, S.; Villegas, M.V.; Wechsler-Fördös, A.; Wertheim, H.F.L.; Wesangula, E.; Woodford, N.; Yilmaz, F.O.; Zorzet, A. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis., 2018, 18(3), 318-327.
[http://dx.doi.org/10.1016/S1473-3099(17)30753-3] [PMID: 29276051]
[12]
Konai, M.M.; Barman, S.; Acharya, Y.; De, K.; Haldar, J. Recent Development of Antibacterial Agents to Combat Drug-Resistant Gram-Positive Bacteria; Elsevier Inc.: Amsterdam, 2020.
[http://dx.doi.org/10.1016/B978-0-12-818480-6.00004-7]
[13]
Singh, T.; Dar, S.A.; Das, S.; Haque, S. New Strategies to Combat Drug Resistance in Bacteria; Elsevier Inc.: Amsterdam, 2020.
[http://dx.doi.org/10.1016/B978-0-12-818480-6.00013-8]
[14]
Niu, G.; Li, W. Next-generation drug discovery to combat antimicrobial resistance. Trends Biochem. Sci., 2019, 44(11), 961-972.
[http://dx.doi.org/10.1016/j.tibs.2019.05.005] [PMID: 31256981]
[15]
Tahir, S.; Mahmood, T.; Dastgir, F.; Haq, I.U.; Waseem, A.; Rashid, U. Design, synthesis and anti-bacterial studies of piperazine derivatives against drug resistant bacteria. Eur. J. Med. Chem., 2019, 166, 224-231.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.062] [PMID: 30711832]
[16]
Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health, 2015, 109(7), 309-318.
[http://dx.doi.org/10.1179/2047773215Y.0000000030] [PMID: 26343252]
[17]
Ayukekbong, J.A.; Ntemgwa, M.; Atabe, A.N. The threat of antimicrobial resistance in developing countries: Causes and control strategies. Antimicrob. Resist. Infect. Control, 2017, 6, 47.
[http://dx.doi.org/10.1186/s13756-017-0208-x] [PMID: 28515903]
[18]
Aslam, B.; Wang, W.; Arshad, M.I.; Khurshid, M.; Muzammil, S.; Rasool, M.H.; Nisar, M.A.; Alvi, R.F.; Aslam, M.A.; Qamar, M.U.; Salamat, M.K.F.; Baloch, Z. Antibiotic resistance: A rundown of a global crisis. Infect. Drug Resist., 2018, 11, 1645-1658.
[http://dx.doi.org/10.2147/IDR.S173867] [PMID: 30349322]
[19]
Michael, C.A.; Dominey-Howes, D.; Labbate, M. The antimicrobial resistance crisis: Causes, consequences, and management. Front. Public Health, 2014, 2, 145.
[http://dx.doi.org/10.3389/fpubh.2014.00145] [PMID: 25279369]
[20]
Shrestha, P.; Cooper, B.S.; Coast, J.; Oppong, R.; Do Thi Thuy, N.; Phodha, T.; Celhay, O.; Guerin, P.J.; Wertheim, H.; Lubell, Y. Enumerating the economic cost of antimicrobial resistance per antibiotic consumed to inform the evaluation of interventions affecting their use. Antimicrob. Resist. Infect. Control, 2018, 7, 98.
[http://dx.doi.org/10.1186/s13756-018-0384-3] [PMID: 30116525]
[21]
Hofer, U. The cost of antimicrobial resistance. Nat. Rev. Microbiol., 2019, 17(1), 3.
[http://dx.doi.org/10.1038/s41579-018-0125-x] [PMID: 30467331]
[22]
Mendelson, M.; Matsoso, M.P. The world health organization global action plan for antimicrobial resistance. S. Afr. Med. J., 2015, 105(5), 325.
[http://dx.doi.org/10.7196/SAMJ.9644] [PMID: 26242647]
[23]
WHO Library cataloguing-in-publication data global action plan on antimicrobial resistance. 2015. Available from: https://www.who.int/publications/i/item/9789241509763
[24]
Jayaweerasingham, M.; Angulmaduwa, S.; Liyanapathirana, V. Knowledge, beliefs and practices on antibiotic use and resistance among a group of trainee nurses in Sri Lanka. BMC Res. Notes, 2019, 12(1), 601.
[http://dx.doi.org/10.1186/s13104-019-4640-2] [PMID: 31533802]
[25]
Landecker, H. Antimicrobials before Antibiotics: War, Peace, and Disinfectants. Palgrave Commun., 2019, 5, 1-11.
[http://dx.doi.org/10.1057/s41599-019-0251-8]
[26]
Zaman, S. A review on antibiotic resistance: Alarm bells are ringing. Cureus, 2017, 9.
[27]
Ventola, C.L. The antibiotic resistance crisis: Part 1: Causes and threats. PT, 2015, 40(4), 277-283.
[PMID: 25859123 ]
[28]
Fleming, A. On the Antibacterial Action of Cultures of a Penicillium, with Special Reference to their Use in the Isolation of B. influenz?; Wiley-Blackwell: New York, USA, 1929.
[29]
Barber, M.; Rozwadowska-Dowzenko, M. Infection by penicillin-resistant Staphylococci. Lancet, 1948, 2(6530), 641-644.
[http://dx.doi.org/10.1016/S0140-6736(48)92166-7] [PMID: 18890505]
[30]
Fair, R.J.; Tor, Y. Antibiotics and bacterial resistance in the 21st century. Perspect. Medicin. Chem., 2014, 6, 25-64.
[http://dx.doi.org/10.4137/PMC.S14459] [PMID: 25232278]
[31]
Davies, J. Origins and evolution of antibiotic resistance. Microbiologia, 1996, 12(1), 9-16.
[PMID: 9019139]
[32]
Von Döhren, H. Antibiotics: Actions, origins, resistance; by C. Walsh. Washington, DC: ASM Press,, 2003, p. 345.
[http://dx.doi.org/10.1110/ps.041032204]
[33]
Wright, G.D. The antibiotic resistome: The nexus of chemical and genetic diversity. Nat. Rev. Microbiol., 2007, 5(3), 175-186.
[http://dx.doi.org/10.1038/nrmicro1614] [PMID: 17277795]
[34]
Allen, H.K.; Donato, J.; Wang, H.H.; Cloud-Hansen, K.A.; Davies, J.; Handelsman, J. Call of the wild: Antibiotic resistance genes in natural environments. Nat. Rev. Microbiol., 2010, 8(4), 251-259.
[http://dx.doi.org/10.1038/nrmicro2312] [PMID: 20190823]
[35]
Andersson, D.I.; Hughes, D. Antibiotic resistance and its cost: Is it possible to reverse resistance? Nat. Rev. Microbiol., 2010, 8(4), 260-271.
[http://dx.doi.org/10.1038/nrmicro2319] [PMID: 20208551]
[36]
Long, P.H. The use and abuse of chemotherapeutic and antibiotic agents. N. Engl. J. Med., 1947, 237(23), 837-839.
[http://dx.doi.org/10.1056/NEJM194712042372302] [PMID: 20271311]
[37]
Rather, I.A.; Kim, B.C.; Bajpai, V.K.; Park, Y.H. Self-medication and antibiotic resistance: Crisis, current challenges, and prevention. Saudi J. Biol. Sci., 2017, 24(4), 808-812.
[http://dx.doi.org/10.1016/j.sjbs.2017.01.004] [PMID: 28490950]
[38]
Raupach-Rosin, H.; Rübsamen, N.; Schütte, G.; Raschpichler, G.; Chaw, P.S.; Mikolajczyk, R. Knowledge on antibiotic use, self-reported adherence to antibiotic intake, and knowledge on multi-drug resistant pathogens - results of a population-based survey in lower Saxony, Germany. Front. Microbiol., 2019, 10, 776.
[http://dx.doi.org/10.3389/fmicb.2019.00776] [PMID: 31031737]
[39]
Zhi-Wen, Y.; Yan-Li, Z.; Man, Y.; Wei-Jun, F. Clinical treatment of pandrug-resistant bacterial infection consulted by clinical pharmacist. Saudi Pharm. J., 2015, 23(4), 377-380.
[http://dx.doi.org/10.1016/j.jsps.2015.01.001] [PMID: 27134538]
[40]
WHO Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. 2017. Available from: https://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf
[41]
Pérez-Rodríguez, F.; Mercanoglu Taban, B. A state-of-art review on multi-drug resistant pathogens in foods of animal origin: Risk factors and mitigation strategies. Front. Microbiol., 2019, 10, 2091.
[http://dx.doi.org/10.3389/fmicb.2019.02091] [PMID: 31555256]
[42]
Exner, M.; Bhattacharya, S.; Christiansen, B.; Gebel, J.; Goroncy-Bermes, P.; Hartemann, P.; Heeg, P.; Ilschner, C.; Kramer, A.; Larson, E.; Merkens, W.; Mielke, M.; Oltmanns, P.; Ross, B.; Rotter, M.; Schmithausen, R.M.; Sonntag, H-G.; Trautmann, M. Antibiotic resistance: What is so special about multidrug-resistant Gram-negative bacteria? GMS Hyg. Infect. Control, 2017, 12, Doc05.
[PMID: 28451516]
[43]
Mulani, M.S.; Kamble, E.E.; Kumkar, S.N.; Tawre, M.S.; Pardesi, K.R. Emerging strategies to combat eskape pathogens in the era of antimicrobial resistance: A review. Front. Microbiol., 2019, 10, 539.
[http://dx.doi.org/10.3389/fmicb.2019.00539] [PMID: 30988669]
[44]
Octavia, S.; Lan, R. The family enterobacteriaceae. In: The Prokaryotes: Gammaproteobacteria; Springer-Verlag: Berlin, Heidelberg, 2014; pp. 225-286.
[http://dx.doi.org/10.1007/978-3-642-38922-1_167]
[45]
Mai-Prochnow, A.; Clauson, M.; Hong, J.; Murphy, A.B. Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma. Sci. Rep., 2016, 6, 38610.
[http://dx.doi.org/10.1038/srep38610] [PMID: 27934958]
[46]
Munita, J.M.; Arias, C.A. Mechanisms of antibiotic resistance. Microbiol. Spectr., 2016, 4(2), 4.
[http://dx.doi.org/10.1128/microbiolspec.VMBF-0016-2015] [PMID: 27227291]
[47]
Ghai, I.; Ghai, S. Understanding antibiotic resistance via outer membrane permeability. Infect. Drug Resist., 2018, 11, 523-530.
[http://dx.doi.org/10.2147/IDR.S156995] [PMID: 29695921]
[48]
Soto, S.M. Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence, 2013, 4(3), 223-229.
[http://dx.doi.org/10.4161/viru.23724] [PMID: 23380871]
[49]
Fishovitz, J.; Hermoso, J.A.; Chang, M.; Mobashery, S. Penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus. IUBMB Life, 2014, 66(8), 572-577.
[http://dx.doi.org/10.1002/iub.1289] [PMID: 25044998]
[50]
Roch, M.; Lelong, E.; Panasenko, O.O.; Sierra, R.; Renzoni, A.; Kelley, W.L. Thermosensitive PBP2a requires extracellular folding factors PrsA and HtrA1 for Staphylococcus aureus MRSA β-lactam resistance. Commun. Biol., 2019, 2, 417.
[http://dx.doi.org/10.1038/s42003-019-0667-0] [PMID: 31754647]
[51]
Ferrer-González, E. Kaul, M.; Parhi, A.K.; LaVoie, E.J.; Pilch, D.S. β-lactam antibiotics with a high affinity for PBP2 act synergistically with the FtsZ-targeting agent TXA707 against methicillin-resistant staphylococcus aureus. Antimicrob. Agents Chemother., 2017, 61(9), 61.
[http://dx.doi.org/10.1128/AAC.00863-17] [PMID: 28630190]
[52]
Kapoor, G.; Saigal, S.; Elongavan, A. Action and resistance mechanisms of antibiotics: A guide for clinicians. J. Anaesthesiol. Clin. Pharmacol., 2017, 33(3), 300-305.
[http://dx.doi.org/10.4103/joacp.JOACP_349_15] [PMID: 29109626]
[53]
Toth, M.; Antunes, N.T.; Stewart, N.K.; Frase, H.; Bhattacharya, M.; Smith, C.A.; Vakulenko, S.B. Class D β-lactamases do exist in Gram-positive bacteria. Nat. Chem. Biol., 2016, 12(1), 9-14.
[http://dx.doi.org/10.1038/nchembio.1950] [PMID: 26551395]
[54]
Richmond, M.H.; Sykes, R.B. The β-lactamases of gram-negative bacteria and their possible physiological role. Adv. Microb. Physiol., 1973, 9, 31-88.
[http://dx.doi.org/10.1016/S0065-2911(08)60376-8] [PMID: 4581138]
[55]
Ambler, R.P. The structure of beta-lactamases. Philos. Trans. R. Soc. Lond. B Biol. Sci., 1980, 289(1036), 321-331.
[http://dx.doi.org/10.1098/rstb.1980.0049] [PMID: 6109327]
[56]
Rice, L.B. Mechanisms of resistance and clinical relevance of resistance to β-lactams, glycopeptides, and fluoroquinolones. Proc. Mayo Clin. Proc., 2012, 87, 198-208.
[http://dx.doi.org/10.1016/j.mayocp.2011.12.003]
[57]
Ghafourian, S.; Sadeghifard, N.; Soheili, S.; Sekawi, Z. Extended spectrum beta-lactamases: Definition, classification and epidemiology. Curr. Issues Mol. Biol., 2015, 17, 11-21.
[PMID: 24821872]
[58]
Bush, K.; Jacoby, G.A. Updated functional classification of β-lactamases. Antimicrob. Agents Chemother., 2010, 54(3), 969-976.
[http://dx.doi.org/10.1128/AAC.01009-09] [PMID: 19995920]
[59]
Arnold, R.S.; Thom, K.A.; Sharma, S.; Phillips, M.; Kristie Johnson, J.; Morgan, D.J. Emergence of Klebsiella pneumoniae carbapenemase-producing bacteria. South. Med. J., 2011, 104(1), 40-45.
[http://dx.doi.org/10.1097/SMJ.0b013e3181fd7d5a] [PMID: 21119555]
[60]
Cuzon, G.; Naas, T.; Nordmann, P. Functional characterization of Tn4401, a Tn3-based transposon involved in blaKPC gene mobilization. Antimicrob. Agents Chemother., 2011, 55(11), 5370-5373.
[http://dx.doi.org/10.1128/AAC.05202-11] [PMID: 21844325]
[61]
Mochon, A.B.; Garner, O.B.; Hindler, J.A.; Krogstad, P.; Ward, K.W.; Lewinski, M.A.; Rasheed, J.K.; Anderson, K.F.; Limbago, B.M.; Humphries, R.M. New Delhi metallo-β-lactamase (NDM-1)-producing Klebsiella pneumoniae: Case report and laboratory detection strategies. J. Clin. Microbiol., 2011, 49(4), 1667-1670.
[http://dx.doi.org/10.1128/JCM.00183-11] [PMID: 21325558]
[62]
Li, T.; Wang, Q.; Chen, F.; Li, X.; Luo, S.; Fang, H.; Wang, D.; Li, Z.; Hou, X.; Wang, H. Biochemical characteristics of New Delhi metallo-β-lactamase-1 show unexpected difference to other MBLs. PLoS One, 2013, 8(4), e61914.
[http://dx.doi.org/10.1371/journal.pone.0061914] [PMID: 23593503]
[63]
Jacoby, G.A. AmpC beta-lactamases. Clin. Microbiol. Rev., 2009, 22(1), 161-182.
[http://dx.doi.org/10.1128/CMR.00036-08] [PMID: 19136439]
[64]
Antunes, N.T.; Fisher, J.F. Acquired Class D β-Lactamases. Antibiotics (Basel), 2014, 3(3), 398-434.
[http://dx.doi.org/10.3390/antibiotics3030398] [PMID: 27025753]
[65]
Carrër, A.; Poirel, L.; Eraksoy, H.; Cagatay, A.A.; Badur, S.; Nordmann, P. Spread of OXA-48-positive carbapenem-resistant Klebsiella pneumoniae isolates in Istanbul, Turkey. Antimicrob. Agents Chemother., 2008, 52(8), 2950-2954.
[http://dx.doi.org/10.1128/AAC.01672-07] [PMID: 18519712]
[66]
Liu, X.; Thungrat, K.; Boothe, D.M. Occurrence of OXA-48 carbapenemase and other β-lactamase genes in ESBL-producing multidrug resistant Escherichia coli from dogs and cats in the United States, 2009-2013. Front. Microbiol., 2016, 7, 1057.
[http://dx.doi.org/10.3389/fmicb.2016.01057] [PMID: 27462301]
[67]
Tao, W.; Lee, M.H.; Wu, J.; Kim, N.H.; Kim, J.C.; Chung, E.; Hwang, E.C.; Lee, S.W. Inactivation of chloramphenicol and florfenicol by a novel chloramphenicol hydrolase. Appl. Environ. Microbiol., 2012, 78(17), 6295-6301.
[http://dx.doi.org/10.1128/AEM.01154-12] [PMID: 22752166]
[68]
Krause, K.M.; Serio, A.W.; Kane, T.R.; Connolly, L.E. Aminoglycosides: An overview. Cold Spring Harb. Perspect. Med., 2016, 6(6), 6.
[http://dx.doi.org/10.1101/cshperspect.a027029] [PMID: 27252397]
[69]
Anderson, L.A. Antibiotic Resistance: The Top 10 List. 2021. Available from: https://www.drugs.com/article/antibiotic-resistance.html
[70]
Laws, M.; Shaaban, A.; Rahman, K.M. Antibiotic resistance breakers: Current approaches and future directions. FEMS Microbiol. Rev., 2019, 43(5), 490-516.
[http://dx.doi.org/10.1093/femsre/fuz014] [PMID: 31150547]
[71]
Chaudhary, A.S. A review of global initiatives to fight antibiotic resistance and recent antibiotics׳ discovery. Acta Pharm. Sin. B, 2016, 6(6), 552-556.
[http://dx.doi.org/10.1016/j.apsb.2016.06.004] [PMID: 27818921]
[72]
Theuretzbacher, U.; Outterson, K.; Engel, A.; Karlén, A. The global preclinical antibacterial pipeline. Nat. Rev. Microbiol., 2020, 18, 275-285.
[PMID: 31745331]
[73]
Adedeji, W.A. The treasure called antibiotics. Ann. Ib. Postgrad. Med., 2016, 14(2), 56-57.
[PMID: 28337088]
[74]
Coates, A.R.; Halls, G.; Hu, Y. Novel classes of antibiotics or more of the same? Br. J. Pharmacol., 2011, 163(1), 184-194.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01250.x] [PMID: 21323894]
[75]
Cantón, R.; Morosini, M.I. Emergence and spread of antibiotic resistance following exposure to antibiotics. FEMS Microbiol. Rev., 2011, 35(5), 977-991.
[http://dx.doi.org/10.1111/j.1574-6976.2011.00295.x] [PMID: 21722146]
[76]
Vernet, G.; Mary, C.; Altmann, D.M.; Doumbo, O.; Morpeth, S.; Bhutta, Z.A.; Klugman, K.P. Surveillance for antimicrobial drug resistance in under-resourced countries. Emerg. Infect. Dis., 2014, 20(3), 434-441.
[http://dx.doi.org/10.3201/EID2003.121157] [PMID: 24564906]
[77]
Stewart, P.S. Mechanisms of antibiotic resistance in bacterial biofilms. Int. J. Med. Microbiol., 2002, 292(2), 107-113.
[http://dx.doi.org/10.1078/1438-4221-00196] [PMID: 12195733]
[78]
Sharma, D.; Misba, L.; Khan, A.U. Antibiotics versus biofilm: An emerging battleground in microbial communities. Antimicrob. Resist. Infect. Control, 2019, 8, 76.
[http://dx.doi.org/10.1186/s13756-019-0533-3] [PMID: 31131107]
[79]
Talevi, A. Drug repositioning: Current approaches and their implications in the precision medicine era. Expert Rev. Precis. Med. Drug Dev., 2018, 3, 49-61.
[http://dx.doi.org/10.1080/23808993.2018.1424535]
[80]
Saputo, S.; Faustoferri, R.C.; Quivey, R.G., Jr A drug repositioning approach reveals that Streptococcus mutans is susceptible to a diverse range of established antimicrobials and nonantibiotics. Antimicrob. Agents Chemother., 2017, 62(1), e01674-e17.
[PMID: 29061736]
[81]
Pérez-Valera, E.; Kyselková, M.; Ahmed, E.; Sladecek, F.X.J.; Goberna, M.; Elhottová, D. Native soil microorganisms hinder the soil enrichment with antibiotic resistance genes following manure applications. Sci. Rep., 2019, 9(1), 6760.
[http://dx.doi.org/10.1038/s41598-019-42734-5] [PMID: 31043618]
[82]
Fleitas Martínez, O.; Rigueiras, P.O.; Pires, Á.D.S.; Porto, W.F.; Silva, O.N.; de la Fuente-Nunez, C.; Franco, O.L. Interference with quorum-sensing signal biosynthesis as a promising therapeutic strategy against multidrug-resistant pathogens. Front. Cell. Infect. Microbiol., 2019, 8, 444.
[http://dx.doi.org/10.3389/fcimb.2018.00444] [PMID: 30805311]
[83]
Belete, T.M. Novel targets to develop new antibacterial agents and novel alternatives to antibacterial agents. Hum. Microbiome J., 2019, 11, 100052.
[http://dx.doi.org/10.1016/j.humic.2019.01.001]
[84]
Rumbaugh, K.P. Antibiofilm Agents: From Diagnosis to Treatment and Prevention; Springer Science Business Media: Berlin, 2014.
[http://dx.doi.org/10.1007/978-3-642-53833-9]
[85]
Wiemer, A.J.; Hsiao, C.H.; Wiemer, D.F. Isoprenoid metabolism as a therapeutic target in gram-negative pathogens. Curr. Top. Med. Chem., 2010, 10(18), 1858-1871.
[http://dx.doi.org/10.2174/156802610793176602] [PMID: 20615187]
[86]
Heuston, S.; Begley, M.; Gahan, C.G.M.; Hill, C. Isoprenoid biosynthesis in bacterial pathogens. Microbiology, 2012, 158(Pt 6), 1389-1401.
[http://dx.doi.org/10.1099/mic.0.051599-0] [PMID: 22466083]
[87]
Osorio, A.; Camarena, L.; Cevallos, M.A.; Poggio, S. A new essential cell division protein in Caulobacter crescentus. J. Bacteriol., 2017, 199(8), 199.
[http://dx.doi.org/10.1128/JB.00811-16] [PMID: 28167520]
[88]
Wickstead, B.; Gull, K. The evolution of the cytoskeleton. J. Cell Biol., 2011, 194(4), 513-525.
[http://dx.doi.org/10.1083/jcb.201102065] [PMID: 21859859]
[89]
Mbaye, M.N.; Gilis, D.; Rooman, M. Rational antibiotic design: In silico structural comparison of the functional cavities of penicillin-binding proteins and ß-lactamases. J. Biomol. Struct. Dyn., 2019, 37(1), 65-74.
[http://dx.doi.org/10.1080/07391102.2017.1418678] [PMID: 29251560]
[90]
de Oliveira, J.F.A.; Saito, Â.; Bido, A.T.; Kobarg, J.; Stassen, H.K.; Cardoso, M.B. Defeating bacterial resistance and preventing mammalian cells toxicity through rational design of antibiotic-functionalized nanoparticles. Sci. Rep., 2017, 7(1), 1326.
[http://dx.doi.org/10.1038/s41598-017-01209-1] [PMID: 28465530]
[91]
Vassal, P.; Berthelot, P.; Chaussinand, J.P.; Jay, S.; de Filippis, J.P.; Auboyer, C.; Renoux, F.; Bedoin, D. Extensively drug-resistant bacteria: Which ethical issues? Med. Mal. Infect., 2017, 47(5), 319-323.
[http://dx.doi.org/10.1016/j.medmal.2016.08.002] [PMID: 28526428]
[92]
Berde Parulekar, C.V.; Berde, V.B. Discovery of antibiotic-resistant bacteria: microbial and molecular approaches. In: New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, 2020; pp. 79-88.
[http://dx.doi.org/10.1016/B978-0-12-820528-0.00007-7]
[93]
Swaminathan, S.; Sundaramurthi, J.C.; Palaniappan, A.N.; Narayanan, S. Recent developments in genomics, bioinformatics and drug discovery to combat emerging drug-resistant tuberculosis. Tuberculosis (Edinb.), 2016, 101, 31-40.
[http://dx.doi.org/10.1016/j.tube.2016.08.002] [PMID: 27865394]
[94]
Beloin, C.; Renard, S.; Ghigo, J.M.; Lebeaux, D. Novel approaches to combat bacterial biofilms. Curr. Opin. Pharmacol., 2014, 18, 61-68.
[http://dx.doi.org/10.1016/j.coph.2014.09.005] [PMID: 25254624]
[95]
Gupta, M.N.; Alam, A.; Hasnain, S.E. Protein promiscuity in drug discovery, drug-repurposing and antibiotic resistance. Biochimie, 2020, 175, 50-57.
[http://dx.doi.org/10.1016/j.biochi.2020.05.004] [PMID: 32416199]
[96]
Walsh, C. Molecular mechanisms that confer antibacterial drug resistance. Nature, 2000, 406(6797), 775-781.
[http://dx.doi.org/10.1038/35021219] [PMID: 10963607]
[97]
Bernal, P.; Molina-Santiago, C.; Daddaoua, A.; Llamas, M.A. Antibiotic adjuvants: Identification and clinical use. Microb. Biotechnol., 2013, 6(5), 445-449.
[http://dx.doi.org/10.1111/1751-7915.12044] [PMID: 23445397]
[98]
Wright, G.D. Antibiotic adjuvants: Rescuing antibiotics from resistance. Trends Microbiol., 2016, 24(11), 862-871.
[http://dx.doi.org/10.1016/j.tim.2016.06.009] [PMID: 27430191]
[99]
Stermitz, F.R.; Lorenz, P.; Tawara, J.N.; Zenewicz, L.A.; Lewis, K. Synergy in a medicinal plant: Antimicrobial action of berberine potentiated by 5′-methoxyhydnocarpin, a multidrug pump inhibitor. Proc. Natl. Acad. Sci. USA, 2000, 97(4), 1433-1437.
[http://dx.doi.org/10.1073/pnas.030540597] [PMID: 10677479]
[100]
Guz, N.R.; Stermitz, F.R.; Johnson, J.B.; Beeson, T.D.; Willen, S.; Hsiang, J.; Lewis, K. Flavonolignan and flavone inhibitors of a Staphylococcus aureus multidrug resistance pump: Structure-activity relationships. J. Med. Chem., 2001, 44(2), 261-268.
[http://dx.doi.org/10.1021/jm0004190] [PMID: 11170636]
[101]
Belofsky, G.; Carreno, R.; Lewis, K.; Ball, A.; Casadei, G.; Tegos, G.P. Metabolites of the “smoke tree”, Dalea spinosa, potentiate antibiotic activity against multidrug-resistant Staphylococcus aureus. J. Nat. Prod., 2006, 69(2), 261-264.
[http://dx.doi.org/10.1021/np058057s] [PMID: 16499327]
[102]
Sharma, S.; Kumar, M.; Sharma, S.; Nargotra, A.; Koul, S.; Khan, I.A. Piperine as an inhibitor of Rv1258c, a putative multidrug efflux pump of Mycobacterium tuberculosis. J. Antimicrob. Chemother., 2010, 65(8), 1694-1701.
[http://dx.doi.org/10.1093/jac/dkq186] [PMID: 20525733]
[103]
Cannalire, R.; Machado, D.; Felicetti, T.; Santos Costa, S.; Massari, S.; Manfroni, G.; Barreca, M.L.; Tabarrini, O.; Couto, I.; Viveiros, M.; Sabatini, S.; Cecchetti, V. Natural isoflavone biochanin A as a template for the design of new and potent 3-phenylquinolone efflux inhibitors against Mycobacterium avium. Eur. J. Med. Chem., 2017, 140, 321-330.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.014] [PMID: 28964936]
[104]
Markham, P.N.; Westhaus, E.; Klyachko, K.; Johnson, M.E.; Neyfakh, A.A. Multiple novel inhibitors of the NorA multidrug transporter of Staphylococcus aureus. Antimicrob. Agents Chemother., 1999, 43(10), 2404-2408.
[http://dx.doi.org/10.1128/AAC.43.10.2404] [PMID: 10508015]
[105]
Ambrus, J.I.; Kelso, M.J.; Bremner, J.B.; Ball, A.R.; Casadei, G.; Lewis, K. Structure-activity relationships of 2-aryl-1H-indole inhibitors of the NorA efflux pump in Staphylococcus aureus. Bioorg. Med. Chem. Lett., 2008, 18(15), 4294-4297.
[http://dx.doi.org/10.1016/j.bmcl.2008.06.093] [PMID: 18632270]
[106]
Dai, Y.; Zhang, X.; Zhang, X.; Wang, H.; Lu, Z. DFT and GA studies on the QSAR of 2-aryl-5-nitro-1H-indole derivatives as NorA efflux pump inhibitors. J. Mol. Model., 2008, 14(9), 807-812.
[http://dx.doi.org/10.1007/s00894-008-0328-6] [PMID: 18575902]
[107]
Hequet, A.; Burchak, O.N.; Jeanty, M.; Guinchard, X.; Le Pihive, E.; Maigre, L.; Bouhours, P.; Schneider, D.; Maurin, M.; Paris, J.M.; Denis, J.N.; Jolivalt, C. 1-(1H-indol-3-yl)ethanamine derivatives as potent Staphylococcus aureus NorA efflux pump inhibitors. ChemMedChem, 2014, 9(7), 1534-1545.
[http://dx.doi.org/10.1002/cmdc.201400042] [PMID: 24677763]
[108]
Lepri, S.; Buonerba, F.; Goracci, L.; Velilla, I.; Ruzziconi, R.; Schindler, B.D.; Seo, S.M.; Kaatz, G.W.; Cruciani, G. Indole based weapons to fight antibiotic resistance: A structure-activity relationship study. J. Med. Chem., 2016, 59(3), 867-891.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01219] [PMID: 26757340]
[109]
Buonerba, F.; Lepri, S.; Goracci, L.; Schindler, B.D.; Seo, S.M.; Kaatz, G.W.; Cruciani, G. Improved potency of indole-based nora efflux pump inhibitors: From serendipity toward rational design and development. J. Med. Chem., 2017, 60(1), 517-523.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01281] [PMID: 27977195]
[110]
Samosorn, S.; Bremner, J.B.; Ball, A.; Lewis, K. Synthesis of functionalized 2-aryl-5-nitro-1H-indoles and their activity as bacterial NorA efflux pump inhibitors. Bioorg. Med. Chem., 2006, 14(3), 857-865.
[http://dx.doi.org/10.1016/j.bmc.2005.09.019] [PMID: 16203150]
[111]
Vidaillac, C.; Guillon, J.; Moreau, S.; Arpin, C.; Lagardère, A.; Larrouture, S.; Dallemagne, P.; Caignard, D-H.; Quentin, C.; Jarry, C. Synthesis of new 4-[2-(alkylamino) ethylthio]pyrrolo[1,2-a]quinoxaline and 5-[2-(alkylamino) ethylthio]pyrrolo[1,2-a]thieno[3,2-e]pyrazine derivatives, as potential bacterial multidrug resistance pump inhibitors. J. Enzyme Inhib. Med. Chem., 2007, 22(5), 620-631.
[http://dx.doi.org/10.1080/14756360701485406] [PMID: 18035830]
[112]
Liger, F.; Bouhours, P.; Ganem-Elbaz, C.; Jolivalt, C.; Pellet-Rostaing, S.; Popowycz, F.; Paris, J-M.; Lemaire, M. C2 Arylated Benzo[b]thiophene derivatives as Staphylococcus aureus NorA efflux pump inhibitors. ChemMedChem, 2016, 11(3), 320-330.
[http://dx.doi.org/10.1002/cmdc.201500463] [PMID: 26732895]
[113]
Dantas, N.; de Aquino, T.M.; de Araújo-Júnior, J.X.; da Silva-Júnior, E.; Gomes, E.A.; Gomes, A.A.S.; Siqueira-Júnior, J.P.; Mendonça, Junior, F.J.B. Aminoguanidine hydrazones (AGH’s) as modulators of norfloxacin resistance in Staphylococcus aureus that overexpress NorA efflux pump. Chem. Biol. Interact., 2018, 280, 8-14.
[http://dx.doi.org/10.1016/j.cbi.2017.12.009] [PMID: 29208359]
[114]
German, N.; Wei, P.; Kaatz, G.W.; Kerns, R.J. Synthesis and evaluation of fluoroquinolone derivatives as substrate-based inhibitors of bacterial efflux pumps. Eur. J. Med. Chem., 2008, 43(11), 2453-2463.
[http://dx.doi.org/10.1016/j.ejmech.2008.01.042] [PMID: 18358571]
[115]
Samosorn, S.; Tanwirat, B.; Muhamad, N.; Casadei, G.; Tomkiewicz, D.; Lewis, K.; Suksamrarn, A.; Prammananan, T.; Gornall, K.C.; Beck, J.L.; Bremner, J.B. Antibacterial activity of berberine-NorA pump inhibitor hybrids with a methylene ether linking group. Bioorg. Med. Chem., 2009, 17(11), 3866-3872.
[http://dx.doi.org/10.1016/j.bmc.2009.04.028] [PMID: 19419877]
[116]
Tomkiewicz, D.; Casadei, G.; Larkins-Ford, J.; Moy, T.I.; Garner, J.; Bremner, J.B.; Ausubel, F.M.; Lewis, K.; Kelso, M.J. Berberine-INF55 (5-nitro-2-phenylindole) hybrid antimicrobials: Effects of varying the relative orientation of the berberine and INF55 components. Antimicrob. Agents Chemother., 2010, 54(8), 3219-3224.
[http://dx.doi.org/10.1128/AAC.01715-09] [PMID: 20498327]
[117]
Dolla, N.K.; Chen, C.; Larkins-Ford, J.; Rajamuthiah, R.; Jagadeesan, S.; Conery, A.L.; Ausubel, F.M.; Mylonakis, E.; Bremner, J.B.; Lewis, K.; Kelso, M.J. On the mechanism of berberine-INF55 (5-Nitro-2-phenylindole) hybrid antibacterials. Aust. J. Chem., 2015, 67, 1471-1480.
[http://dx.doi.org/10.1071/CH14426] [PMID: 26806960]
[118]
Kapkoti, D.S.; Gupta, V.K.; Darokar, M.P.; Bhakuni, R.S. Glabridin-chalcone hybrid molecules: Drug resistance reversal agent against clinical isolates of methicillin-resistant Staphylococcus aureus. MedChemComm, 2016, 7, 693-705.
[http://dx.doi.org/10.1039/C5MD00527B]
[119]
Rineh, A.; Dolla, N.K.; Ball, A.R.; Magana, M.; Bremner, J.B.; Hamblin, M.R.; Tegos, G.P.; Kelso, M.J. Attaching the NorA Efflux pump inhibitor INF55 to methylene blue enhances antimicrobial photodynamic inactivation of methicillin-resistant staphylococcus aureus in vitro and in vivo. ACS Infect. Dis., 2017, 3(10), 756-766.
[http://dx.doi.org/10.1021/acsinfecdis.7b00095] [PMID: 28799332]
[120]
Rineh, A.; Bremner, J.B.; Hamblin, M.R.; Ball, A.R.; Tegos, G.P.; Kelso, M.J. Attaching NorA efflux pump inhibitors to methylene blue enhances antimicrobial photodynamic inactivation of Escherichia coli and Acinetobacter baumannii in vitro and in vivo. Bioorg. Med. Chem. Lett., 2018, 28(16), 2736-2740.
[http://dx.doi.org/10.1016/j.bmcl.2018.02.041] [PMID: 29519734]
[121]
Pieroni, M.; Dimovska, M.; Brincat, J.P.; Sabatini, S.; Carosati, E.; Massari, S.; Kaatz, G.W.; Fravolini, A. From 6-aminoquinolone antibacterials to 6-amino-7-thiopyranopyridinylquinolone ethyl esters as inhibitors of Staphylococcus aureus multidrug efflux pumps. J. Med. Chem., 2010, 53(11), 4466-4480.
[http://dx.doi.org/10.1021/jm1003304] [PMID: 20446747]
[122]
Sabatini, S.; Gosetto, F.; Manfroni, G.; Tabarrini, O.; Kaatz, G.W.; Patel, D.; Cecchetti, V. Evolution from a natural flavones nucleus to obtain 2-(4-Propoxyphenyl)quinoline derivatives as potent inhibitors of the S. aureus NorA efflux pump. J. Med. Chem., 2011, 54(16), 5722-5736.
[http://dx.doi.org/10.1021/jm200370y] [PMID: 21751791]
[123]
Sabatini, S.; Gosetto, F.; Iraci, N.; Barreca, M.L.; Massari, S.; Sancineto, L.; Manfroni, G.; Tabarrini, O.; Dimovska, M.; Kaatz, G.W.; Cecchetti, V. Re-evolution of the 2-phenylquinolines: Ligand-based design, synthesis, and biological evaluation of a potent new class of Staphylococcus aureus NorA efflux pump inhibitors to combat antimicrobial resistance. J. Med. Chem., 2013, 56(12), 4975-4989.
[http://dx.doi.org/10.1021/jm400262a] [PMID: 23710549]
[124]
Carotti, A.; Ianni, F.; Sabatini, S.; Di Michele, A.; Sardella, R.; Kaatz, G.W.; Lindner, W.; Cecchetti, V.; Natalini, B. The “racemic approach” in the evaluation of the enantiomeric NorA efflux pump inhibition activity of 2-phenylquinoline derivatives. J. Pharm. Biomed. Anal., 2016, 129, 182-189.
[http://dx.doi.org/10.1016/j.jpba.2016.07.003] [PMID: 27429367]
[125]
Felicetti, T.; Cannalire, R.; Nizi, M.G.; Tabarrini, O.; Massari, S.; Barreca, M.L.; Manfroni, G.; Schindler, B.D.; Cecchetti, V.; Kaatz, G.W.; Sabatini, S. Studies on 2-phenylquinoline Staphylococcus aureus NorA efflux pump inhibitors: New insights on the C-6 position. Eur. J. Med. Chem., 2018, 155, 428-433.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.013] [PMID: 29908437]
[126]
Felicetti, T.; Cannalire, R.; Pietrella, D.; Latacz, G.; Lubelska, A.; Manfroni, G.; Barreca, M.L.; Massari, S.; Tabarrini, O. Kieć-Kononowicz, K.; Schindler, B.D.; Kaatz, G.W.; Cecchetti, V.; Sabatini, S. 2-Phenylquinoline S. aureus NorA Efflux Pump Inhibitors: Evaluation of the Importance of Methoxy Group Introduction. J. Med. Chem., 2018, 61(17), 7827-7848.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00791] [PMID: 30067360]
[127]
Pieroni, M.; Sabatini, S.; Massari, S.; Kaatz, G.W.; Cecchetti, V.; Tabarrini, O. Searching for innovative quinolone-like scaffolds: Synthesis and biological evaluation of 2,1-benzothiazine 2,2-dioxide derivatives. MedChemComm, 2012, 3, 1092.
[http://dx.doi.org/10.1039/c2md20101a]
[128]
Doléans-Jordheim, A.; Veron, J.B.; Fendrich, O.; Bergeron, E.; Montagut-Romans, A.; Wong, Y.S.; Furdui, B.; Freney, J.; Dumontet, C.; Boumendjel, A. 3-Aryl-4-methyl-2-quinolones targeting multiresistant Staphylococcus aureus bacteria. ChemMedChem, 2013, 8(4), 652-657.
[http://dx.doi.org/10.1002/cmdc.201200551] [PMID: 23436688]
[129]
Fontaine, F.; Hequet, A.; Voisin-Chiret, A.S.; Bouillon, A.; Lesnard, A.; Cresteil, T.; Jolivalt, C.; Rault, S. First identification of boronic species as novel potential inhibitors of the Staphylococcus aureus NorA efflux pump. J. Med. Chem., 2014, 57(6), 2536-2548.
[http://dx.doi.org/10.1021/jm401808n] [PMID: 24499135]
[130]
Fontaine, F.; Héquet, A.; Voisin-Chiret, A.S.; Bouillon, A.; Lesnard, A.; Cresteil, T.; Jolivalt, C.; Rault, S. Boronic species as promising inhibitors of the Staphylococcus aureus NorA efflux pump: Study of 6-substituted pyridine-3-boronic acid derivatives. Eur. J. Med. Chem., 2015, 95, 185-198.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.056] [PMID: 25817769]
[131]
Radix, S.; Jordheim, A.D.; Rocheblave, L.; N’Digo, S.; Prignon, A.L.; Commun, C.; Michalet, S.; Dijoux-Franca, M.G.; Mularoni, A.; Walchshofer, N. N,N′-disubstituted cinnamamide derivatives potentiate ciprofloxacin activity against overexpressing NorA efflux pump Staphylococcus aureus 1199B strains. Eur. J. Med. Chem., 2018, 150, 900-907.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.028] [PMID: 29597171]
[132]
Rath, S.K.; Singh, S.; Kumar, S.; Wani, N.A.; Rai, R.; Koul, S.; Khan, I.A.; Sangwan, P.L. Synthesis of amides from (E)-3-(1-chloro-3,4-dihydronaphthalen-2-yl)acrylic acid and substituted amino acid esters as NorA efflux pump inhibitors of Staphylococcus aureus. Bioorg. Med. Chem., 2019, 27(2), 343-353.
[http://dx.doi.org/10.1016/j.bmc.2018.12.008] [PMID: 30552006]
[133]
Thota, N.; Koul, S.; Reddy, M.V.; Sangwan, P.L.; Khan, I.A.; Kumar, A.; Raja, A.F.; Andotra, S.S.; Qazi, G.N. Citral derived amides as potent bacterial NorA efflux pump inhibitors. Bioorg. Med. Chem., 2008, 16(13), 6535-6543.
[http://dx.doi.org/10.1016/j.bmc.2008.05.030] [PMID: 18524600]
[134]
Mohammed, N.H.; Mostafa, M.I.; Al-Taher, A.Y. Augmentation effects of novel naringenin analogues and ciprofloxacin as inhibitors for nora Efflux Pump (EPIs) and Pyruvate Kinase (PK) against MRSA. J. Anim. Vet. Adv., 2015, 14, 386-392.
[135]
Sharma, P.; Kumar, S.; Ali, F.; Anthal, S.; Gupta, V.K.; Khan, I.A.; Singh, S.; Sangwan, P.L.; Suri, K.A.; Gupta, B.D.; Gupta, D.K.; Dutt, P.; Vishwakarma, R.A.; Satti, N.K. Synthesis and biologic activities of some novel heterocyclic chalcone derivatives. Med. Chem. Res., 2013, 22, 3969-3983.
[http://dx.doi.org/10.1007/s00044-012-0401-7]
[136]
Ganesan, A.; Christena, L.R.; Venkata Subbarao, H.M.; Venkatasubramanian, U.; Thiagarajan, R.; Sivaramakrishnan, V.; Kasilingam, K.; Saisubramanian, N.; Selva Ganesan, S. Identification of benzochromene derivatives as a highly specific NorA Efflux pump inhibitor to mitigate the drug resistant strains of S. aureus. RSC Advances, 2016, 6, 30258-30267.
[http://dx.doi.org/10.1039/C6RA01981A]
[137]
Bharate, J.B.; Singh, S.; Wani, A.; Sharma, S.; Joshi, P.; Khan, I.A.; Kumar, A.; Vishwakarma, R.A.; Bharate, S.B. Discovery of 4-acetyl-3-(4-fluorophenyl)-1-(p-tolyl)-5-methylpyrrole as a dual inhibitor of human P-glycoprotein and Staphylococcus aureus Nor A efflux pump. Org. Biomol. Chem., 2015, 13(19), 5424-5431.
[http://dx.doi.org/10.1039/C5OB00246J] [PMID: 25865846]
[138]
Sundaramoorthy, N.S.; Mitra, K.; Ganesh, J.S.; Makala, H.; Lotha, R.; Bhanuvalli, S.R.; Ulaganathan, V.; Tiru, V.; Sivasubramanian, A.; Nagarajan, S. Ferulic acid derivative inhibits NorA efflux and in combination with ciprofloxacin curtails growth of MRSA in vitro and in vivo. Microb. Pathog., 2018, 124, 54-62.
[http://dx.doi.org/10.1016/j.micpath.2018.08.022] [PMID: 30118803]
[139]
Gupta, V.K.; Gaur, R.; Sharma, A.; Akther, J.; Saini, M.; Bhakuni, R.S.; Pathania, R. A novel bi-functional chalcone inhibits multi-drug resistant Staphylococcus aureus and potentiates the activity of fluoroquinolones. Bioorg. Chem., 2019, 83, 214-225.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.024] [PMID: 30380450]
[140]
Kumar, A.; Khan, I.A.; Koul, S.; Koul, J.L.; Taneja, S.C.; Ali, I.; Ali, F.; Sharma, S.; Mirza, Z.M.; Kumar, M.; Sangwan, P.L.; Gupta, P.; Thota, N.; Qazi, G.N. Novel structural analogues of piperine as inhibitors of the NorA efflux pump of Staphylococcus aureus. J. Antimicrob. Chemother., 2008, 61(6), 1270-1276.
[http://dx.doi.org/10.1093/jac/dkn088] [PMID: 18334493]
[141]
Sangwan, P.L.; Koul, J.L.; Koul, S.; Reddy, M.V.; Thota, N.; Khan, I.A.; Kumar, A.; Kalia, N.P.; Qazi, G.N. Piperine analogs as potent Staphylococcus aureus NorA efflux pump inhibitors. Bioorg. Med. Chem., 2008, 16(22), 9847-9857.
[http://dx.doi.org/10.1016/j.bmc.2008.09.042] [PMID: 18848780]
[142]
Nargotra, A.; Sharma, S.; Koul, J.L.; Sangwan, P.L.; Khan, I.A.; Kumar, A.; Taneja, S.C.; Koul, S. Quantitative structure activity relationship (QSAR) of piperine analogs for bacterial NorA efflux pump inhibitors. Eur. J. Med. Chem., 2009, 44(10), 4128-4135.
[http://dx.doi.org/10.1016/j.ejmech.2009.05.004] [PMID: 19523722]
[143]
Wani, N.A.; Singh, S.; Farooq, S.; Shankar, S.; Koul, S.; Khan, I.A.; Rai, R. Amino acid amides of piperic acid (PA) and 4-ethylpiperic acid (EPA) as NorA efflux pump inhibitors of Staphylococcus aureus. Bioorg. Med. Chem. Lett., 2016, 26(17), 4174-4178.
[http://dx.doi.org/10.1016/j.bmcl.2016.07.062] [PMID: 27503686]
[144]
Aeschlimann, J.R.; Dresser, L.D.; Kaatz, G.W.; Rybak, M.J. Effects of NorA inhibitors on in vitro antibacterial activities and postantibiotic effects of levofloxacin, ciprofloxacin, and norfloxacin in genetically related strains of Staphylococcus aureus. Antimicrob. Agents Chemother., 1999, 43(2), 335-340.
[http://dx.doi.org/10.1128/AAC.43.2.335] [PMID: 9925528]
[145]
Vidaillac, C.; Guillon, J.; Arpin, C.; Forfar-Bares, I.; Ba, B.B.; Grellet, J.; Moreau, S.; Caignard, D-H.; Jarry, C.; Quentin, C. Synthesis of omeprazole analogues and evaluation of these as potential inhibitors of the multidrug efflux pump NorA of Staphylococcus aureus. Antimicrob. Agents Chemother., 2007, 51(3), 831-838.
[http://dx.doi.org/10.1128/AAC.01306-05] [PMID: 17101679]
[146]
Gibbons, S.; Oluwatuyi, M.; Kaatz, G.W. A novel inhibitor of multidrug efflux pumps in Staphylococcus aureus. J. Antimicrob. Chemother., 2003, 51(1), 13-17.
[http://dx.doi.org/10.1093/jac/dkg044] [PMID: 12493782]
[147]
Brincat, J.P.; Broccatelli, F.; Sabatini, S.; Frosini, M.; Neri, A.; Kaatz, G.W.; Cruciani, G.; Carosati, E. Ligand Promiscuity between the Efflux Pumps Human P-Glycoprotein and S. aureus NorA. ACS Med. Chem. Lett., 2012, 3(3), 248-251.
[http://dx.doi.org/10.1021/ml200293c] [PMID: 24900460]
[148]
Ngo, T-D.; Tran, T-D.; Le, M-T.; Thai, K.M. Machine learning-, rule- and pharmacophore-based classification on the inhibition of P-glycoprotein and NorA. SAR QSAR Environ. Res., 2016, 27(9), 747-780.
[http://dx.doi.org/10.1080/1062936X.2016.1233137] [PMID: 27667641]
[149]
Kaatz, G.W.; Moudgal, V.V.; Seo, S.M.; Hansen, J.B.; Kristiansen, J.E. Phenylpiperidine selective serotonin reuptake inhibitors interfere with multidrug efflux pump activity in Staphylococcus aureus. Int. J. Antimicrob. Agents, 2003, 22(3), 254-261.
[http://dx.doi.org/10.1016/S0924-8579(03)00220-6] [PMID: 13678830]
[150]
German, N.; Kaatz, G.W.; Kerns, R.J. Synthesis and evaluation of PSSRI-based inhibitors of Staphylococcus aureus multidrug efflux pumps. Bioorg. Med. Chem. Lett., 2008, 18(4), 1368-1373.
[http://dx.doi.org/10.1016/j.bmcl.2008.01.014] [PMID: 18242086]
[151]
Sabatini, S.; Kaatz, G.W.; Rossolini, G.M.; Brandini, D.; Fravolini, A. From phenothiazine to 3-phenyl-1,4-benzothiazine derivatives as inhibitors of the Staphylococcus aureus NorA multidrug efflux pump. J. Med. Chem., 2008, 51(14), 4321-4330.
[http://dx.doi.org/10.1021/jm701623q] [PMID: 18578473]
[152]
Felicetti, T.; Cannalire, R.; Burali, M.S.; Massari, S.; Manfroni, G.; Barreca, M.L.; Tabarrini, O.; Schindler, B.D.; Sabatini, S.; Kaatz, G.W.; Cecchetti, V. Searching for novel inhibitors of the S. aureus NorA Efflux Pump: Synthesis and biological evaluation of the 3-phenyl-1,4-benzothiazine analogues. ChemMedChem, 2017, 12(16), 1293-1302.
[http://dx.doi.org/10.1002/cmdc.201700286] [PMID: 28598572]
[153]
Astolfi, A.; Felicetti, T.; Iraci, N.; Manfroni, G.; Massari, S.; Pietrella, D.; Tabarrini, O.; Kaatz, G.W.; Barreca, M.L.; Sabatini, S.; Cecchetti, V. Pharmacophore-based repositioning of approved drugs as novel Staphylococcus aureus NorA Efflux pump inhibitors. J. Med. Chem., 2017, 60(4), 1598-1604.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01439] [PMID: 28117588]
[154]
Sabatini, S.; Gosetto, F.; Serritella, S.; Manfroni, G.; Tabarrini, O.; Iraci, N.; Brincat, J.P.; Carosati, E.; Villarini, M.; Kaatz, G.W.; Cecchetti, V. Pyrazolo[4,3-c][1,2]benzothiazines 5,5-dioxide: A promising new class of Staphylococcus aureus NorA efflux pump inhibitors. J. Med. Chem., 2012, 55(7), 3568-3572.
[http://dx.doi.org/10.1021/jm201446h] [PMID: 22432682]
[155]
Mavri, A.; Smole Možina, S. Involvement of efflux mechanisms in biocide resistance of Campylobacter jejuni and Campylobacter coli. J. Med. Microbiol., 2012, 61(Pt 6), 800-808.
[http://dx.doi.org/10.1099/jmm.0.041467-0] [PMID: 22361460]
[156]
Mao, W.; Warren, M.S.; Lee, A.; Mistry, A.; Lomovskaya, O. MexXY-OprM efflux pump is required for antagonism of aminoglycosides by divalent cations in Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 2001, 45(7), 2001-2007.
[http://dx.doi.org/10.1128/AAC.45.7.2001-2007.2001] [PMID: 11408215]
[157]
Ruiz, J.; Ribera, A.; Jurado, A.; Marco, F.; Vila, J. Evidence for a reserpine-affected mechanism of resistance to tetracycline in Neisseria gonorrhoeae. Acta Pathol. Microbiol. Scand. Suppl., 2005, 113(10), 670-674.
[http://dx.doi.org/10.1111/j.1600-0463.2005.apm_303.x] [PMID: 16309425]
[158]
Tamburrino, G.; Llabrés, S.; Vickery, O.N.; Pitt, S.J.; Zachariae, U. Modulation of the Neisseria gonorrhoeae drug efflux conduit MtrE. Sci. Rep., 2017, 7(1), 17091.
[http://dx.doi.org/10.1038/s41598-017-16995-x] [PMID: 29213101]
[159]
Ohene-Agyei, T.; Mowla, R.; Rahman, T.; Venter, H. Phytochemicals increase the antibacterial activity of antibiotics by acting on a drug efflux pump. MicrobiologyOpen, 2014, 3(6), 885-896.
[http://dx.doi.org/10.1002/mbo3.212] [PMID: 25224951]
[160]
Rafiq, Z.; Sivaraj, S.; Vaidyanathan, R. Computational docking and in silico analysis of potential EFFLUX pump inhibitor punigratane. Int. J. Pharm. Pharm. Sci., 2018, 10, 27.
[http://dx.doi.org/10.22159/ijpps.2018v10i3.21629]
[161]
Whalen, K.E.; Poulson-Ellestad, K.L.; Deering, R.W.; Rowley, D.C.; Mincer, T.J. Enhancement of antibiotic activity against multidrug-resistant bacteria by the efflux pump inhibitor 3,4-dibromopyrrole-2,5-dione isolated from a Pseudo alteromonas sp. J. Nat. Prod., 2015, 78(3), 402-412.
[http://dx.doi.org/10.1021/np500775e] [PMID: 25646964]
[162]
Lieutaud, A.; Guinoiseau, E.; Lorenzi, V.; Giuliani, M.C.; Lome, V.; Brunel, J-M.; Luciani, A.; Casanova, J.; Pages, J-M.; Berti, L.; Bolla, J-M. Inhibitors of antibiotic Efflux by AcrAB-TolC in Enterobacter aerogenes. Antiinfect. Agents, 2013, 11, 168-178.
[http://dx.doi.org/10.2174/2211352511311020011]
[163]
Chusri, S.; Villanueva, I.; Voravuthikunchai, S.P.; Davies, J. Enhancing antibiotic activity: A strategy to control Acinetobacter infections. J. Antimicrob. Chemother., 2009, 64(6), 1203-1211.
[http://dx.doi.org/10.1093/jac/dkp381] [PMID: 19861335]
[164]
Lee, M.D.; Galazzo, J.L.; Staley, A.L.; Lee, J.C.; Warren, M.S.; Fuernkranz, H.; Chamberland, S.; Lomovskaya, O.; Miller, G.H. Microbial fermentation-derived inhibitors of efflux-pump-mediated drug resistance. Farmaco, 2001, 56(1-2), 81-85.
[http://dx.doi.org/10.1016/S0014-827X(01)01002-3] [PMID: 11347972]
[165]
Lomovskaya, O.; Warren, M.S.; Lee, A.; Galazzo, J.; Fronko, R.; Lee, M.; Blais, J.; Cho, D.; Chamberland, S.; Renau, T.; Leger, R.; Hecker, S.; Watkins, W.; Hoshino, K.; Ishida, H.; Lee, V.J. Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: Novel agents for combination therapy. Antimicrob. Agents Chemother., 2001, 45(1), 105-116.
[http://dx.doi.org/10.1128/AAC.45.1.105-116.2001] [PMID: 11120952]
[166]
Renau, T.E.; Léger, R.; Flamme, E.M.; Sangalang, J.; She, M.W.; Yen, R.; Gannon, C.L.; Griffith, D.; Chamberland, S.; Lomovskaya, O.; Hecker, S.J.; Lee, V.J.; Ohta, T.; Nakayama, K. Inhibitors of efflux pumps in Pseudomonas aeruginosa potentiate the activity of the fluoroquinolone antibacterial levofloxacin. J. Med. Chem., 1999, 42(24), 4928-4931.
[http://dx.doi.org/10.1021/jm9904598] [PMID: 10585202]
[167]
Renau, T.E.; Léger, R.; Flamme, E.M.; She, M.W.; Gannon, C.L.; Mathias, K.M.; Lomovskaya, O.; Chamberland, S.; Lee, V.J.; Ohta, T.; Nakayama, K.; Ishida, Y. Addressing the stability of C-capped dipeptide efflux pump inhibitors that potentiate the activity of levofloxacin in Pseudomonas aeruginosa. Bioorg. Med. Chem. Lett., 2001, 11(5), 663-667.
[http://dx.doi.org/10.1016/S0960-894X(01)00033-6] [PMID: 11266165]
[168]
Renau, T.E.; Léger, R.; Yen, R.; She, M.W.; Flamme, E.M.; Sangalang, J.; Gannon, C.L.; Chamberland, S.; Lomovskaya, O.; Lee, V.J. Peptidomimetics of efflux pump inhibitors potentiate the activity of levofloxacin in Pseudomonas aeruginosa. Bioorg. Med. Chem. Lett., 2002, 12(5), 763-766.
[http://dx.doi.org/10.1016/S0960-894X(02)00006-9] [PMID: 11858997]
[169]
Renau, T.E.; Léger, R.; Filonova, L.; Flamme, E.M.; Wang, M.; Yen, R.; Madsen, D.; Griffith, D.; Chamberland, S.; Dudley, M.N.; Lee, V.J.; Lomovskaya, O.; Watkins, W.J.; Ohta, T.; Nakayama, K.; Ishida, Y. Conformationally-restricted analogues of efflux pump inhibitors that potentiate the activity of levofloxacin in Pseudomonas aeruginosa. Bioorg. Med. Chem. Lett., 2003, 13(16), 2755-2758.
[http://dx.doi.org/10.1016/S0960-894X(03)00556-0] [PMID: 12873508]
[170]
Bohnert, J.A.; Kern, W.V. Selected arylpiperazines are capable of reversing multidrug resistance in Escherichia coli overexpressing RND efflux pumps. Antimicrob. Agents Chemother., 2005, 49(2), 849-852.
[http://dx.doi.org/10.1128/AAC.49.2.849-852.2005] [PMID: 15673787]
[171]
Kern, W.V.; Steinke, P.; Schumacher, A.; Schuster, S.; von Baum, H.; Bohnert, J.A. Effect of 1-(1-naphthylmethyl)-piperazine, a novel putative efflux pump inhibitor, on antimicrobial drug susceptibility in clinical isolates of Escherichia coli. J. Antimicrob. Chemother., 2006, 57(2), 339-343.
[http://dx.doi.org/10.1093/jac/dki445] [PMID: 16354747]
[172]
Chevalier, J.; Atifi, S.; Eyraud, A.; Mahamoud, A.; Barbe, J.; Pagès, J-M. New pyridoquinoline derivatives as potential inhibitors of the fluoroquinolone efflux pump in resistant Enterobacter aerogenes strains. J. Med. Chem., 2001, 44(23), 4023-4026.
[http://dx.doi.org/10.1021/jm010911z] [PMID: 11689091]
[173]
Malléa, M.; Mahamoud, A.; Chevalier, J.; Alibert-Franco, S.; Brouant, P.; Barbe, J.; Pagès, J-M. Alkylaminoquinolines inhibit the bacterial antibiotic efflux pump in multidrug-resistant clinical isolates. Biochem. J., 2003, 376, 801-805.
[http://dx.doi.org/10.1042/bj20030963]
[174]
Chevalier, J.; Bredin, J.; Mahamoud, A.; Malléa, M.; Barbe, J.; Pagès, J-M. Inhibitors of antibiotic efflux in resistant Enterobacter aerogenes and Klebsiella pneumoniae strains. Antimicrob. Agents Chemother., 2004, 48(3), 1043-1046.
[http://dx.doi.org/10.1128/AAC.48.3.1043-1046.2004] [PMID: 14982806]
[175]
Tang, J.; Wang, H. Indole derivatives as efflux pump inhibitors for TolC protein in a clinical drug-resistant Escherichia coli isolated from a pig farm. Int. J. Antimicrob. Agents, 2008, 31(5), 497-498.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.01.007] [PMID: 18321682]
[176]
Handzlik, J. Szzymańska, E.; Chevalier, J.; Otrębska, E.; Kieć- Kononowicz, K.; Pagès, J-M.; Alibert, S. Amine-alkyl derivatives of hydantoin: New tool to combat resistant bacteria. Eur. J. Med. Chem., 2011, 46(12), 5807-5816.
[http://dx.doi.org/10.1016/j.ejmech.2011.09.032] [PMID: 22000919]
[177]
Handzlik, J. Szymańska, E.; Alibert, S.; Chevalier, J.; Otrębska, E.; Pękala, E.; Pagès, J-M.; Kieć-Kononowicz, K. Search for new tools to combat Gram-negative resistant bacteria among amine derivatives of 5-arylidenehydantoin. Bioorg. Med. Chem., 2013, 21(1), 135-145.
[http://dx.doi.org/10.1016/j.bmc.2012.10.053] [PMID: 23218781]
[178]
Opperman, T.J.; Kwasny, S.M.; Kim, H-S.; Nguyen, S.T.; Houseweart, C.; D’Souza, S.; Walker, G.C.; Peet, N.P.; Nikaido, H.; Bowlin, T.L. Characterization of a novel pyranopyridine inhibitor of the AcrAB efflux pump of Escherichia coli. Antimicrob. Agents Chemother., 2014, 58(2), 722-733.
[http://dx.doi.org/10.1128/AAC.01866-13] [PMID: 24247144]
[179]
Vargiu, A.V.; Ruggerone, P.; Opperman, T.J.; Nguyen, S.T.; Nikaido, H. Molecular mechanism of MBX2319 inhibition of Escherichia coli AcrB multidrug efflux pump and comparison with other inhibitors. Antimicrob. Agents Chemother., 2014, 58(10), 6224-6234.
[http://dx.doi.org/10.1128/AAC.03283-14] [PMID: 25114133]
[180]
Sjuts, H.; Vargiu, A.V.; Kwasny, S.M.; Nguyen, S.T.; Kim, H-S.; Ding, X.; Ornik, A.R.; Ruggerone, P.; Bowlin, T.L.; Nikaido, H.; Pos, K.M.; Opperman, T.J. Molecular basis for inhibition of AcrB multidrug efflux pump by novel and powerful pyranopyridine derivatives. Proc. Natl. Acad. Sci. USA, 2016, 113(13), 3509-3514.
[http://dx.doi.org/10.1073/pnas.1602472113] [PMID: 26976576]
[181]
Yilmaz, S.; Altinkanat-Gelmez, G.; Bolelli, K.; Guneser-Merdan, D.; Ufuk Over-Hasdemir, M.; Aki-Yalcin, E.; Yalcin, I. Binding site feature description of 2-substituted benzothiazoles as potential AcrAB-TolC efflux pump inhibitors in E. coli. SAR QSAR Environ. Res., 2015, 26(10), 853-871.
[http://dx.doi.org/10.1080/1062936X.2015.1106581] [PMID: 26559566]
[182]
Kaczor, A. Witek, K.; Podlewska, S.; Czekajewska, J.; Lubelska, A.; Żesławska, E.; Nitek, W.; Latacz, G.; Alibert, S.; Pagès, J-M.; Karczewska, E.; Kieć-Kononowicz, K.; Handzlik, J. 5-Arylideneimidazolones with Amine at Position 3 as potential antibiotic adjuvants against multidrug resistant bacteria. Molecules, 2019, 24(3), 438.
[http://dx.doi.org/10.3390/molecules24030438] [PMID: 30691112]
[183]
Wang, Y.; Mowla, R.; Guo, L.; Ogunniyi, A.D.; Rahman, T.; De Barros Lopes, M.A.; Ma, S.; Venter, H. Evaluation of a series of 2-napthamide derivatives as inhibitors of the drug efflux pump AcrB for the reversal of antimicrobial resistance. Bioorg. Med. Chem. Lett., 2017, 27(4), 733-739.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.042] [PMID: 28129976]
[184]
Wang, Y.; Mowla, R.; Ji, S.; Guo, L.; De Barros Lopes, M.A.; Jin, C.; Song, D.; Ma, S.; Venter, H. Design, synthesis and biological activity evaluation of novel 4-subtituted 2-naphthamide derivatives as AcrB inhibitors. Eur. J. Med. Chem., 2018, 143, 699-709.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.102] [PMID: 29220791]
[185]
Jin, C.; Alenazy, R.; Wang, Y.; Mowla, R.; Qin, Y.; Tan, J.Q.E.; Modi, N.D.; Gu, X.; Polyak, S.W.; Venter, H.; Ma, S. Design, synthesis and evaluation of a series of 5-methoxy-2,3-naphthalimide derivatives as AcrB inhibitors for the reversal of bacterial resistance. Bioorg. Med. Chem. Lett., 2019, 29(7), 882-889.
[http://dx.doi.org/10.1016/j.bmcl.2019.02.003] [PMID: 30755336]
[186]
Nakayama, K.; Ishida, Y.; Ohtsuka, M.; Kawato, H.; Yoshida, Ki.; Yokomizo, Y.; Hosono, S.; Ohta, T.; Hoshino, K.; Ishida, H.; Yoshida, K.; Renau, T.E.; Léger, R.; Zhang, J.Z.; Lee, V.J.; Watkins, W.J. MexAB-OprM-specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 1: Discovery and early strategies for lead optimization. Bioorg. Med. Chem. Lett., 2003, 13(23), 4201-4204.
[http://dx.doi.org/10.1016/j.bmcl.2003.07.024] [PMID: 14623001]
[187]
Nakayama, K.; Ishida, Y.; Ohtsuka, M.; Kawato, H.; Yoshida, K.; Yokomizo, Y.; Ohta, T.; Hoshino, K.; Otani, T.; Kurosaka, Y.; Yoshida, K.; Ishida, H.; Lee, V.J.; Renau, T.E.; Watkins, W.J. MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 2: Achieving activity in vivo through the use of alternative scaffolds. Bioorg. Med. Chem. Lett., 2003, 13(23), 4205-4208.
[http://dx.doi.org/10.1016/j.bmcl.2003.07.027] [PMID: 14623002]
[188]
Nakayama, K.; Kawato, H.; Watanabe, J.; Ohtsuka, M.; Yoshida, K.; Yokomizo, Y.; Sakamoto, A.; Kuru, N.; Ohta, T.; Hoshino, K.; Yoshida, K.; Ishida, H.; Cho, A.; Palme, M.H.; Zhang, J.Z.; Lee, V.J.; Watkins, W.J. MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 3: Optimization of potency in the pyridopyrimidine series through the application of a pharmacophore model. Bioorg. Med. Chem. Lett., 2004, 14(2), 475-479.
[http://dx.doi.org/10.1016/j.bmcl.2003.10.060] [PMID: 14698185]
[189]
Nakayama, K.; Kuru, N.; Ohtsuka, M.; Yokomizo, Y.; Sakamoto, A.; Kawato, H.; Yoshida, K.; Ohta, T.; Hoshino, K.; Akimoto, K.; Itoh, J.; Ishida, H.; Cho, A.; Palme, M.H.; Zhang, J.Z.; Lee, V.J.; Watkins, W.J. MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 4: Addressing the problem of poor stability due to photoisomerization of an acrylic acid moiety. Bioorg. Med. Chem. Lett., 2004, 14(10), 2493-2497.
[http://dx.doi.org/10.1016/j.bmcl.2004.03.007] [PMID: 15109639]
[190]
Yoshida, K.; Nakayama, K.; Kuru, N.; Kobayashi, S.; Ohtsuka, M.; Takemura, M.; Hoshino, K.; Kanda, H.; Zhang, J.Z.; Lee, V.J.; Watkins, W.J. MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 5: Carbon-substituted analogues at the C-2 position. Bioorg. Med. Chem., 2006, 14(6), 1993-2004.
[http://dx.doi.org/10.1016/j.bmc.2005.10.043] [PMID: 16290941]
[191]
Yoshida, K.; Nakayama, K.; Yokomizo, Y.; Ohtsuka, M.; Takemura, M.; Hoshino, K.; Kanda, H.; Namba, K.; Nitanai, H.; Zhang, J.Z.; Lee, V.J.; Watkins, W.J. MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 6: Exploration of aromatic substituents. Bioorg. Med. Chem., 2006, 14(24), 8506-8518.
[http://dx.doi.org/10.1016/j.bmc.2006.08.037] [PMID: 16979895]
[192]
Yoshida, K.; Nakayama, K.; Ohtsuka, M.; Kuru, N.; Yokomizo, Y.; Sakamoto, A.; Takemura, M.; Hoshino, K.; Kanda, H.; Nitanai, H.; Namba, K.; Yoshida, K.; Imamura, Y.; Zhang, J.Z.; Lee, V.J.; Watkins, W.J. MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 7: Highly soluble and in vivo active quaternary ammonium analogue D13-9001, a potential preclinical candidate. Bioorg. Med. Chem., 2007, 15(22), 7087-7097.
[http://dx.doi.org/10.1016/j.bmc.2007.07.039] [PMID: 17869116]
[193]
Bohnert, J.A.; Szymaniak-Vits, M.; Schuster, S.; Kern, W.V. Efflux inhibition by selective serotonin reuptake inhibitors in Escherichia coli. J. Antimicrob. Chemother., 2011, 66(9), 2057-2060.
[http://dx.doi.org/10.1093/jac/dkr258] [PMID: 21700628]
[194]
Rahbar, M.; Mehrgan, H.; Hadji-nejad, S. Enhancement of vancomycin activity by phenothiazines against vancomycin-resistant Enterococcus faecium in vitro. Basic Clin. Pharmacol. Toxicol., 2010, 107(2), 676-679.
[http://dx.doi.org/10.1111/j.1742-7843.2010.00558.x] [PMID: 20353486]
[195]
Bohnert, J.A.; Schuster, S.; Kern, W.V. Pimozide inhibits the AcrAB-TolC efflux pump in Escherichia coli. Open Microbiol. J., 2013, 7, 83-86.
[http://dx.doi.org/10.2174/1874285801307010083] [PMID: 23560030]
[196]
Li, B.; Yao, Q.; Pan, X-C.; Wang, N.; Zhang, R.; Li, J.; Ding, G.; Liu, X.; Wu, C.; Ran, D.; Zheng, J.; Zhou, H. Artesunate enhances the antibacterial effect of β-lactam antibiotics against Escherichia coli by increasing antibiotic accumulation via inhibition of the multidrug efflux pump system AcrAB-TolC. J. Antimicrob. Chemother., 2011, 66(4), 769-777.
[http://dx.doi.org/10.1093/jac/dkr017] [PMID: 21393180]
[197]
Song, Y.; Qin, R.; Pan, X.; Ouyang, Q.; Liu, T.; Zhai, Z.; Chen, Y.; Li, B.; Zhou, H. Design of new antibacterial enhancers based on AcrB’s structure and the evaluation of their antibacterial enhancement activity. Int. J. Mol. Sci., 2016, 17(11), 1934.
[http://dx.doi.org/10.3390/ijms17111934] [PMID: 27869748]
[198]
Helaly, G.F.; Shawky, S.; Amer, R.; Abdel-Kader, O.; El-Sawaf, G.; El Kholy, M.A. Expression of AcrAB Efflux Pump and Role of Mefloquine as Efflux Pump Inhibitor in MDR E. coli. Am. J. Infect. Dis. Microbiol., 2016, 4, 6-13.
[199]
Tintino, S.R.; Oliveira-Tintino, C.D.M.; Campina, F.F.; Weslley Limaverde, P.; Pereira, P.S.; Siqueira-Junior, J.P.; Coutinho, H.D.M.; Quintans-Júnior, L.J.; da Silva, T.G.; Leal-Balbino, T.C.; Balbino, V.Q.; Vitamin, K. Enhances the effect of antibiotics inhibiting the efflux pumps of Staphylococcus aureus strains. Med. Chem. Res., 2018, 27, 261-267.
[http://dx.doi.org/10.1007/s00044-017-2063-y]
[200]
de Figueiredo, C.S.; Menezes Silva, S.M.P.; Abreu, L.S.; da Silva, E.F.; da Silva, M.S.; Cavalcanti de Miranda, G.E.; Costa, V.C.O.; Le Hyaric, M.; Siqueira, Junior, J.P.; Barbosa Filho, J.M.; Tavares, J.F. Dolastane diterpenes from Canistrocarpus cervicornis and their effects in modulation of drug resistance in Staphylococcus aureus. Nat. Prod. Res., 2019, 33(22), 3231-3239.
[http://dx.doi.org/10.1080/14786419.2018.1470512] [PMID: 29733689]
[201]
Mouwakeh, A.; Kincses, A.; Nové, M.; Mosolygó, T.; Mohácsi-Farkas, C.; Kiskó, G.; Spengler, G. Nigella sativa essential oil and its bioactive compounds as resistance modifiers against Staphylococcus aureus. Phytother. Res., 2019, 33(4), 1010-1018.
[http://dx.doi.org/10.1002/ptr.6294] [PMID: 30672036]
[202]
Wu, P.; Grainger, D.W. Drug/device combinations for local drug therapies and infection prophylaxis. Biomaterials, 2006, 27(11), 2450-2467.
[http://dx.doi.org/10.1016/j.biomaterials.2005.11.031] [PMID: 16337266]
[203]
Tao, B.; Lin, C.; He, Y.; Yuan, Z.; Chen, M.; Xu, K.; Li, K.; Guo, A.; Cai, K.; Chen, L. Osteoimmunomodulation mediating improved osteointegration by OGP-loaded cobalt-metal organic framework on titanium implants with antibacterial property. Chem. Eng. J., 2021, 2021, 423.
[http://dx.doi.org/10.1016/j.cej.2021.130176]
[204]
Tao, B.; Zhao, W.; Lin, C.; Yuan, Z.; He, Y.; Lu, L.; Chen, M.; Ding, Y.; Yang, Y.; Xia, Z.; Cai, K. Surface modification of titanium implants by ZIF-8@Levo/LBL coating for inhibition of bacterial-associated infection and enhancement of in vivo osseointegration. Chem. Eng. J., 2020, 390, 124621.
[http://dx.doi.org/10.1016/j.cej.2020.124621]
[205]
Tao, B.; Lin, C.; Yuan, Z.; He, Y.; Chen, M.; Li, K.; Hu, J.; Yang, Y.; Xia, Z.; Cai, K. Near infrared light-triggered on-demand cur release from Gel-PDA@Cur composite hydrogel for antibacterial wound healing. Chem. Eng. J., 2021, 403, 126182.
[http://dx.doi.org/10.1016/j.cej.2020.126182]
[206]
Shen, X.; Zhang, Y.; Ma, P.; Sutrisno, L.; Luo, Z.; Hu, Y.; Yu, Y.; Tao, B.; Li, C.; Cai, K. Fabrication of magnesium/zinc-metal organic framework on titanium implants to inhibit bacterial infection and promote bone regeneration. Biomaterials, 2019, 212, 1-16.
[http://dx.doi.org/10.1016/j.biomaterials.2019.05.008] [PMID: 31100479]
[207]
Tao, B.; Lin, C.; Deng, Y.; Yuan, Z.; Shen, X.; Chen, M.; He, Y.; Peng, Z.; Hu, Y.; Cai, K. Copper-nanoparticle-embedded hydrogel for killing bacteria and promoting wound healing with photothermal therapy. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(15), 2534-2548.
[http://dx.doi.org/10.1039/C8TB03272F] [PMID: 32255130]
[208]
Pham, T.N.; Loupias, P.; Dassonville-Klimpt, A.; Sonnet, P. Drug delivery systems designed to overcome antimicrobial resistance. Med. Res. Rev., 2019, 39(6), 2343-2396.
[http://dx.doi.org/10.1002/med.21588] [PMID: 31004359]
[209]
Zgurskaya, H.I.; Löpez, C.A.; Gnanakaran, S. Permeability barrier of gram-negative cell envelopes and approaches to bypass it. ACS Infect. Dis., 2015, 1(11), 512-522.
[http://dx.doi.org/10.1021/acsinfecdis.5b00097] [PMID: 26925460]
[210]
Klahn, P.; Brönstrup, M. Bifunctional antimicrobial conjugates and hybrid antimicrobials. Nat. Prod. Rep., 2017, 34(7), 832-885.
[http://dx.doi.org/10.1039/C7NP00006E] [PMID: 28530279]
[211]
Braun, V.; Braun, M. Active transport of iron and siderophore antibiotics. Curr. Opin. Microbiol., 2002, 5(2), 194-201.
[http://dx.doi.org/10.1016/S1369-5274(02)00298-9] [PMID: 11934617]
[212]
Monzote, L.; Geroldinger, G.; De Sarkar, S.; Bergmann, S.; Chatterjee, M.; Tonner, M.; Scull, R.; Bacher, M.; Staniek, K.; Rosenau, T.; Gille, L. Interaction of Ascaridole, Carvacrol, and Caryophyllene Oxide from essential oil of Chenopodium ambrosioides L. with mitochondria in leishmania and other eukaryotes; Phyther. Res, 2018, pp. 1-12.
[213]
Dolence, E.K.; Lin, C.E.; Miller, M.J.; Payne, S.M. Synthesis and siderophore activity of albomycin-like peptides derived from N5-acetyl-N5-hydroxy-L-ornithine. J. Med. Chem., 1991, 34(3), 956-968.
[http://dx.doi.org/10.1021/jm00107a013] [PMID: 1825849]
[214]
Zheng, T.; Nolan, E.M. Enterobactin-mediated delivery of β-lactam antibiotics enhances antibacterial activity against pathogenic Escherichia coli. J. Am. Chem. Soc., 2014, 136(27), 9677-9691.
[http://dx.doi.org/10.1021/ja503911p] [PMID: 24927110]
[215]
Rivault, F.; Liébert, C.; Burger, A.; Hoegy, F.; Abdallah, M.A.; Schalk, I.J.; Mislin, G.L.A. Synthesis of pyochelin-norfloxacin conjugates. Bioorg. Med. Chem. Lett., 2007, 17(3), 640-644.
[http://dx.doi.org/10.1016/j.bmcl.2006.11.005] [PMID: 17123817]
[216]
Neumann, W.; Nolan, E.M. Evaluation of a reducible disulfide linker for siderophore-mediated delivery of antibiotics. Eur. J. Biochem., 2018, 23(7), 1025-1036.
[http://dx.doi.org/10.1007/s00775-018-1588-y] [PMID: 29968176]
[217]
Zheng, T.; Nolan, E.M. Evaluation of (acyloxy)alkyl ester linkers for antibiotic release from siderophore-antibiotic conjugates. Bioorg. Med. Chem. Lett., 2015, 25(21), 4987-4991.
[http://dx.doi.org/10.1016/j.bmcl.2015.02.034] [PMID: 25794938]
[218]
Liu, R.; Miller, P.A.; Vakulenko, S.B.; Stewart, N.K.; Boggess, W.C.; Miller, M.J. A synthetic dual drug sideromycin induces gram-negative bacteria to commit suicide with a gram-positive antibiotic. J. Med. Chem., 2018, 61(9), 3845-3854.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00218] [PMID: 29554424]
[219]
Brochu, A.; Brochu, N.; Nicas, T.I.; Parr, T.R., Jr; Minnick, A.A., Jr; Dolence, E.K.; McKee, J.A.; Miller, M.J.; Lavoie, M.C.; Malouin, F. Modes of action and inhibitory activities of new siderophore-β-lactam conjugates that use specific iron uptake pathways for entry into bacteria. Antimicrob. Agents Chemother., 1992, 36(10), 2166-2175.
[http://dx.doi.org/10.1128/AAC.36.10.2166] [PMID: 1444296]
[220]
Schalk, I.J.; Mislin, G.L.A. Bacterial iron uptake pathways: Gates for the import of bactericide compounds. J. Med. Chem., 2017, 60(11), 4573-4576.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00554] [PMID: 28453272]
[221]
Ito, A.; Sato, T.; Ota, M.; Takemura, M.; Nishikawa, T.; Toba, S.; Kohira, N.; Miyagawa, S.; Ishibashi, N.; Matsumoto, S.; Nakamura, R.; Tsuji, M.; Yamano, Y. In Vitro antibacterial properties of cefiderocol, a novel siderophore cephalosporin, against gram-negative bacteria. Antimicrob. Agents Chemother., 2017, 62(1), 1-11.
[PMID: 29061741]
[222]
Zhanel, G.G.; Golden, A.R.; Zelenitsky, S.; Wiebe, K.; Lawrence, C.K.; Adam, H.J.; Idowu, T.; Domalaon, R.; Schweizer, F.; Zhanel, M.A.; Lagacé-Wiens, P.R.S.; Walkty, A.J.; Noreddin, A.; Lynch Iii, J.P.; Karlowsky, J.A. Cefiderocol: A siderophore cephalosporin with activity against carbapenem-resistant and multidrug-resistant gram-negative bacilli. Drugs, 2019, 79(3), 271-289.
[http://dx.doi.org/10.1007/s40265-019-1055-2] [PMID: 30712199]
[223]
Heidary, M.; Khosravi, A.D.; Khoshnood, S.; Nasiri, M.J.; Soleimani, S.; Goudarzi, M. Daptomycin. J. Antimicrob. Chemother., 2018, 73(1), 1-11.
[http://dx.doi.org/10.1093/jac/dkx349] [PMID: 29059358]
[224]
Randall, C.P.; Mariner, K.R.; Chopra, I.; O’Neill, A.J. The target of daptomycin is absent from Escherichia coli and other gram-negative pathogens. Antimicrob. Agents Chemother., 2013, 57(1), 637-639.
[http://dx.doi.org/10.1128/AAC.02005-12] [PMID: 23114759]
[225]
Ghosh, M.; Miller, P.A.; Möllmann, U.; Claypool, W.D.; Schroeder, V.A.; Wolter, W.R.; Suckow, M.; Yu, H.; Li, S.; Huang, W.; Zajicek, J.; Miller, M.J. Targeted antibiotic delivery: Selective siderophore conjugation with daptomycin confers potent activity against multidrug resistant Acinetobacter baumannii both in vitro and in vivo. J. Med. Chem., 2017, 60(11), 4577-4583.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00102] [PMID: 28287735]
[226]
Wencewicz, T.A.; Miller, M.J. Biscatecholate-monohydroxamate mixed ligand siderophore-carbacephalosporin conjugates are selective sideromycin antibiotics that target Acinetobacter baumannii. J. Med. Chem., 2013, 56(10), 4044-4052.
[http://dx.doi.org/10.1021/jm400265k] [PMID: 23614627]
[227]
Ji, C.; Miller, P.A.; Miller, M.J. Iron transport-mediated drug delivery: Practical syntheses and in vitro antibacterial studies of tris-catecholate siderophore-aminopenicillin conjugates reveals selectively potent antipseudomonal activity. J. Am. Chem. Soc., 2012, 134(24), 9898-9901.
[http://dx.doi.org/10.1021/ja303446w] [PMID: 22656303]
[228]
Chairatana, P.; Zheng, T.; Nolan, E.M. Targeting virulence: Salmochelin modification tunes the antibacterial activity spectrum of β-lactams for pathogen-selective killing of Escherichia coli. Chem. Sci. (Camb.), 2015, 6(8), 4458-4471.
[http://dx.doi.org/10.1039/C5SC00962F] [PMID: 28717471]
[229]
Miller, M.J.; Walz, A.J.; Zhu, H.; Wu, C.; Moraski, G.; Möllmann, U.; Tristani, E.M.; Crumbliss, A.L.; Ferdig, M.T.; Checkley, L.; Edwards, R.L.; Boshoff, H.I. Design, synthesis, and study of a mycobactin-artemisinin conjugate that has selective and potent activity against tuberculosis and malaria. J. Am. Chem. Soc., 2011, 133(7), 2076-2079.
[http://dx.doi.org/10.1021/ja109665t] [PMID: 21275374]
[230]
Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature, 2002, 415(6870), 389-395.
[http://dx.doi.org/10.1038/415389a] [PMID: 11807545]
[231]
Ageitos, J.M.; Sánchez-Pérez, A.; Calo-Mata, P.; Villa, T.G. Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria. Biochem. Pharmacol., 2017, 133, 117-138.
[http://dx.doi.org/10.1016/j.bcp.2016.09.018] [PMID: 27663838]
[232]
Bera, S.; Zhanel, G.G.; Schweizer, F. Synthesis and antibacterial activity of amphiphilic lysine-ligated neomycin B conjugates. Carbohydr. Res., 2011, 346(5), 560-568.
[http://dx.doi.org/10.1016/j.carres.2011.01.015] [PMID: 21353205]
[233]
Yadav, S.; Mahato, M.; Pathak, R.; Jha, D.; Kumar, B.; Deka, S.R.; Gautam, H.K.; Sharma, A.K. Multifunctional self-assembled cationic peptide nanostructures efficiently carry plasmid DNA in vitro and exhibit antimicrobial activity with minimal toxicity. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(30), 4848-4861.
[http://dx.doi.org/10.1039/C4TB00657G] [PMID: 32261776]
[234]
Gardete, S.; Tomasz, A. Mechanisms of vancomycin resistance in Staphylococcus aureus. J. Clin. Invest., 2014, 124(7), 2836-2840.
[http://dx.doi.org/10.1172/JCI68834] [PMID: 24983424]
[235]
Howden, B.P.; Davies, J.K.; Johnson, P.D.R.; Stinear, T.P.; Grayson, M.L. Reduced vancomycin susceptibility in Staphylococcus aureus, including vancomycin-intermediate and heterogeneous vancomycin-intermediate strains: Resistance mechanisms, laboratory detection, and clinical implications. Clin. Microbiol. Rev., 2010, 23(1), 99-139.
[http://dx.doi.org/10.1128/CMR.00042-09] [PMID: 20065327]
[236]
Arnusch, C.J.; Pieters, R.J.; Breukink, E. Enhanced membrane pore formation through high-affinity targeted antimicrobial peptides. PLoS One, 2012, 7(6), e39768.
[http://dx.doi.org/10.1371/journal.pone.0039768] [PMID: 22768121]
[237]
Mishra, N.M.; Briers, Y.; Lamberigts, C.; Steenackers, H.; Robijns, S.; Landuyt, B.; Vanderleyden, J.; Schoofs, L.; Lavigne, R.; Luyten, W.; Van der Eycken, E.V. Evaluation of the antibacterial and antibiofilm activities of novel CRAMP-vancomycin conjugates with diverse linkers. Org. Biomol. Chem., 2015, 13(27), 7477-7486.
[http://dx.doi.org/10.1039/C5OB00830A] [PMID: 26068402]
[238]
Mahlapuu, M.; Håkansson, J.; Ringstad, L.; Björn, C. Antimicrobial peptides: An emerging category of therapeutic agents. Front. Cell. Infect. Microbiol., 2016, 6, 194.
[http://dx.doi.org/10.3389/fcimb.2016.00194] [PMID: 28083516]
[239]
Rodriguez, C.A.; Papanastasiou, E.A.; Juba, M.; Bishop, B. Covalent modification of a ten-residue cationic antimicrobial peptide with levofloxacin. Front Chem., 2014, 2, 71.
[http://dx.doi.org/10.3389/fchem.2014.00071] [PMID: 25279373]
[240]
Ghaffar, K.A.; Hussein, W.M.; Khalil, Z.G.; Capon, R.J.; Skwarczynski, M.; Toth, I. Levofloxacin and indolicidin for combination antimicrobial therapy. Curr. Drug Deliv., 2015, 12(1), 108-114.
[http://dx.doi.org/10.2174/1567201811666140910094050] [PMID: 25213074]
[241]
Ceccherini, F.; Falciani, C.; Onori, M.; Scali, S.; Pollini, S.; Rossolini, G.M.; Bracci, L.; Pini, A. Antimicrobial activity of levofloxacin - M33 peptide conjugation or combination. MedChemComm, 2016, 7, 258-262.
[http://dx.doi.org/10.1039/C5MD00392J]
[242]
Riahifard, N.; Tavakoli, K.; Yamaki, J.; Parang, K.; Tiwari, R. Synthesis and evaluation of antimicrobial activity of [R₄W₄K]-levofloxacin and [R₄W₄K]-levofloxacin-Q conjugates. Molecules, 2017, 22(6), 1-11.
[http://dx.doi.org/10.3390/molecules22060957] [PMID: 28594345]
[243]
Bystrzycka, W.; Manda-Handzlik, A.; Sieczkowska, S.; Moskalik, A.; Demkow, U.; Ciepiela, O. Azithromycin and chloramphenicol diminish neutrophil extracellular traps (NETs) release. Int. J. Mol. Sci., 2017, 18(12), 18.
[http://dx.doi.org/10.3390/ijms18122666] [PMID: 29292737]
[244]
Chen, H.; Liu, C.; Chen, D.; Madrid, K.; Peng, S.; Dong, X.; Zhang, M.; Gu, Y. Bacteria-targeting conjugates based on antimicrobial peptide for bacteria diagnosis and therapy. Mol. Pharm., 2015, 12(7), 2505-2516.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00053] [PMID: 26030231]
[245]
Li, W.; O’Brien-Simpson, N.M.; Holden, J.A.; Otvos, L.; Reynolds, E.C.; Separovic, F.; Hossain, M.A.; Wade, J.D. Covalent conjugation of cationic antimicrobial peptides with a β-lactam antibiotic core. Pept. Sci. (Hoboken), 2018, 110, 2-10.
[http://dx.doi.org/10.1002/pep2.24059]
[246]
Ptaszyńska, N.; Olkiewicz, K.; Okońska, J.; Gucwa, K.; Łęgowska, A.; Gitlin-Domagalska, A.; Dębowski, D.; Lica, J.; Heldt, M.; Milewski, S.; Ng, T.B.; Rolka, K. Peptide conjugates of lactoferricin analogues and antimicrobials-Design, chemical synthesis, and evaluation of antimicrobial activity and mammalian cytotoxicity. Peptides, 2019, 117, 170079.
[http://dx.doi.org/10.1016/j.peptides.2019.04.006] [PMID: 30959143]
[247]
Mariathasan, S.; Tan, M.W. Antibody-antibiotic conjugates: A novel therapeutic platform against bacterial infections. Trends Mol. Med., 2017, 23(2), 135-149.
[http://dx.doi.org/10.1016/j.molmed.2016.12.008] [PMID: 28126271]
[248]
Wagner, E.K.; Maynard, J.A. Engineering therapeutic antibodies to combat infectious diseases. Curr. Opin. Chem. Eng., 2018, 19, 131-141.
[http://dx.doi.org/10.1016/j.coche.2018.01.007] [PMID: 29911002]
[249]
Lehar, S.M.; Pillow, T.; Xu, M.; Staben, L.; Kajihara, K.K.; Vandlen, R.; DePalatis, L.; Raab, H.; Hazenbos, W.L.; Morisaki, J.H.; Kim, J.; Park, S.; Darwish, M.; Lee, B.C.; Hernandez, H.; Loyet, K.M.; Lupardus, P.; Fong, R.; Yan, D.; Chalouni, C.; Luis, E.; Khalfin, Y.; Plise, E.; Cheong, J.; Lyssikatos, J.P.; Strandh, M.; Koefoed, K.; Andersen, P.S.; Flygare, J.A.; Wah Tan, M.; Brown, E.J.; Mariathasan, S. Novel antibody-antibiotic conjugate eliminates intracellular S. aureus. Nature, 2015, 527(7578), 323-328.
[http://dx.doi.org/10.1038/nature16057] [PMID: 26536114]
[250]
Zhou, C.; Lehar, S.; Gutierrez, J.; Rosenberger, C.M.; Ljumanovic, N.; Dinoso, J.; Koppada, N.; Hong, K.; Baruch, A.; Carrasco-Triguero, M.; Saad, O.; Mariathasan, S.; Kamath, A.V. Pharmacokinetics and pharmacodynamics of DSTA4637A: A novel THIOMAB™ antibody antibiotic conjugate against Staphylococcus aureus in mice. MAbs, 2016, 8(8), 1612-1619.
[http://dx.doi.org/10.1080/19420862.2016.1229722] [PMID: 27653831]
[251]
Genentech, Inc. Study to investigate the safety, tolerability, and pharmacokinetics of DSTA4637S in participants with Staphylococcus aureus bacteremia receiving standard‐of‐care (SOC) antibiotics. Available from: https://clinicaltrials.gov/ct2/show/NCT03162250 (Accessed on: Feb 27, 2020).
[252]
Elhissi, A.M.A.; Dennison, S.R.; Ahmed, W.; Taylor, K.M.G.; Phoenix, D.A. New delivery systems-liposomes for pulmonary delivery of antibacterial drugs; Nov. Antimicrob. Agents Strateg, 2014, pp. 387-406.
[http://dx.doi.org/10.1002/9783527676132.ch13]
[253]
Kalhapure, R.S.; Suleman, N.; Mocktar, C.; Seedat, N.; Govender, T. Nanoengineered drug delivery systems for enhancing antibiotic therapy. J. Pharm. Sci., 2015, 104(3), 872-905.
[http://dx.doi.org/10.1002/jps.24298] [PMID: 25546108]
[254]
Alhariri, M.; Azghani, A.; Omri, A. Liposomal antibiotics for the treatment of infectious diseases. Expert Opin. Drug Deliv., 2013, 10(11), 1515-1532.
[http://dx.doi.org/10.1517/17425247.2013.822860] [PMID: 23886421]
[255]
Chen, C.; Han, D.; Cai, C.; Tang, X. An overview of liposome lyophilization and its future potential. J. Control. Release, 2010, 142(3), 299-311.
[http://dx.doi.org/10.1016/j.jconrel.2009.10.024] [PMID: 19874861]
[256]
Drulis-Kawa, Z.; Dorotkiewicz-Jach, A. Liposomes as delivery systems for antibiotics. Int. J. Pharm., 2010, 387(1-2), 187-198.
[http://dx.doi.org/10.1016/j.ijpharm.2009.11.033]
[257]
Meers, P.; Neville, M.; Malinin, V.; Scotto, A.W.; Sardaryan, G.; Kurumunda, R.; Mackinson, C.; James, G.; Fisher, S.; Perkins, W.R. Biofilm penetration, triggered release and in vivo activity of inhaled liposomal amikacin in chronic Pseudomonas aeruginosa lung infections. J. Antimicrob. Chemother., 2008, 61(4), 859-868.
[http://dx.doi.org/10.1093/jac/dkn059] [PMID: 18305202]
[258]
Li, Z.; Zhang, Y.; Wurtz, W.; Lee, J.K.; Malinin, V.S.; Durwas-Krishnan, S.; Meers, P.; Perkins, W.R. Characterization of nebulized liposomal amikacin (Arikace) as a function of droplet size. J. Aerosol Med. Pulm. Drug Deliv., 2008, 21(3), 245-254.
[http://dx.doi.org/10.1089/jamp.2008.0686] [PMID: 18759656]
[259]
Antos, M.; Anna, E.; Grzybowski, J. Antibacterial activity of lipossomal amikacin against Pseudomonas aeruginosa in vitro. Pharmacol. Res., 1995, 32, 85-87.
[260]
Okusanya, Ó.O.; Bhavnani, S.M.; Hammel, J.; Minic, P.; Dupont, L.J.; Forrest, A.; Mulder, G.J.; Mackinson, C.; Ambrose, P.G.; Gupta, R. Pharmacokinetic and pharmacodynamic evaluation of liposomal amikacin for inhalation in cystic fibrosis patients with chronic pseudomonal infection. Antimicrob. Agents Chemother., 2009, 53(9), 3847-3854.
[http://dx.doi.org/10.1128/AAC.00872-08] [PMID: 19451281]
[261]
Mugabe, C.; Halwani, M.; Azghani, A.O.; Lafrenie, R.M.; Omri, A. Mechanism of enhanced activity of liposome-entrapped aminoglycosides against resistant strains of Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 2006, 50(6), 2016-2022.
[http://dx.doi.org/10.1128/AAC.01547-05] [PMID: 16723560]
[262]
Clancy, J.P.; Dupont, L.; Konstan, M.W.; Billings, J.; Fustik, S.; Goss, C.H.; Lymp, J.; Minic, P.; Quittner, A.L.; Rubenstein, R.C.; Young, K.R.; Saiman, L.; Burns, J.L.; Govan, J.R.W.; Ramsey, B.; Gupta, R.; Phase, I.I. Phase II studies of nebulised Arikace in CF patients with Pseudomonas aeruginosa infection. Thorax, 2013, 68(9), 818-825.
[http://dx.doi.org/10.1136/thoraxjnl-2012-202230] [PMID: 23749840]
[263]
Beaulac, C.; Sachetelli, S.; Lagace, J. In-vitro bactericidal efficacy of sub-MIC concentrations of liposome-encapsulated antibiotic against gram-negative and gram-positive bacteria. J. Antimicrob. Chemother., 1998, 41(1), 35-41.
[http://dx.doi.org/10.1093/jac/41.1.35] [PMID: 9511035]
[264]
Beaulac, C.; Clément-Major, S.; Hawari, J.; Lagacé, J. Eradication of mucoid Pseudomonas aeruginosa with fluid liposome-encapsulated tobramycin in an animal model of chronic pulmonary infection. Antimicrob. Agents Chemother., 1996, 40(3), 665-669.
[http://dx.doi.org/10.1128/AAC.40.3.665] [PMID: 8851590]
[265]
Marier, J.F.; Lavigne, J.; Ducharme, M.P. Pharmacokinetics and efficacies of liposomal and conventional formulations of tobramycin after intratracheal administration in rats with pulmonary Burkholderia cepacia infection. Antimicrob. Agents Chemother., 2002, 46(12), 3776-3781.
[http://dx.doi.org/10.1128/AAC.46.12.3776-3781.2002] [PMID: 12435676]
[266]
Sande, L.; Sanchez, M.; Montes, J.; Wolf, A.J.; Morgan, M.A.; Omri, A.; Liu, G.Y. Liposomal encapsulation of vancomycin improves killing of methicillin-resistant Staphylococcus aureus in a murine infection model. J. Antimicrob. Chemother., 2012, 67(9), 2191-2194.
[http://dx.doi.org/10.1093/jac/dks212] [PMID: 22661572]
[267]
Muppidi, K.; Wang, J.; Betageri, G.; Pumerantz, A.S. PEGylated liposome encapsulation increases the lung tissue concentration of vancomycin. Antimicrob. Agents Chemother., 2011, 55(10), 4537-4542.
[http://dx.doi.org/10.1128/AAC.00713-11] [PMID: 21788465]
[268]
Kadry, A.A.; Al-Suwayeh, S.A.; Abd-Allah, A.R.A.; Bayomi, M.A. Treatment of experimental osteomyelitis by liposomal antibiotics. J. Antimicrob. Chemother., 2004, 54(6), 1103-1108.
[http://dx.doi.org/10.1093/jac/dkh465] [PMID: 15486079]
[269]
Rukavina, Z. Šegvić Klarić, M.; Filipović-Grčić, J.; Lovrić, J.; Vanić, Ž. Azithromycin-loaded liposomes for enhanced topical treatment of methicillin-resistant Staphyloccocus aureus (MRSA) infections. Int. J. Pharm., 2018, 553(1-2), 109-119.
[http://dx.doi.org/10.1016/j.ijpharm.2018.10.024] [PMID: 30312749]
[270]
Liu, X.; Huang, G. Formation strategies, mechanism of intracellular delivery and potential clinical applications of PH-sensitive liposomes. Asian J. Pharm. Sci., 2013, 8, 319-328.
[http://dx.doi.org/10.1016/j.ajps.2013.11.002]
[271]
Pornpattananangkul, D.; Zhang, L.; Olson, S.; Aryal, S.; Obonyo, M.; Vecchio, K.; Huang, C.M.; Zhang, L. Bacterial toxin-triggered drug release from gold nanoparticle-stabilized liposomes for the treatment of bacterial infection. J. Am. Chem. Soc., 2011, 133(11), 4132-4139.
[http://dx.doi.org/10.1021/ja111110e] [PMID: 21344925]
[272]
Elvira, C.; Gallardo, A.; Roman, J.S.; Cifuentes, A. Covalent polymer-drug conjugates. Molecules, 2005, 10(1), 114-125.
[http://dx.doi.org/10.3390/10010114] [PMID: 18007281]
[273]
Xiong, M.H.; Bao, Y.; Yang, X.Z.; Zhu, Y.H.; Wang, J. Delivery of antibiotics with polymeric particles. Adv. Drug Deliv. Rev., 2014, 78, 63-76.
[http://dx.doi.org/10.1016/j.addr.2014.02.002] [PMID: 24548540]
[274]
Qiu, L.Y.; Bae, Y.H. Polymer architecture and drug delivery. Pharm. Res., 2006, 23(1), 1-30.
[http://dx.doi.org/10.1007/s11095-005-9046-2] [PMID: 16392022]
[275]
Woo, G.L.Y.; Yang, M.L.; Yin, H.Q.; Jaffer, F.; Mittelman, M.W.; Santerre, J.P. Biological characterization of a novel biodegradable antimicrobial polymer synthesized with fluoroquinolones. J. Biomed. Mater. Res., 2002, 59(1), 35-45.
[http://dx.doi.org/10.1002/jbm.1214] [PMID: 11745535]
[276]
Storey, R.F.; Mullen, B.D. Synthesis and characterization of a novel biodegradable polymer. Am. Chem. Soc. Polym. Prepr. Div. Polym. Chem., 2000, 41, 1307-1308.
[277]
Kugel, A.; Chisholm, B.; Ebert, S.; Jepperson, M.; Jarabek, L.; Stafslien, S. Antimicrobial polysiloxane polymers and coatings containing pendant levofloxacin. Polym. Chem., 2010, 1, 442-452.
[http://dx.doi.org/10.1039/B9PY00309F]
[278]
Nathan, A.; Zalipsky, S.; Ertel, S.I.; Agathos, S.N.; Yarmush, M.L.; Kohn, J. Correction: Copolymers of lysine and polyethylene glycol: A new family of functionalized drug carriers. Bioconjug. Chem., 1993, 4, 410.
[http://dx.doi.org/10.1021/bc00023a600]
[279]
Yang, H.; Lopina, S.T. Penicillin V-conjugated PEG-PAMAM star polymers. J. Biomater. Sci. Polym. Ed., 2003, 14(10), 1043-1056.
[http://dx.doi.org/10.1163/156856203769231556] [PMID: 14661878]
[280]
Mishra, M.K.; Kotta, K.; Hali, M.; Wykes, S.; Gerard, H.C.; Hudson, A.P.; Whittum-Hudson, J.A.; Kannan, R.M. PAMAM dendrimer-azithromycin conjugate nanodevices for the treatment of Chlamydia trachomatis infections. Nanomedicine, 2011, 7(6), 935-944.
[http://dx.doi.org/10.1016/j.nano.2011.04.008] [PMID: 21658474]
[281]
Schmidt, M.; Bast, L.K.; Lanfer, F.; Richter, L.; Hennes, E.; Seymen, R.; Krumm, C.; Tiller, J.C. Poly(2-oxazoline)-antibiotic conjugates with penicillins. Bioconjug. Chem., 2017, 28(9), 2440-2451.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00424] [PMID: 28817271]
[282]
Gumustas, M.; Sengel-Turk, C.T.; Gumustas, A.; Ozkan, S.A.; Uslu, B. Effect of polymer-based nanoparticles on the assay of antimicrobial drug delivery systems. Multifunct. Sys. Combined Deliv. Biosens. Diagn., 2017, 2017, 67-108.
[http://dx.doi.org/10.1016/B978-0-323-52725-5.00005-8]
[283]
Stebbins, N.D.; Ouimet, M.A.; Uhrich, K.E. Antibiotic-containing polymers for localized, sustained drug delivery. Adv. Drug Deliv. Rev., 2014, 78, 77-87.
[http://dx.doi.org/10.1016/j.addr.2014.04.006] [PMID: 24751888]
[284]
Mulas, K.; Stefanowicz, Z.; Oledzka, E.; Sobczak, M. Current state of the polymeric delivery systems of fluoroquinolones - A review. J. Control. Release, 2019, 294, 195-215.
[http://dx.doi.org/10.1016/j.jconrel.2018.12.021] [PMID: 30553851]
[285]
Konai, M.M.; Bhattacharjee, B.; Ghosh, S.; Haldar, J. Recent progress in polymer research to tackle infections and antimicrobial resistance. Biomacromolecules, 2018, 19(6), 1888-1917.
[http://dx.doi.org/10.1021/acs.biomac.8b00458] [PMID: 29718664]
[286]
Tanbour, R.; Martins, A.M.; Pitt, W.G.; Husseini, G.A. Drug delivery systems based on polymeric micelles and ultrasound: A review. Curr. Pharm. Des., 2016, 22(19), 2796-2807.
[http://dx.doi.org/10.2174/1381612822666160217125215] [PMID: 26898742]
[287]
Dastidar, D.G.; Chakrabarti, G. Thermoresponsive drug delivery systems, characterization and application. In: Applications of Targeted Nano Drugs and Delivery Systems; Elsevier: Amsterdam, 2019; pp. 133-155.
[288]
Matsumura, Y. Polymeric micellar delivery systems in oncology. Jpn. J. Clin. Oncol., 2008, 38(12), 793-802.
[http://dx.doi.org/10.1093/jjco/hyn116] [PMID: 18988667]
[289]
Xu, W.; Ling, P.; Zhang, T. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J. Drug Deliv., 2013, 2013, 340315.
[http://dx.doi.org/10.1155/2013/340315] [PMID: 23936656]
[290]
Silva, M.; Lara, A.S.; Leite, C.Q.F.; Ferreira, E.I. Potential tuberculostatic agents: Micelle-forming copolymer poly(ethylene glycol)-poly(aspartic acid) prodrug with isoniazid. Arch. Pharm. (Weinheim), 2001, 334(6), 189-193.
[http://dx.doi.org/10.1002/1521-4184(200106)334:6189:AID-ARDP1893.0.CO;2-6] [PMID: 11475908]
[291]
Silva, M.; Ferreira, E.I.; Leite, C.Q.; Sato, D.N. Preparation of polymeric micelles for use as carriers of tuberculostatic drugs. Trop. J. Pharm. Res., 2007, 6, 815-824.
[http://dx.doi.org/10.4314/tjpr.v6i4.14665]
[292]
Kim, B.S.; Park, S.W.; Hammond, P.T. Hydrogen-bonding layer-by-layer-assembled biodegradable polymeric micelles as drug delivery vehicles from surfaces. ACS Nano, 2008, 2(2), 386-392.
[http://dx.doi.org/10.1021/nn700408z] [PMID: 19206641]
[293]
Liu, L.; Venkatraman, S.S.; Yang, Y.Y.; Guo, K.; Lu, J.; He, B.; Moochhala, S.; Kan, L. Polymeric micelles anchored with TAT for delivery of antibiotics across the blood-brain barrier. Biopolymers, 2008, 90(5), 617-623.
[http://dx.doi.org/10.1002/bip.20998] [PMID: 18412128]
[294]
Chen, M.; Xie, S.; Wei, J.; Song, X.; Ding, Z.; Li, X. Antibacterial micelles with vancomycin-mediated targeting and PH/lipase-triggered release of antibiotics. ACS Appl. Mater. Interfaces, 2018, 10(43), 36814-36823.
[295]
Amarnath Praphakar, R.; Sam Ebenezer, R.; Vignesh, S.; Shakila, H.; Rajan, M. Versatile pH-responsive chitosan-g-polycaprolac-] tone/maleic anhydride-isoniazid polymeric micelle to improve the bioavailability of tuberculosis multidrugs. ACS Appl. Bio Mater., 2019, 2(5), 1931-1943.
[http://dx.doi.org/10.1021/acsabm.9b00003] [PMID: 35030682]
[296]
Pontes, D.S.; de Araujo, R.S.A.; Dantas, N.; Scotti, L.; Scotti, M.T.; de Moura, R.O.; Mendonca-Junior, F.J.B. Genetic mechanisms of antibiotic resistance and the role of antibiotic adjuvants. Curr. Top. Med. Chem., 2018, 18(1), 42-74.
[http://dx.doi.org/10.2174/1568026618666180206095224] [PMID: 29412107]
[297]
Muñoz-Cazares, N.; García-Contreras, R.; Pérez-López, M.; Castillo-Juárez, I. Phenolic compounds with anti-virulence properties. In: Phenolic Compounds - Biological Activity; InTech, 2017.
[http://dx.doi.org/10.5772/66367]
[298]
Castillo-Juárez, I.; Maeda, T.; Mandujano-Tinoco, E.A.; Tomás, M.; Pérez-Eretza, B.; García-Contreras, S.J.; Wood, T.K.; García-Contreras, R. Role of quorum sensing in bacterial infections. World J. Clin. Cases, 2015, 3(7), 575-598.
[http://dx.doi.org/10.12998/wjcc.v3.i7.575] [PMID: 26244150]
[299]
Defoirdt, T. Antivirulence therapy for animal production: Filling an arsenal with novel weapons for sustainable disease control. PLoS Pathog., 2013, 9(10), e1003603.
[http://dx.doi.org/10.1371/journal.ppat.1003603] [PMID: 24130477]
[300]
Fleitas Martínez, O.; Cardoso, M.H.; Ribeiro, S.M.; Franco, O.L. Recent advances in anti-virulence therapeutic strategies with a focus on dismantling bacterial membrane microdomains, toxin neutralization, quorum-sensing interference and biofilm inhibition. Front. Cell. Infect. Microbiol., 2019, 9, 74.
[http://dx.doi.org/10.3389/fcimb.2019.00074] [PMID: 31001485]
[301]
Asfour, H.Z. Anti-quorum sensing natural compounds. J. Microsc. Ultrastruct., 2018, 6(1), 1-10.
[http://dx.doi.org/10.4103/JMAU.JMAU_10_18] [PMID: 30023261]
[302]
Silva, L.N.; Zimmer, K.R.; Macedo, A.J.; Trentin, D.S. Plant natural products targeting bacterial virulence factors. Chem. Rev., 2016, 116(16), 9162-9236.
[http://dx.doi.org/10.1021/acs.chemrev.6b00184] [PMID: 27437994]
[303]
Muñoz-Cazares, N.; García-Contreras, R.; Soto-Hernández, M.; Martínez-Vázquez, M.; Castillo-Juárez, I. Natural products with quorum quenching-independent antivirulence properties. Stud. Nat. Prod. Chem., 2018, 57, 327-351.
[http://dx.doi.org/10.1016/B978-0-444-64057-4.00010-7]
[304]
Cushnie, T.P.T.; Cushnie, B.; Lamb, A.J. Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int. J. Antimicrob. Agents, 2014, 44(5), 377-386.
[http://dx.doi.org/10.1016/j.ijantimicag.2014.06.001] [PMID: 25130096]
[305]
Wu, S-C.; Liu, F.; Zhu, K.; Shen, J-Z. Natural products that target virulence factors in antibiotic-resistant Staphylococcus aureus. J. Agric. Food Chem., 2019, 67(48), 13195-13211.
[http://dx.doi.org/10.1021/acs.jafc.9b05595] [PMID: 31702908]
[306]
Araújo, R.S.A.; Mendonça-Junior, F.J. Coumarins: Synthetic Approaches and Pharmacological Importance. In: Natural Products and Drug Discovery: From Pharmacochemistry to Pharmacological Approaches; Diniz, M. de F.F.M.; Scotti, L.; Scotti, M.T.; Alves, M.F., Eds.; UFPB: João Pessoa, 2018.
[307]
Lee, J-H.; Kim, Y-G.; Cho, H.S.; Ryu, S.Y.; Cho, M.H.; Lee, J. Coumarins reduce biofilm formation and the virulence of Escherichia coli O157:H7. Phytomedicine, 2014, 21(8-9), 1037-1042.
[http://dx.doi.org/10.1016/j.phymed.2014.04.008] [PMID: 24837471]
[308]
Girennavar, B.; Cepeda, M.L.; Soni, K.A.; Vikram, A.; Jesudhasan, P.; Jayaprakasha, G.K.; Pillai, S.D.; Patil, B.S. Grapefruit juice and its furocoumarins inhibits autoinducer signaling and biofilm formation in bacteria. Int. J. Food Microbiol., 2008, 125(2), 204-208.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2008.03.028] [PMID: 18504060]
[309]
Barbosa-Filho, J.M.; Piuvezam, M.R.; Moura, M.D.; Silva, M.S.; Lima, K.V.B.; Da-Cunha, E.V.L.; Fechine, I.M.; Takemura, O.S. Anti-inflammatory activity of alkaloids: A twenty-century review. Rev. Bras. Farmacogn., 2006, 16, 109-139.
[http://dx.doi.org/10.1590/S0102-695X2006000100020]
[310]
Kurek, J. Introductory chapter: Alkaloids - their importance in nature and for human life. In: Alkaloids - Their Importance in Nature and Human Life; IntechOpen, 2019.
[311]
Yin, S.; Davis, R.A.; Shelper, T.; Sykes, M.L.; Avery, V.M.; Elofsson, M.; Sundin, C.; Quinn, R.J. Pseudoceramines A-D, new antibacterial bromotyrosine alkaloids from the marine sponge Pseudoceratina sp. Org. Biomol. Chem., 2011, 9(19), 6755-6760.
[http://dx.doi.org/10.1039/c1ob05581j] [PMID: 21850326]
[312]
Hung, D.T. Small-molecule inhibitor of Vibrio cholerae virulence and intestinal colonization. Science (80-. ), 2005, 310, 670-674.
[313]
Shakhnovich, E.A.; Hung, D.T.; Pierson, E.; Lee, K.; Mekalanos, J.J. Virstatin inhibits dimerization of the transcriptional activator ToxT. Proc. Natl. Acad. Sci. USA, 2007, 104(7), 2372-2377.
[http://dx.doi.org/10.1073/pnas.0611643104] [PMID: 17283330]
[314]
Kim, S-H.; Shin, D-S.; Oh, M-N.; Chung, S-C.; Lee, J-S.; Oh, K-B. Inhibition of the bacterial surface protein anchoring transpeptidase sortase by isoquinoline alkaloids. Biosci. Biotechnol. Biochem., 2004, 68(2), 421-424.
[http://dx.doi.org/10.1271/bbb.68.421] [PMID: 14981307]
[315]
Kudryavtsev, K.V.; Bentley, M.L.; McCafferty, D.G. Probing of the cis-5-phenyl proline scaffold as a platform for the synthesis of mechanism-based inhibitors of the Staphylococcus aureus sortase SrtA isoform. Bioorg. Med. Chem., 2009, 17(7), 2886-2893.
[http://dx.doi.org/10.1016/j.bmc.2009.02.008] [PMID: 19269184]
[316]
Jang, K.H.; Chung, S-C.; Shin, J.; Lee, S-H.; Kim, T-I.; Lee, H-S.; Oh, K-B. Aaptamines as sortase A inhibitors from the tropical sponge Aaptos. Bioorg. Med. Chem. Lett., 2007, 17(19), 5366-5369.
[http://dx.doi.org/10.1016/j.bmcl.2007.08.007] [PMID: 17716892]
[317]
Oh, K-B.; Mar, W.; Kim, S.; Kim, J-Y.; Oh, M-N.; Kim, J-G.; Shin, D.; Sim, C.J.; Shin, J. Bis(indole) alkaloids as sortase A inhibitors from the sponge Spongosorites sp. Bioorg. Med. Chem. Lett., 2005, 15(22), 4927-4931.
[http://dx.doi.org/10.1016/j.bmcl.2005.08.021] [PMID: 16154746]
[318]
Sun, D.; Courtney, H.S.; Beachey, E.H. Berberine sulfate blocks adherence of Streptococcus pyogenes to epithelial cells, fibronectin, and hexadecane. Antimicrob. Agents Chemother., 1988, 32(9), 1370-1374.
[http://dx.doi.org/10.1128/AAC.32.9.1370] [PMID: 3058020]
[319]
Wang, X.; Qiu, S.; Yao, X.; Tang, T.; Dai, K.; Zhu, Z. Berberine inhibits Staphylococcus epidermidis adhesion and biofilm formation on the surface of titanium alloy. J. Orthop. Res., 2009, 27(11), 1487-1492.
[http://dx.doi.org/10.1002/jor.20917] [PMID: 19472377]
[320]
Wang, X.; Yao, X.; Zhu, Z.; Tang, T.; Dai, K.; Sadovskaya, I.; Flahaut, S.; Jabbouri, S. Effect of berberine on Staphylococcus epidermidis biofilm formation. Int. J. Antimicrob. Agents, 2009, 34(1), 60-66.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.10.033] [PMID: 19157797]
[321]
Magesh, H.; Kumar, A.; Alam, A. Priyam; Sekar, U.; Sumantran, V.N.; Vaidyanathan, R. Identification of natural compounds which inhibit biofilm formation in clinical isolates of Klebsiella pneumoniae. Indian J. Exp. Biol., 2013, 51, 764-772.
[PMID: 24377137]
[322]
Sun, D.; Abraham, S.N.; Beachey, E.H. Influence of berberine sulfate on synthesis and expression of Pap fimbrial adhesin in uropathogenic Escherichia coli. Antimicrob. Agents Chemother., 1988, 32(8), 1274-1277.
[http://dx.doi.org/10.1128/AAC.32.8.1274] [PMID: 2903716]
[323]
Liaw, S-J.; Lai, H-C.; Wang, W-B. Modulation of swarming and virulence by fatty acids through the RsbA protein in Proteus mirabilis. Infect. Immun., 2004, 72(12), 6836-6845.
[http://dx.doi.org/10.1128/IAI.72.12.6836-6845.2004] [PMID: 15557604]
[324]
Qiu, J.; Luo, M.; Dong, J.; Wang, J.; Li, H.; Wang, X.; Deng, Y.; Feng, H.; Deng, X. Menthol diminishes Staphylococcus aureus virulence-associated extracellular proteins expression. Appl. Microbiol. Biotechnol., 2011, 90(2), 705-712.
[http://dx.doi.org/10.1007/s00253-011-3122-9] [PMID: 21287163]
[325]
Husain, F.M.; Ahmad, I.; Khan, M.S.; Ahmad, E.; Tahseen, Q.; Khan, M.S.; Alshabib, N.A. Sub-MICs of Mentha piperita essential oil and menthol inhibits AHL mediated quorum sensing and biofilm of Gram-negative bacteria. Front. Microbiol., 2015, 6, 420.
[http://dx.doi.org/10.3389/fmicb.2015.00420] [PMID: 26029178]
[326]
Pejin, B.; Ciric, A.; Glamoclija, J.; Nikolic, M.; Sokovic, M. In vitro anti-quorum sensing activity of phytol. Nat. Prod. Res., 2015, 29(4), 374-377.
[http://dx.doi.org/10.1080/14786419.2014.945088] [PMID: 25103916]
[327]
Gilabert, M.; Marcinkevicius, K.; Andujar, S.; Schiavone, M.; Arena, M.E.; Bardón, A. Sesqui- and triterpenoids from the liverwort Lepidozia chordulifera inhibitors of bacterial biofilm and elastase activity of human pathogenic bacteria. Phytomedicine, 2015, 22(1), 77-85.
[http://dx.doi.org/10.1016/j.phymed.2014.10.006] [PMID: 25636875]
[328]
Ren, D.; Zuo, R.; González Barrios, A.F.; Bedzyk, L.A.; Eldridge, G.R.; Pasmore, M.E.; Wood, T.K. Differential gene expression for investigation of Escherichia coli biofilm inhibition by plant extract ursolic acid. Appl. Environ. Microbiol., 2005, 71(7), 4022-4034.
[http://dx.doi.org/10.1128/AEM.71.7.4022-4034.2005] [PMID: 16000817]
[329]
Wallock-Richards, D.J.; Marles-Wright, J.; Clarke, D.J.; Maitra, A.; Dodds, M.; Hanley, B.; Campopiano, D.J. Molecular basis of Streptococcus mutans sortase A inhibition by the flavonoid natural product trans-chalcone. Chem. Commun. (Camb.), 2015, 51(52), 10483-10485.
[http://dx.doi.org/10.1039/C5CC01816A] [PMID: 26029850]
[330]
Wang, D.; Jin, Q.; Xiang, H.; Wang, W.; Guo, N.; Zhang, K.; Tang, X.; Meng, R.; Feng, H.; Liu, L.; Wang, X.; Liang, J.; Shen, F.; Xing, M.; Deng, X.; Yu, L. Transcriptional and functional analysis of the effects of magnolol: Inhibition of autolysis and biofilms in Staphylococcus aureus. PLoS One, 2011, 6(10), e26833.
[http://dx.doi.org/10.1371/journal.pone.0026833] [PMID: 22046374]
[331]
Xiang, H.; Qiu, J-Z.; Wang, D-C.; Jiang, Y-S.; Xia, L-J.; Deng, X-M. Influence of magnolol on the secretion of α-toxin by Staphylococcus aureus. Molecules, 2010, 15(3), 1679-1689.
[http://dx.doi.org/10.3390/molecules15031679] [PMID: 20336007]
[332]
Borges, A.; Serra, S.; Cristina Abreu, A.; Saavedra, M.J.; Salgado, A.; Simões, M. Evaluation of the effects of selected phytochemicals on quorum sensing inhibition and in vitro cytotoxicity. Biofouling, 2014, 30(2), 183-195.
[http://dx.doi.org/10.1080/08927014.2013.852542] [PMID: 24344870]
[333]
Truchado, P.; Tomás-Barberán, F.A.; Larrosa, M.; Allende, A. Food phytochemicals act as quorum sensing inhibitors reducing production and/or degrading autoinducers of Yersinia enterocolitica and Erwinia carotovora. Food Control, 2012, 24, 78-85.
[http://dx.doi.org/10.1016/j.foodcont.2011.09.006]
[334]
Dusane, D.H.; O’May, C.; Tufenkji, N. Effect of tannic and gallic acids alone or in combination with carbenicillin or tetracycline on Chromobacterium violaceum CV026 growth, motility, and biofilm formation. Can. J. Microbiol., 2015, 61(7), 487-494.
[http://dx.doi.org/10.1139/cjm-2015-0101] [PMID: 26039903]
[335]
Borges, A.; Saavedra, M.J.; Simões, M. The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria. Biofouling, 2012, 28(7), 755-767.
[http://dx.doi.org/10.1080/08927014.2012.706751] [PMID: 22823343]
[336]
Qiu, J.; Feng, H.; Lu, J.; Xiang, H.; Wang, D.; Dong, J.; Wang, J.; Wang, X.; Liu, J.; Deng, X. Eugenol reduces the expression of virulence-related exoproteins in Staphylococcus aureus. Appl. Environ. Microbiol., 2010, 76(17), 5846-5851.
[http://dx.doi.org/10.1128/AEM.00704-10] [PMID: 20639367]
[337]
Yadav, M.K.; Chae, S-W. Im, G.J.; Chung, J.W.; Song, J.J. Eugenol: A phyto-compound effective against methicillin-resistant and methicillin-sensitive Staphylococcus aureus clinical strain biofilms. PLoS One, 2015, 10(3), e0119564.
[http://dx.doi.org/10.1371/journal.pone.0119564] [PMID: 25781975]
[338]
Kim, Y-G.; Lee, J-H.; Kim, S-I.; Baek, K-H.; Lee, J. Cinnamon bark oil and its components inhibit biofilm formation and toxin production. Int. J. Food Microbiol., 2015, 195, 30-39.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2014.11.028] [PMID: 25500277]
[339]
Zhou, L.; Zheng, H.; Tang, Y.; Yu, W.; Gong, Q. Eugenol inhibits quorum sensing at sub-inhibitory concentrations. Biotechnol. Lett., 2013, 35(4), 631-637.
[http://dx.doi.org/10.1007/s10529-012-1126-x] [PMID: 23264268]
[340]
Lee, K.; Lee, J-H.; Ryu, S.Y.; Cho, M.H.; Lee, J. Stilbenes reduce Staphylococcus aureus hemolysis, biofilm formation, and virulence. Foodborne Pathog. Dis., 2014, 11(9), 710-717.
[http://dx.doi.org/10.1089/fpd.2014.1758] [PMID: 25007234]
[341]
Cho, H.S.; Lee, J-H.; Ryu, S.Y.; Joo, S.W.; Cho, M.H.; Lee, J. Inhibition of Pseudomonas aeruginosa and Escherichia coli O157:H7 biofilm formation by plant metabolite ε-viniferin. J. Agric. Food Chem., 2013, 61(29), 7120-7126.
[http://dx.doi.org/10.1021/jf4009313] [PMID: 23819562]
[342]
Alvarez, Mar. V.; Moreira, Mar. R.; Ponce, A. Antiquorum sensing and antimicrobial activity of natural agents with potential use in food. J. Food Saf., 2012, 32, 379-387.
[http://dx.doi.org/10.1111/j.1745-4565.2012.00390.x]
[343]
Hancock, V.; Dahl, M.; Vejborg, R.M.; Klemm, P. Dietary plant components ellagic acid and tannic acid inhibit Escherichia coli biofilm formation. J. Med. Microbiol., 2010, 59(Pt 4), 496-498.
[http://dx.doi.org/10.1099/jmm.0.013680-0] [PMID: 19959627]
[344]
Vikram, A.; Jayaprakasha, G.K.; Uckoo, R.M.; Patil, B.S. Inhibition of Escherichia coli O157:H7 motility and biofilm by β-sitosterol glucoside. Biochim. Biophys. Acta, 2013, 1830(11), 5219-5228.
[http://dx.doi.org/10.1016/j.bbagen.2013.07.022] [PMID: 23891936]
[345]
Kim, S-H.; Shin, D-S.; Oh, M-N.; Chung, S-C.; Lee, J-S.; Chang, I-M.; Oh, K-B. Inhibition of sortase, a bacterial surface protein anchoring transpeptidase, by β-sitosterol-3-O-glucopyranoside from Fritillaria verticillata. Biosci. Biotechnol. Biochem., 2003, 67(11), 2477-2479.
[http://dx.doi.org/10.1271/bbb.67.2477] [PMID: 14646214]
[346]
Ding, X.; Yin, B.; Qian, L.; Zeng, Z.; Yang, Z.; Li, H.; Lu, Y.; Zhou, S. Screening for novel quorum-sensing inhibitors to interfere with the formation of Pseudomonas aeruginosa biofilm. J. Med. Microbiol., 2011, 60(Pt 12), 1827-1834.
[http://dx.doi.org/10.1099/jmm.0.024166-0] [PMID: 21852522]
[347]
Sendamangalam, V.; Choi, O.K.; Kim, D.; Seo, Y. The anti-biofouling effect of polyphenols against Streptococcus mutans. Biofouling, 2011, 27(1), 13-19.
[http://dx.doi.org/10.1080/08927014.2010.535897] [PMID: 21104475]
[348]
Vikram, A.; Jesudhasan, P.R.; Jayaprakasha, G.K.; Pillai, B.S.; Patil, B.S. Grapefruit bioactive limonoids modulate E. coli O157:H7 TTSS and biofilm. Int. J. Food Microbiol., 2010, 140(2-3), 109-116.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2010.04.012] [PMID: 20471125]
[349]
Pejin, B.; Ciric, A.; Markovic, J.D.; Glamoclija, J.; Nikolic, M.; Stanimirovic, B.; Sokovic, M. Quercetin potently reduces biofilm formation of the strain Pseudomonas aeruginosa PAO1 in vitro. Curr. Pharm. Biotechnol., 2015, 16(8), 733-737.
[http://dx.doi.org/10.2174/1389201016666150505121951] [PMID: 25941888]
[350]
Cho, H.S.; Lee, J-H.; Cho, M.H.; Lee, J. Red wines and flavonoids diminish Staphylococcus aureus virulence with anti-biofilm and anti-hemolytic activities. Biofouling, 2015, 31(1), 1-11.
[http://dx.doi.org/10.1080/08927014.2014.991319] [PMID: 25535776]
[351]
Kang, S.S.; Kim, J-G.; Lee, T-H.; Oh, K-B. Flavonols inhibit sortases and sortase-mediated Staphylococcus aureus clumping to fibrinogen. Biol. Pharm. Bull., 2006, 29(8), 1751-1755.
[http://dx.doi.org/10.1248/bpb.29.1751] [PMID: 16880637]
[352]
Lee, J-H.; Park, J-H.; Cho, H.S.; Joo, S.W.; Cho, M.H.; Lee, J. Anti-biofilm activities of quercetin and tannic acid against Staphylococcus aureus. Biofouling, 2013, 29(5), 491-499.
[http://dx.doi.org/10.1080/08927014.2013.788692] [PMID: 23668380]
[353]
Mattar, C.; Edwards, S.; Baraldi, E.; Hood, J. An overview of the global antimicrobial resistance research and development hub and the current landscape. Curr. Opin. Microbiol., 2020, 57, 56-61.
[http://dx.doi.org/10.1016/j.mib.2020.06.009] [PMID: 32777653]
[354]
Durand, G.A.; Raoult, D.; Dubourg, G. Antibiotic discovery: History, methods and perspectives. Int. J. Antimicrob. Agents, 2019, 53(4), 371-382.
[http://dx.doi.org/10.1016/j.ijantimicag.2018.11.010] [PMID: 30472287]
[355]
Maitre, T.; Aubry, A.; Jarlier, V.; Robert, J.; Veziris, N.; Bernard, C.; Sougakoff, W.; Brossier, F.; Cambau, E.; Mougari, F.; Raskine, L. Multidrug and extensively drug-resistant tuberculosis. Med. Mal. Infect., 2017, 47(1), 3-10.
[http://dx.doi.org/10.1016/j.medmal.2016.07.006] [PMID: 27637852]
[356]
Schaenzer, A.J.; Wright, G.D. Antibiotic resistance by enzymatic modification of antibiotic targets. Trends Mol. Med., 2020, 26(8), 768-782.
[http://dx.doi.org/10.1016/j.molmed.2020.05.001] [PMID: 32493628]
[357]
Islam, M.M.; Hameed, H.M.A.; Mugweru, J.; Chhotaray, C.; Wang, C.; Tan, Y.; Liu, J.; Li, X.; Tan, S.; Ojima, I.; Yew, W.W.; Nuermberger, E.; Lamichhane, G.; Zhang, T. Drug resistance mechanisms and novel drug targets for tuberculosis therapy. J. Genet. Genomics, 2017, 44(1), 21-37.
[http://dx.doi.org/10.1016/j.jgg.2016.10.002] [PMID: 28117224]
[358]
Arenz, S.; Wilson, D.N. Blast from the past: Reassessing forgotten translation inhibitors, antibiotic selectivity, and resistance mechanisms to aid drug development. Mol. Cell, 2016, 61(1), 3-14.
[http://dx.doi.org/10.1016/j.molcel.2015.10.019] [PMID: 26585390]
[359]
Lewis, K. The science of antibiotic discovery. Cell, 2020, 181(1), 29-45.
[http://dx.doi.org/10.1016/j.cell.2020.02.056] [PMID: 32197064]
[360]
Hutchings, M.I.; Truman, A.W.; Wilkinson, B. Antibiotics: past. present and future. Curr. Opin. Microbiol., 2019, 51, 72-80.
[361]
Nguta, J.M.; Appiah-Opong, R.; Nyarko, A.K.; Yeboah-Manu, D.; Addo, P.G.A. Current perspectives in drug discovery against tuberculosis from natural products. Int. J. Mycobacteriol., 2015, 4(3), 165-183.
[http://dx.doi.org/10.1016/j.ijmyco.2015.05.004] [PMID: 27649863]
[362]
Pawlowski, A.C.; Johnson, J.W.; Wright, G.D. Evolving medicinal chemistry strategies in antibiotic discovery. Curr. Opin. Biotechnol., 2016, 42, 108-117.
[http://dx.doi.org/10.1016/j.copbio.2016.04.006] [PMID: 27116217]
[363]
Bollenbach, T. Antimicrobial interactions: Mechanisms and implications for drug discovery and resistance evolution. Curr. Opin. Microbiol., 2015, 27, 1-9.
[http://dx.doi.org/10.1016/j.mib.2015.05.008] [PMID: 26042389]
[364]
Espitia-navarro, H.F.; Rishishwar, L.; Mayer, L.W.; Jordan, I.K. Hector Espitia-Navarro thesis defense. Bioinformatics, 2020, 2020, 267-282.
[365]
Vatlin, A.A.; Bekker, O.B.; Lysenkova, L.N.; Shchekotikhin, A.E.; Danilenko, V.N. Bioinformatics analysis of genes of Streptomyces xinghaiensis (fradiae) ATCC 19609 with a focus on mutations conferring resistance to oligomycin A and its derivatives. J. Glob. Antimicrob. Resist., 2020, 22, 47-53.
[http://dx.doi.org/10.1016/j.jgar.2020.01.026] [PMID: 32061812]
[366]
Alswaji, A.; Alghoribi, M.; Doumith, M.; Balkhy, H. Bioinformatics analysis pipeline of whole-genome sequence data to investigate antimicrobial resistance. J. Infect. Public Health, 2019, 12, 149.
[http://dx.doi.org/10.1016/j.jiph.2018.10.042]
[367]
McArthur, A.G.; Wright, G.D. Bioinformatics of antimicrobial resistance in the age of molecular epidemiology. Curr. Opin. Microbiol., 2015, 27, 45-50.
[http://dx.doi.org/10.1016/j.mib.2015.07.004] [PMID: 26241506]
[368]
Chang, E.H.; Harford, J.B.; Eaton, M.A.W.; Boisseau, P.M.; Dube, A.; Hayeshi, R.; Swai, H.; Lee, D.S. Nanomedicine: Past, present and future - A global perspective. Biochem. Biophys. Res. Commun., 2015, 468(3), 511-517.
[http://dx.doi.org/10.1016/j.bbrc.2015.10.136] [PMID: 26518648]
[369]
Malaekeh-Nikouei, B.; Fazly Bazzaz, B.S.; Mirhadi, E.; Tajani, A.S.; Khameneh, B. The role of nanotechnology in combating biofilm-based antibiotic resistance. J. Drug Deliv. Sci. Technol., 2020, 60, 101880.
[http://dx.doi.org/10.1016/j.jddst.2020.101880]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy