Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Fullerenes For Anticancer Drug Targeting: Teaching An Old Dog A New Trick

Author(s): Shikha Dhiman, Amardeep Kaur and Manu Sharma*

Volume 22, Issue 22, 2022

Published on: 10 August, 2022

Page: [2864 - 2880] Pages: 17

DOI: 10.2174/1389557522666220317145544

Price: $65

Abstract

Fullerenes are the allotropic form of carbon consisting of a cage-like structure due to which they have attained special attention from researchers since their discovery in 1985. The unique chemical and physical properties of fullerene have attracted researchers to develop a variety of its biomedical applications. The closed cage structure of fullerenes can be used for various drug delivery applications and can also act as a medium for controlled release formulations. The development of targeted anticancer drug and drug delivery systems is one of the most challenging fields, which is widely studied and researched. In this review, we aim to provide a comprehensive review on the most recent advances in fullerenes as targeted anticancer drug delivery systems along with their therapeutic applications and challenges, thus serving the pharmaceutical and biotechnology community.

Keywords: Fullerenes, drug delivery, antitumor, targeted cytotoxic conjugates, anticancer, therapeutic applications.

Graphical Abstract
[1]
Nakanishi, W.; Minami, K.; Shrestha, L.K.; Ji, Q.; Hill, J.P.; Ariga, K. Bioactive nanocarbon assemblies: Nano architectonics and applications. Nano Today, 2014, 9, 378-394.
[http://dx.doi.org/10.1016/j.nantod.2014.05.002]
[2]
Semenov, K.N.; Charykov, N.A.; Postnov, V.N.; Sharoyko, V.V.; Vorotyntsev, I.V.; Galagudza, M.M. Fullerenols: Physicochemical properties and applications. Prog. Solid State Chem., 2016, 44, 59-74.
[http://dx.doi.org/10.1016/j.progsolidstchem.2016.04.002]
[3]
Zai-Qun, L. Modification on Fullerene. Curr. Org. Synth., 2017, 14(7), 999-1021.
[4]
Barman, H.; Das, S.K.; Roy, A. Future of nano science in technology for prosperity: A policy paper. Nanosci Technol., 2018, 5(1), 1-5.
[http://dx.doi.org/10.15226/2374-8141/5/1/00151]
[5]
Manikandan, N.; Kumar, S.V.P.; Murugan, S.; Rathis, G.; Saran, K.V.; Shabariganesh, T.K. Carbon nanotubes and their properties-The review. Mater. Today Proc., 2021, 47(14), 4682-4685.
[6]
Troshin, P.A.; Lyubovskaya, R.N. Organic chemistry of fullerenes: the major reactions, types of fullerene derivatives and prospects for practical use. Russ. Chem. Rev., 2008, 77, 323-369.
[http://dx.doi.org/10.1070/RC2008v077n04ABEH003770]
[7]
Lodermeyer, F.; Costa, R.D.; Guldi, D.M. Implementation of Single-Walled Carbon Nanohorns into Solar Cell Schemes. Adv. Energy Mater., 2017, 1601883.
[http://dx.doi.org/10.1002/aenm.201601883]
[8]
Clancy, A.J.; Bayazit, M.K.; Hodge, S.A.; Skipper, N.T.; Howard, C.A.; Shaffer, M.S.P. Charged carbon nanomaterials: Redox chemistries of fullerenes, carbon nanotubes, and graphenes. Chem. Rev., 2018, 118(16), 7363-7408.
[http://dx.doi.org/10.1021/acs.chemrev.8b00128] [PMID: 30109931]
[9]
Panwar, N.; Soehartono, A.M.; Chan, K.K.; Zeng, S.; Xu, G.; Qu, J.; Coquet, P.; Yong, K.T.; Chen, X. Nanocarbons for biology and medicine: Sensing, imaging, and drug delivery. Chem. Rev., 2019, 119(16), 9559-9656.
[http://dx.doi.org/10.1021/acs.chemrev.9b00099] [PMID: 31287663]
[10]
Montellano, A.; Da Ros, T.; Bianco, A.; Prato, M. Fullerene C₆₀ as a multifunctional system for drug and gene delivery. Nanoscale, 2011, 3(10), 4035-4041.
[http://dx.doi.org/10.1039/c1nr10783f] [PMID: 21897967]
[11]
Georgakilas, V.; Pellarini, F.; Prato, M.; Guldi, D.M.; Melle-Franco, M.; Zerbetto, F. Supramolecular self-assembled fullerene nanostructures. Proc. Natl. Acad. Sci. USA, 2002, 99(8), 5075-5080.
[http://dx.doi.org/10.1073/pnas.072006599] [PMID: 11959958]
[12]
Nimibofa, A.; Newton, E.A.; Cyprain, A.Y.; Donbebe, W. Fullerenes: Synthesis and Applications. J. Mater. Sci. Res., 2018, 7(3), 22-36.
[http://dx.doi.org/10.5539/jmsr.v7n3p22]
[13]
Yi, H.; Zeng, G.; Lai, C. Environment-friendly fullerene separation methods. Chem. Eng. J., 2017, 330, 134-145.
[http://dx.doi.org/10.1016/j.cej.2017.07.143]
[14]
Berkai, Z.; Daoudi, M.; Mendil, N.; Belghachi, A. Monte Carlo simulation of electric conductivity for pure and doping fullerene (C60). Phys. Lett. A, 2019, 383(17), 2090-2092.
[http://dx.doi.org/10.1016/j.physleta.2019.04.011]
[15]
Rondags, A.; Yuen, W.Y.; Jonkman, M.F.; Horváth, B. Fullerene C60 with cytoprotective and cytotoxic potential: Prospects as a novel treatment agent in Dermatology? Exp. Dermatol., 2017, 26(3), 220-224.
[http://dx.doi.org/10.1111/exd.13172] [PMID: 27541937]
[16]
Gupta, S.; Basant, N. Predictive modeling: Solubility of C60 and C70 fullerenes in diverse solvents. Chemosphere, 2018, 201, 361-369.
[http://dx.doi.org/10.1016/j.chemosphere.2018.02.174] [PMID: 29529565]
[17]
Semenova, K.N.; Andrusenkoa, E.V.; Charykov, N.A. Carboxylated fullerenes: Physico-chemical properties and potential applications. Prog. Solid State Chem., 2017, 47–48, 19-36.
[http://dx.doi.org/10.1016/j.progsolidstchem.2017.09.001]
[18]
Hsieh, F.Y.; Zhilenkov, A.V.; Voronov, I.I.; Khakina, E.A.; Mischenko, D.V.; Troshin, P.A.; Hsu, S.H. Water-soluble fullerene derivatives as brain medicine: surface chemistry determines if they are neuroprotective and antitumor. ACS Appl. Mater. Interfaces, 2017, 9(13), 11482-11492.
[http://dx.doi.org/10.1021/acsami.7b01077] [PMID: 28263053]
[19]
Kausar, A. Advances in polymer/fullerene nanocomposite: A review on essential features and applications. Polym. Plast. Technol. Eng., 2017, 56(6), 594-605.
[http://dx.doi.org/10.1080/03602559.2016.1233278]
[20]
Rather, J.A.; De Wael, K. Fullerene-C60 sensor for ultra-high sensitive detection of bisphenol-A and its treatment by green technology. Sens. Actuators B Chem., 2013, 176, 110-117.
[http://dx.doi.org/10.1016/j.snb.2012.08.081]
[21]
Torres, V.M.; Posa, M.; Srdjenovic, B.; Simplício, A.L. Solubilization of fullerene C60 in micellar solutions of different solubilizers. Colloids Surf. B Biointerfaces, 2011, 82(1), 46-53.
[http://dx.doi.org/10.1016/j.colsurfb.2010.08.012] [PMID: 20828997]
[22]
Cai, W.; Chen, C.H.; Chen, N.; Echegoyen, L. Fullerenes as nanocontainers that stabilize unique actinide species inside: Structures, formation, and reactivity. Acc. Chem. Res., 2019, 52(7), 1824-1833.
[http://dx.doi.org/10.1021/acs.accounts.9b00229] [PMID: 31260256]
[23]
Raza, K.; Kumar, D.; Kiran, C.; Kumar, M.; Guru, S.K.; Kumar, P.; Arora, S.; Sharma, G.; Bhushan, S.; Katare, O.P. Conjugation of docetaxel with multiwalled carbon nanotubes and codelivery with piperine: Implications on pharmacokinetic profile and anticancer activity. Mol. Pharm., 2016, 13(7), 2423-2432.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00183] [PMID: 27182646]
[24]
Liu, Y.; Jiao, F.; Qiu, Y.; Li, W.; Qu, Y.; Tian, C.; Li, Y.; Bai, R.; Lao, F.; Zhao, Y.; Chai, Z.; Chen, C. Immunostimulatory properties and enhanced TNF- alpha mediated cellular immunity for tumor therapy by C60(OH)20 nanoparticles. Nanotechnology, 2009, 20(41), 415102.
[http://dx.doi.org/10.1088/0957-4484/20/41/415102] [PMID: 19755733]
[25]
Jiao, F.; Liu, Y.; Qu, Y.; Li, W.; Zhou, G.Q.; Ge, C.C. Studies on anti-tumor and antimetastatic activities of fullerenol in a mouse breast cancer model. Carbon, 2010, 48, 2231-2243.
[http://dx.doi.org/10.1016/j.carbon.2010.02.032]
[26]
Tang, J.; Chen, Z.; Sun, B.; Dong, J.; Liu, J.; Zhou, H.; Wang, L.; Bai, R.; Miao, Q.; Zhao, Y.; Chen, C.; Liu, Y. Polyhydroxylated fullerenols regulate macrophage for cancer adoptive immunotherapy and greatly inhibit the tumor metastasis. Nanomedicine, 2016, 12(4), 945-954.
[http://dx.doi.org/10.1016/j.nano.2015.11.021] [PMID: 26733256]
[27]
Yang, D.; Zhao, Y.; Guo, H.; Li, Y.; Tewary, P.; Xing, G.; Hou, W.; Oppenheim, J.J.; Zhang, N. [Gd@C(82)(OH)(22)](n) nanoparticles induce dendritic cell maturation and activate Th1 immune responses. ACS Nano, 2010, 4(2), 1178-1186.
[http://dx.doi.org/10.1021/nn901478z] [PMID: 20121217]
[28]
Kang, S.G.; Zhou, G.; Yang, P.; Liu, Y.; Sun, B.; Huynh, T.; Meng, H.; Zhao, L.; Xing, G.; Chen, C.; Zhao, Y.; Zhou, R. Molecular mechanism of pancreatic tumor metastasis inhibition by Gd@C82(OH)22 and its implication for de novo design of nanomedicine. Proc. Natl. Acad. Sci. USA, 2012, 109(38), 15431-15436.
[http://dx.doi.org/10.1073/pnas.1204600109] [PMID: 22949663]
[29]
Bhakta, P.; Barthunia, B. Fullerene and its applications: A review. J. Indian Acad. Oral Med. Radiol., 2020, 32, 159-163.
[http://dx.doi.org/10.4103/jiaomr.jiaomr_191_19]
[30]
Tatjana, A.S.; Vitaly, K.K. Fullerene trend in biomedicine: Expectations and reality. Res. Med. Eng. Sci., 2019, 8(3), 877-879.
[31]
Wang, J.; Chen, C.; Li, B.; Yu, H.; Zhao, Y.; Sun, J.; Li, Y.; Xing, G.; Yuan, H.; Tang, J.; Chen, Z.; Meng, H.; Gao, Y.; Ye, C.; Chai, Z.; Zhu, C.; Ma, B.; Fang, X.; Wan, L. Antioxidative function and biodistribution of [Gd@C82(OH)22]n nanoparticles in tumor-bearing mice. Biochem. Pharmacol., 2006, 71(6), 872-881.
[http://dx.doi.org/10.1016/j.bcp.2005.12.001] [PMID: 16436273]
[32]
Meng, J.; Xing, J.; Ma, X.; Cao, W.; Lu, J.; Wang, Y.; Gao, X.; Sun, B.; Liang, X.; Zhao, Y. Metallofullerol nanoparticles with low toxicity inhibit tumor growth by induction of G0/G1 arrest. Nanomedicine (Lond.), 2013, 8(2), 203-213.
[http://dx.doi.org/10.2217/nnm.12.95] [PMID: 22934979]
[33]
Ye, S.; Chen, M.; Jiang, Y.; Chen, M.; Zhou, T.; Wang, Y.; Hou, Z.; Ren, L. Polyhydroxylated fullerene attenuates oxidative stress-induced apoptosis via a fortifying Nrf2-regulated cellular antioxidant defence system. Int. J. Nanomedicine, 2014, 9, 2073-2087.
[http://dx.doi.org/10.2147/IJN.S56973] [PMID: 24812508]
[34]
Ashcroft, J.M.; Tsyboulski, D.A.; Hartman, K.B.; Zakharian, T.Y.; Marks, J.W.; Weisman, R.B.; Rosenblum, M.G.; Wilson, L.J. Fullerene (C60) immunoconjugates: interaction of water-soluble C60 derivatives with the murine anti-gp240 melanoma antibody. Chem. Commun. (Camb.), 2006, (28), 3004-3006.
[http://dx.doi.org/10.1039/b601717g] [PMID: 16832518]
[35]
Berger, C.S.; Wilson, L.J.; Bolskar, R.D.; Collier, J.; Rosenblum, M.G.; Marks, J.W. Fullerene immunoconjugates for cancer imaging and treatment. In: 217th Meeting of the Electrochemical Society, Apr 25-30Vancouver, BC, Canada2010, p. 1539.
[36]
Berger, C.S.; Marks, J.W.; Bolskar, R.D.; Rosenblum, M.G.; Wilson, L.J. cell internalization studies of gadofullerene-(zme-018) immunoconjugates into a375m melanoma cells. Transl. Oncol., 2011, 4(6), 350-354.
[http://dx.doi.org/10.1593/tlo.11157] [PMID: 22190999]
[37]
Xu, Y.; Zhu, J.; Xiang, K.; Li, Y.; Sun, R.; Ma, J.; Sun, H.; Liu, Y. Synthesis and immunomodulatory activity of [60]fullerene-tuftsin conjugates. Biomaterials, 2011, 32(36), 9940-9949.
[http://dx.doi.org/10.1016/j.biomaterials.2011.09.022] [PMID: 21937103]
[38]
Bunz, H.; Plankenhorn, S.; Klein, R. Effect of buckminsterfullerenes on cells of the innate and adaptive immune system: An in vitro study with human peripheral blood mononuclear cells. Int. J. Nanomedicine, 2012, 7, 4571-4580.
[PMID: 22942641]
[39]
Tkach, A.V.; Yanamala, N.; Stanley, S.; Shurin, M.R.; Shurin, G.V.; Kisin, E.R.; Murray, A.R.; Pareso, S.; Khaliullin, T.; Kotchey, G.P.; Castranova, V.; Mathur, S.; Fadeel, B.; Star, A.; Kagan, V.E.; Shvedova, A.A. Graphene oxide, but not fullerenes, targets immunoproteasomes and suppresses antigen presentation by dendritic cells. Small, 2013, 9(9-10), 1686-1690.
[http://dx.doi.org/10.1002/smll.201201546] [PMID: 22887961]
[40]
Sofou, P.; Elemes, Y.; Panou-Pomonis, E.; Stavrakoudis, A.; Tsikaris, V.; Sakarellos, C. Synthesis of a proline-rich [60]fullerene peptide with potential biological activity. Tetrahedron, 2004, 60, 2823-2828.
[http://dx.doi.org/10.1016/j.tet.2004.01.064]
[41]
Bianco, A.; Pantarotto, D.; Hoebeke, J.; Briand, J.P.; Prato, M. Solid-phase synthesis and characterization of a novel fullerene-peptide derived from histone H3. Org. Biomol. Chem., 2003, 1(23), 4141-4143.
[http://dx.doi.org/10.1039/b311505d] [PMID: 14685316]
[42]
Braun, M.; Camps, X.; Vostrowsky, O.; Hirsch, A.; Endre, E.; Bayerl, T.M. Synthesis of a biotinated lipofullerene as a new type of transmembrane anchor. Eur. J. Org. Chem., 2000, 1171-1181.
[http://dx.doi.org/10.1002/1099-0690(200004)2000:7<1173:AID-EJOC1173>3.0.CO;2-I]
[43]
Capaccio, M.; Gavalas, V.G.; Meier, M.S.; Anthony, J.E.; Bachas, L.G. Coupling biomolecules to fullerenes through a molecular adapter. Bioconjug. Chem., 2005, 16(2), 241-244.
[http://dx.doi.org/10.1021/bc049861d] [PMID: 15769075]
[44]
Yamada, M.; Harada, K.; Maeda, Y.; Hasegawa, T. A versatile approach to functionalisation of [60]fullerene using 3-trifluoromethyl-3-phenyldiazirine derivatives as photolabelling reagents. New J. Chem., 2013, 37, 3762.
[http://dx.doi.org/10.1039/c3nj00796k]
[45]
Kogan, G.; Soltés, L.; Stern, R.; Gemeiner, P. Hyaluronic acid: A natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol. Lett., 2007, 29(1), 17-25.
[http://dx.doi.org/10.1007/s10529-006-9219-z] [PMID: 17091377]
[46]
Zhong, Y.; Zhang, J.; Cheng, R.; Deng, C.; Meng, F.; Xie, F.; Zhong, Z. Reversibly crosslinked hyaluronic acid nanoparticles for active targeting and intelligent delivery of doxorubicin to drug resistant CD44+ human breast tumor xenografts. J. Control. Release, 2015, 205, 144-154.
[http://dx.doi.org/10.1016/j.jconrel.2015.01.012] [PMID: 25596560]
[47]
Ito, T.; Iida-Tanaka, N.; Niidome, T.; Kawano, T.; Kubo, K.; Yoshikawa, K.; Sato, T.; Yang, Z.; Koyama, Y. Hyaluronic acid and its derivative as a multi-functional gene expression enhancer: protection from non-specific interactions, adhesion to targeted cells, and transcriptional activation. J. Control. Release, 2006, 112(3), 382-388.
[http://dx.doi.org/10.1016/j.jconrel.2006.03.013] [PMID: 16647780]
[48]
Kwag, D.S.; Park, K.; Oh, K.T.; Lee, E.S. Hyaluronated fullerenes with photoluminescent and antitumoral activity. Chem. Commun. (Camb.), 2013, 49(3), 282-284.
[http://dx.doi.org/10.1039/C2CC36596K] [PMID: 23174913]
[49]
Zhang, H.; Hou, L.; Jiao, X.; Ji, Y.; Zhu, X.; Zhang, Z. Transferrin-mediated fullerenes nanoparticles as Fe2þ-dependent drug vehicles for synergistic anti-tumor efficacy, Transferrin-mediated fullerenes nanoparticles as Fe2þ-dependent drug vehicles for synergistic anti-tumor efficacy. Biomaterials, 2015, 37, 353-366.
[50]
Kim, S.; Park, J.; Youn, Y.S.; Oh, K.T.; Bae, J.H.; Lee, E.S. Hoechst 33258–conjugated hyaluronated fullerene for efficient photodynamic tumor therapy and necrotic tumor targeting. J. Bioact. Compat. Polym., 2015, 30(3), 275-288.
[http://dx.doi.org/10.1177/0883911515574136]
[51]
Wang, L.; Wang, Y.; Hao, J.; Dong, S. Magnetic fullerene-NA/hyaluronic acid nanovehicles with magnetism/reduction dual-responsive triggered release. Biomacromolecules, 2017, 18(3), 1029-1038.
[52]
Hou, L.; Yuan, Y.; Ren, J.; Zhang, Y.; Wang, Y.; Shan, X. In vitro and in vivo comparative study of the phototherapy anticancer activity of hyaluronic acid-modified single-walled carbon nanotubes, graphene oxide, and fullerene. J. Nanopart. Res., 2017, 19, 286.
[http://dx.doi.org/10.1007/s11051-017-3977-5]
[53]
Chaudhuri, S.D.; Ametamey, S.M. Development of folate receptor-targeted PET radiopharmaceuticals for tumor imaging-A bench-to bed side journey. Cancers (Basel), 2020, 12(6), 1508.
[http://dx.doi.org/10.3390/cancers12061508]
[54]
Hu, Z.; Liu, S.; Wei, Y.; Tong, E.; Cao, F.; Guan, W. Synthesis of glutathione C60 derivative and its protective effect on hydrogen peroxide-induced apoptosis in rat pheochromocytoma cells. Neurosci. Lett., 2007, 429(2-3), 81-86.
[http://dx.doi.org/10.1016/j.neulet.2007.09.063] [PMID: 18022764]
[55]
Fan, J.; Fang, G.; Zeng, F.; Wang, X.; Wu, S. Water-dispersible fullerene aggregates as a targeted anticancer prodrug with both chemo- and photodynamic therapeutic actions. Small, 2013, 9(4), 613-621.
[http://dx.doi.org/10.1002/smll.201201456] [PMID: 23117954]
[56]
Guan, M.; Dong, H.; Ge, J.; Chen, D.; Sun, L.; Li, S. Multifunctional upconversion–nanoparticles–trismethylpyridyl-porphyrin–fullerene nanocomposite: A near-infrared light-triggered theranostic platform for imaging-guided photodynamic therapy. NPG Asia Mater., 2015, 7, 205.
[http://dx.doi.org/10.1038/am.2015.82]
[57]
Knezevic, N.; Mrdjanovic, J.; Borisev, I.; Milenkovic, S.; Janackovic, D.; Cunin, F. Hydroxylated fullerene-capped vinblastine-loaded folic acid- functionalized mesoporous silica nanoparticles for targeted anticancer therapy. RSC Advances, 2016, 6, 7061-7065.
[58]
Xu, B.; Yuan, L.; Hu, Y.; Xu, Z.; Qin, J.J.; Cheng, X.D. Synthesis, characterization, cellular uptake, and in vitro anticancer activity of fullerenol-doxorubicin conjugates. Front. Pharmacol., 2021, 11, 598155.
[http://dx.doi.org/10.3389/fphar.2020.598155] [PMID: 33568999]
[59]
Zakharian, T.Y.; Seryshev, A.; Sitharaman, B.; Gilbert, B.E.; Knight, V.; Wilson, L.J. A fullerene-paclitaxel chemotherapeutic: synthesis, characterization, and study of biological activity in tissue culture. J. Am. Chem. Soc., 2005, 127(36), 12508-12509.
[http://dx.doi.org/10.1021/ja0546525] [PMID: 16144396]
[60]
Partha, R.; Mitchell, L.R.; Lyon, J.L.; Joshi, P.P.; Conyers, J.L. Buckysomes: fullerene-based nanocarriers for hydrophobic molecule delivery. ACS Nano, 2008, 2(9), 1950-1958.
[http://dx.doi.org/10.1021/nn800422k] [PMID: 19206436]
[61]
Mackeyev, Y.; Raoof, M.; Cisneros, B.; Koshkina, N.; Berger, C.S.; Wilson, L.J. Toward paclitaxel–[60]fullerene immunoconjugates as a targeted prodrug against cancer. Nanosystems: Physics, Chemistry. Nanosyst.: Phys. Chem. Math., 2014, 5(1), 67-75.
[62]
Chaudhuri, P.; Paraskar, A.; Soni, S.; Mashelkar, R.A.; Sengupta, S. Fullerenol-cytotoxic conjugates for cancer. Chemotherapy, 2009, 3(9), 2505-2514.
[63]
Liu, J.H.; Cao, L.; Luo, P.G.; Yang, S.T.; Lu, F.; Wang, H. Fullerene-conjugated doxorubicin in cells. Appl. Mater. Biosci., 2010, 2(5), 1384-1389.
[http://dx.doi.org/10.1021/am100037y]
[64]
Prylutska, S.V.; Grynyuk, I.I.; Matyshevska, O.P. Antioxidant properties of C60 fullerenes in vitro. Fuller. Nanotub. Carbon Nanostruct., 2008, 16, 698-705.
[http://dx.doi.org/10.1080/15363830802317148]
[65]
Murugesan, S.; Mousa, S.A.; O’connor, L.J.; Lincoln, D.W., II; Linhardt, R.J. Carbon inhibits vascular endothelial growth factor- and fibroblast growth factor-promoted angiogenesis. FEBS Lett., 2007, 581(6), 1157-1160.
[http://dx.doi.org/10.1016/j.febslet.2007.02.022] [PMID: 17331505]
[66]
Meng, H.; Xing, G.; Sun, B.; Zhao, F.; Lei, H.; Li, W.; Song, Y.; Chen, Z.; Yuan, H.; Wang, X.; Long, J.; Chen, C.; Liang, X.; Zhang, N.; Chai, Z.; Zhao, Y. Potent angiogenesis inhibition by the particulate form of fullerene derivatives. ACS Nano, 2010, 4(5), 2773-2783.
[http://dx.doi.org/10.1021/nn100448z] [PMID: 20429577]
[67]
Injac, R.; Radic, N.; Govedarica, B.; Perse, M.; Cerar, A.; Djordjevic, A.; Strukelj, B. Acute doxorubicin pulmotoxicity in rats with malignant neoplasm is effectively treated with fullerenol C60(OH)24 through inhibition of oxidative stress. Pharmacol. Rep., 2009, 61(2), 335-342.
[http://dx.doi.org/10.1016/S1734-1140(09)70041-6] [PMID: 19443948]
[68]
Prylutska, S.V.; Prylutskyy, Y.I.; Ritter, U.; Scharff, K.P. Comparative study of antitumor effect of pristine C60 Fullerenes and doxorubicin. Biotechnology, 2011, 4(6), 82-87.
[69]
Zhang, Z.; Shi, J.; Liu, Y.; Wang, L. Tumoral acidic pH-responsive drug delivery system based on a novel photosensitizer-fullerene for chemo-photodynamic therapy. In: Advances in Nano, Biomechanics, Robotics and Engineering Research;; Aug 25-28;Seoul, Korea, 2013; pp. 370-385.
[70]
Blazkova, I.; Viet Nguyen, H.; Kominkova, M.; Konecna, R.; Chudobova, D.; Krejcova, L.; Kopel, P.; Hynek, D.; Zitka, O.; Beklova, M.; Adam, V.; Kizek, R. Fullerene as a transporter for doxorubicin investigated by analytical methods and in vivo imaging. Electrophoresis, 2014, 35(7), 1040-1049.
[http://dx.doi.org/10.1002/elps.201300393] [PMID: 24254731]
[71]
Afanasieva, K.S.; Prylutska, S.V.; Lozovik, A.V.; Bogutska, K.I.; Sivolob, A.V.; Prylutskyy, Y.I.; Ritter, U.; Scharff, P. C60 fullerene prevents genotoxic effects of doxorubicin in human lymphocytes in vitro. Ukr. Biochem. J., 2015, 87(1), 91-98.
[http://dx.doi.org/10.15407/ubj87.01.091] [PMID: 26036135]
[72]
Prylutska, S.V.; Skivka, L.M.; Didenko, G.V.; Prylutskyy, Y.I.; Evstigneev, M.P.; Potebnya, G.P.; Panchuk, R.R.; Stoika, R.S.; Ritter, U.; Scharff, P. Complex of C60 fullerene with doxorubicin as a promising agent in antitumor therapy. Nanoscale Res. Lett., 2015, 10(1), 499.
[http://dx.doi.org/10.1186/s11671-015-1206-7] [PMID: 26714861]
[73]
Butowska, K.; Kozak, W.; Zdrowowicz, M.; Makurat, S.; Rychłowski, M.; Hać, A. Cytotoxicity of doxorubicin conjugated with C60 fullerene. Structural and in vitro studies. Struct. Chem., 2019, 30, 2327-2338.
[http://dx.doi.org/10.1007/s11224-019-01428-4]
[74]
Shi, J.; Zhang, H.; Wang, L.; Li, L.; Wang, H.; Wang, Z.; Li, Z.; Chen, C.; Hou, L.; Zhang, C.; Zhang, Z. PEI-derivatized fullerene drug delivery using folate as a homing device targeting to tumor. Biomaterials, 2013, 34(1), 251-261.
[http://dx.doi.org/10.1016/j.biomaterials.2012.09.039] [PMID: 23069706]
[75]
Guo, X.; Ding, R.; Zhang, Y.; Ye, L.; Liu, X.; Chen, C.; Zhang, Z.; Zhang, Y. Dual role of photosensitizer and carrier material of fullerene in micelles for chemo-photodynamic therapy of cancer. J. Pharm. Sci., 2014, 103(10), 3225-3234.
[http://dx.doi.org/10.1002/jps.24124] [PMID: 25174963]
[76]
Raza, K.; Thotakura, N.; Kumar, P.; Joshi, M.; Bhushan, S.; Bhatia, A.; Kumar, V.; Malik, R.; Sharma, G.; Guru, S.K.; Katare, O.P. C60-fullerenes for delivery of docetaxel to breast cancer cells: A promising approach for enhanced efficacy and better pharmacokinetic profile. Int. J. Pharm., 2015, 495(1), 551-559.
[http://dx.doi.org/10.1016/j.ijpharm.2015.09.016] [PMID: 26383841]
[77]
Kuznietsova, H.M.; Ogloblya, O.V.; Cherepanov, V.V.; Prylutskyy, Y.I.; Rybalchenko, V.K. Effects of C60 fullerene-cisplatin complex on honeybee apis mellifera L. Biotechnol. Acta, 2015, 8(4), 108-112.
[http://dx.doi.org/10.15407/biotech8.04.108]
[78]
Franskevych, D.V.; Grynyuk, I.I.; Prylutska, S.V.; Matyshevska, O.P. Modulation of cisplatin-induced reactive oxygen species production by fullerene C(60) in normal and transformed lymphoid cells. Ukr. Biochem. J., 2016, 88(1), 44-50.
[http://dx.doi.org/10.15407/ubj88.01.044] [PMID: 29227077]
[79]
Prylutska, S.; Grynyuk, I.; Skaterna, T.; Horak, I.; Grebinyk, A.; Drobot, L.; Matyshevska, O.; Senenko, A.; Prylutskyy, Y.; Naumovets, A.; Ritter, U.; Frohme, M. Toxicity of C60 fullerene-cisplatin nanocomplex against Lewis lung carcinoma cells. Arch. Toxicol., 2019, 93(5), 1213-1226.
[http://dx.doi.org/10.1007/s00204-019-02441-6] [PMID: 30989314]
[80]
Rajagopalan, P.; Wudl, F.; Schinazi, R.F.; Boudinot, F.D. Pharmacokinetics of a water-soluble fullerene in rats. Antimicrob. Agents Chemother., 1996, 40(10), 2262-2265.
[http://dx.doi.org/10.1128/AAC.40.10.2262] [PMID: 8891126]
[81]
Riviere, J.E. Pharmacokinetics of nanomaterials: An overview of carbon nanotubes, fullerenes and quantum dots. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2009, 1(1), 26-34.
[http://dx.doi.org/10.1002/wnan.24] [PMID: 20049776]
[82]
Bychko, A.; Sokolova, V.; Prylutska, S.; Bogutska, K.; Rybalchenko, V.; Evstigneev, M. Interaction of C60 fullerene complexed to cisplatin with model bilipid membranes and its uptake by HeLa cells. Materialwiss. Werkstofftech., 2016, 47, 105-111.
[http://dx.doi.org/10.1002/mawe.201600474]
[83]
Wang, C.; Bai, Y.; Li, H.; Liao, R.; Li, J.; Zhang, H.; Zhang, X.; Zhang, S.; Yang, S.T.; Chang, X.L. Erratum to: Surface modification-mediated biodistribution of 13C-fullerene C60in vivo. Part. Fibre Toxicol., 2016, 13(1), 43.
[http://dx.doi.org/10.1186/s12989-016-0153-5] [PMID: 27534854]
[84]
Benn, T.M.; Pycke, B.F.G.; Herckes, P.; Westerhoff, P.; Halden, R.U. Evaluation of extraction methods for quantification of aqueous fullerenes in urine. Anal. Bioanal. Chem., 2011, 399(4), 1631-1639.
[http://dx.doi.org/10.1007/s00216-010-4465-2] [PMID: 21153587]
[85]
Minami, K.; Kasuya, Y.; Yamazaki, T.; Ji, Q.; Nakanishi, W.; Hill, J.P.; Sakai, H.; Ariga, K. Highly ordered 1D fullerene crystals for concurrent control of macroscopic cellular orientation and differentiation toward large-scale tissue engineering. Adv. Mater., 2015, 27(27), 4020-4026.
[http://dx.doi.org/10.1002/adma.201501690] [PMID: 26033774]
[86]
Franskevych, D.V.; Prylutska, S.V.; Grynyuk, I.I.; Grebinyk, D.M.; Matyshevska, O.P. Enhanced cytotoxicity of photoexcited fullerene C60 and cisplatin combination against drug-resistant leukemic cells. Exp. Oncol., 2015, 37(3), 187-191.
[http://dx.doi.org/10.31768/2312-8852.2015.37(3):187-191] [PMID: 26422102]
[87]
Du, B.; Han, S.; Li, H.; Zhao, F.; Su, X.; Cao, X.; Zhang, Z. Multi-functional liposomes showing radiofrequency-triggered release and magnetic resonance imaging for tumor multi-mechanism therapy. Nanoscale, 2015, 7(12), 5411-5426.
[http://dx.doi.org/10.1039/C4NR04257C] [PMID: 25731982]
[88]
Lu, F.; Haque, S.A.; Yang, S.T.; Luo, P.G.; Gu, L.; Kitaygorodskiy, A.; Li, H.; Lacher, S.; Sun, Y.P. Aqueous compatible fullerene-doxorubicin conjugates. J. Phys. Chem. C, 2009, 113(41), 17768-17773.
[http://dx.doi.org/10.1021/jp906750z] [PMID: 20107626]
[89]
YahyaHanafi-Bojd. M.; Jaafari, M.; Ramezanian, N.; Abnous, K.; Malaekeh-Nikouei, B. Codelivery of Epirubicin and siRNA using functionalized mesoporous silica nanoparticles enhances in vitro and in vivo drug efficacy. Curr. Drug Deliv., 2016, 13, 1176-1182.
[http://dx.doi.org/10.2174/1567201813666151231094056] [PMID: 26718488]
[90]
Della Torre, C.; Maggioni, D.; Ghilardi, A.; Parolini, M.; Santo, N.; Landi, C.; Madaschi, L.; Magni, S.; Tasselli, S.; Ascagni, M.; Bini, L.; La Porta, C.; Del Giacco, L.; Binelli, A. The interactions of fullerene C60 and Benzo(α)pyrene influence their bioavailability and toxicity to zebrafish embryos. Environ. Pollut., 2018, 241, 999-1008.
[http://dx.doi.org/10.1016/j.envpol.2018.06.042] [PMID: 30029334]
[91]
Dou, Z.; Xu, Y.; Sun, H.; Liu, Y. Synthesis of PEGylated fullerene-5-fluorouracil conjugates to enhance the antitumor effect of 5-fluorouracil. Nanoscale, 2012, 4(15), 4624-4630.
[http://dx.doi.org/10.1039/c2nr30380a] [PMID: 22706520]
[92]
Kolosnjaj, J.; Szwarc, H.; Moussa, F. Toxicity studies of fullerenes and derivatives. Adv. Exp. Med. Biol., 2007, 620, 168-180.
[http://dx.doi.org/10.1007/978-0-387-76713-0_13] [PMID: 18217343]
[93]
Gudkov, S.V.; Guryev, E.L.; Gapeyev, A.B.; Sharapov, M.G.; Bunkin, N.F.; Shkirin, A.V.; Zabelina, T.S.; Glinushkin, A.P.; Sevost’yanov, M.A.; Belosludtsev, K.N.; Chernikov, A.V.; Bruskov, V.I.; Zvyagin, A.V. Unmodified hydrated C60 fullerene molecules exhibit antioxidant properties, prevent damage to DNA and proteins induced by reactive oxygen species and protect mice against injuries caused by radiation-induced oxidative stress. Nanomedicine, 2019, 15(1), 37-46.
[http://dx.doi.org/10.1016/j.nano.2018.09.001] [PMID: 30240826]
[94]
Serda, M.; Szewczyk, G.; Krzysztyńska-Kuleta, O.; Korzuch, J.; Dulski, M.; Musioł, R.; Sarna, T. Developing [60]fullerene nanomaterials for better photodynamic treatment of non-melanoma skin cancers. ACS Biomater. Sci. Eng., 2020, 6(10), 5930-5940.
[http://dx.doi.org/10.1021/acsbiomaterials.0c00932] [PMID: 33320587]
[95]
Rana, S.V.S. Recent advances on renal toxicity of engineered nanoparticles-A review. J Toxicol Risk Assess, 2021, 7, 036.
[96]
Kraemer, A.B.; Parfitt, G.M.; Acosta, D.D.S.; Bruch, G.E.; Cordeiro, M.F.; Marins, L.F.; Ventura-Lima, J.; Monserrat, J.M.; Barros, D.M. Fullerene (C60) particle size implications in neurotoxicity following infusion into the hippocampi of Wistar rats. Toxicol. Appl. Pharmacol., 2018, 338, 197-203.
[http://dx.doi.org/10.1016/j.taap.2017.11.022] [PMID: 29191454]
[97]
Lotfipour, F.; Shahi, S.; Farjami, A.; Salatin, S.; Mahmoudian, M.; Dizaj, S.M. Safety and toxicity issues of therapeutically used nanoparticles from the oral route. BioMed Res. Int., 2021, 2021, 9322282.
[http://dx.doi.org/10.1155/2021/9322282] [PMID: 34746313]
[98]
Yogendrakumar, L. Impacts of fullerene on biological systems. Clin. Immunol. Endocr. Metab. Drugs, 2017, 4(1), 47-58.
[99]
Aoshima, H.; Yamana, S.; Nakamura, S.; Mashino, T. Biological safety of water-soluble fullerenes evaluated using tests for genotoxicity, phototoxicity, and pro-oxidant activity. J. Toxicol. Sci., 2010, 35(3), 401-409.
[http://dx.doi.org/10.2131/jts.35.401] [PMID: 20519849]
[100]
Xu, A.; Chai, Y.; Nohmi, T.; Hei, T.K. Genotoxic responses to titanium dioxide nanoparticles and fullerene in gpt delta transgenic MEF cells. Part. Fibre Toxicol., 2009, 6(3), 3.
[http://dx.doi.org/10.1186/1743-8977-6-3] [PMID: 19154577]
[101]
Mori, T.; Takada, H.; Ito, S.; Matsubayashi, K.; Miwa, N.; Sawaguchi, T. Preclinical studies on safety of fullerene upon acute oral administration and evaluation for no mutagenesis. Toxicology, 2006, 225(1), 48-54.
[http://dx.doi.org/10.1016/j.tox.2006.05.001] [PMID: 16782258]
[102]
Maeda-Mamiya, R.; Noiri, E.; Isobe, H.; Nakanishi, W.; Okamoto, K.; Doi, K.; Sugaya, T.; Izumi, T.; Homma, T.; Nakamura, E. In vivo gene delivery by cationic tetraamino fullerene. Proc. Natl. Acad. Sci. USA, 2010, 107(12), 5339-5344.
[http://dx.doi.org/10.1073/pnas.0909223107] [PMID: 20194788]
[103]
Lens, M. Recent progresses in application of fullerenes in cosmetics. Recent Pat. Biotechnol., 2011, 5(2), 67-73.
[http://dx.doi.org/10.2174/187220811796365707] [PMID: 21619548]
[104]
Kato, S.; Aoshima, H.; Saitoh, Y.; Miwa, N. Fullerene-C60/liposome complex: Defensive effects against UVA-induced damages in skin structure, nucleus and collagen type I/IV fibrils, and the permeability into human skin tissue. J. Photochem. Photobiol. B, 2010, 98(1), 99-105.
[http://dx.doi.org/10.1016/j.jphotobiol.2009.11.010] [PMID: 20036139]
[105]
Inui, S.; Aoshima, H.; Nishiyama, A.; Itami, S.; Basak, P.Y.; Gultekin, F. Improvement of acne vulgaris by topical fullerene application: Unique impact on skin care. Nanomedicine, 2011, 7(2), 238-241.
[http://dx.doi.org/10.1016/j.nano.2010.09.005] [PMID: 20887812]
[106]
Xiao, L.; Matsubayashi, K.; Miwa, N. Inhibitory effect of the water-soluble polymer-wrapped derivative of fullerene on UVA-induced melanogenesis via downregulation of tyrosinase expression in human melanocytes and skin tissues. Arch. Dermatol. Res., 2007, 299(5-6), 245-257.
[http://dx.doi.org/10.1007/s00403-007-0740-2] [PMID: 17333222]
[107]
Efficacy of fullerene (C60) application in complex therapy of patients with ulcerative disease. Report of the 3-nd Department of Internal Medicine, Kharkov National Medical University, Kharkov, Ukraine;, 2009, 33
[108]
Aschberger, K.; Johnston, H.J.; Stone, V.; Aitken, R.J.; Tran, C.L.; Hankin, S.M.; Peters, S.A.; Christensen, F.M. Review of fullerene toxicity and exposure-appraisal of a human health risk assessment, based on open literature. Regul. Toxicol. Pharmacol., 2010, 58(3), 455-473.
[http://dx.doi.org/10.1016/j.yrtph.2010.08.017] [PMID: 20800639]
[109]
Tzoupis, H.; Leonis, G.; Durdagi, S.; Mouchlis, V.; Mavromoustakos, T.; Papadopoulos, M.G. Binding of novel fullerene inhibitors to HIV-1 protease: insight through molecular dynamics and molecular mechanics Poisson-Boltzmann surface area calculations. J. Comput. Aided Mol. Des., 2011, 25(10), 959-976.
[http://dx.doi.org/10.1007/s10822-011-9475-4] [PMID: 21969102]
[110]
Ahmed, L.; Rasulev, B.; Turabekova, M.; Leszczynska, D.; Leszczynski, J. Receptor- and ligand-based study of fullerene analogues: comprehensive computational approach including quantum-chemical, QSAR and molecular docking simulations. Org. Biomol. Chem., 2013, 11(35), 5798-5808.
[http://dx.doi.org/10.1039/c3ob40878g] [PMID: 23900343]
[111]
Yilmaz, H.; Ahmed, L.; Rasulev, B.; Leszczynski, J. Application of ligand- and receptor-based approaches for prediction of the HIV-RT inhibitory activity of fullerene derivatives. J. Nanopart. Res., 2016, 18, 123.
[http://dx.doi.org/10.1007/s11051-016-3429-7]
[112]
Yu, Y.; Sun, H.; Hou, T.; Wang, S.; Li, Y. Fullerene derivatives act as inhibitors of leukocyte common antigen based on molecular dynamics simulations. RSC Advances, 2018, 8, 13997.
[http://dx.doi.org/10.1039/C7RA13543B]
[113]
Huang, H.J.; Kraevaya, O.A.; Voronov, I.I.; Troshin, P.A.; Hsu, S.H. Fullerene derivatives as lung cancer cell inhibitors: Investigation of potential descriptors using QSAR approaches. Int. J. Nanomedicine, 2020, 15, 2485-2499.
[http://dx.doi.org/10.2147/IJN.S243463] [PMID: 32368036]
[114]
Jagiello, K.; Grzonkowska, M.; Swirog, M.; Ahmed, L.; Rasulev, B.; Avramopoulos, A.; Papadopoulos, M.G.; Leszczynski, J.; Puzyn, T. Advantages and limitations of classic and 3D QSAR approaches in nano-QSAR studies based on biological activity of fullerene derivatives. J. Nanopart. Res., 2016, 18(9), 256.
[http://dx.doi.org/10.1007/s11051-016-3564-1] [PMID: 27642255]
[115]
Wang, Y.B.; Lin, Z. Supramolecular interactions between fullerenes and porphyrins. J. Am. Chem. Soc., 2003, 125(20), 6072-6073.
[http://dx.doi.org/10.1021/ja028998g] [PMID: 12785834]
[116]
Sygula, A.; Fronczek, F.R.; Sygula, R.; Rabideau, P.W.; Olmstead, M.M. A double concave hydrocarbon buckycatcher. J. Am. Chem. Soc., 2007, 129(13), 3842-3843.
[http://dx.doi.org/10.1021/ja070616p] [PMID: 17348661]
[117]
Wong, B.M. Noncovalent interactions in supramolecular complexes: A study on corannulene and the double concave buckycatcher. J. Comput. Chem., 2009, 30(1), 51-56.
[http://dx.doi.org/10.1002/jcc.21022] [PMID: 18504779]
[118]
Garcı, C.; Costas, S.M.; Ribas, X. Metallosupramolecular receptors for fullerene binding and release. Chem. Soc. Rev., 2016, 45(1), 40-62.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy