Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Review Article

Crosstalk between SARS-CoV-2 Infection and Type II Diabetes

Author(s): Asim Azhar*, Wajihul Hasan Khan, Khaled Al-hosaini, Qamar Zia and Mohammad Amjad Kamal

Volume 25, Issue 14, 2022

Published on: 19 April, 2022

Page: [2429 - 2442] Pages: 14

DOI: 10.2174/1386207325666220315114332

Price: $65

conference banner
Abstract

Since the outbreak of coronavirus disease (COVID-19) in Wuhan, China, triggered by severe acute respiratory coronavirus 2 (SARS-CoV-2) in late November 2019, spreading to more than 200 countries of the world, the ensuing pandemic to an enormous loss of lives, mainly the older population with comorbidities, like diabetes, cardiovascular disease, chronic obstructive pulmonary disease, obesity, and hypertension. Amongst these immune-debilitating diseases, SARS-CoV-2 infection is the most common in patients with diabetes due to the absence of a normal active immune system to fight the COVID-19. Recovery of patients having a history of diabetes from COVID-19 encounters several complications, and their management becomes cumbersome. For control of coronavirus, antiviral medications, glucose-lowering agents, and steroids have been carefully evaluated. In the present review, we discuss the crosstalk between SARS-CoV-2 infection and patients with a history of diabetes. We mainly emphasize the molecular factors that are involved in diabetic individuals recently infected by SARS-CoV-2 and developed COVID-19 disease. Lastly, we examine the medications available for the long-term management of diabetic patients with SARS-CoV-2 infection.

Keywords: SARS-CoV-2, ACE2, COVID-19, diabetes, Type II diabetes, oberity.

[1]
COVID-19 Map [Internet]. Johns Hopkins Coronavirus Resource Center., Available from: https://coronavirus.jhu.edu/map.html
[2]
Andersen, K.G.; Rambaut, A.; Lipkin, W.I.; Holmes, E.C.; Garry, R.F. The proximal origin of SARS-CoV-2. Nat. Med., 2020, 26(4), 450-452.
[http://dx.doi.org/10.1038/s41591-020-0820-9] [PMID: 32284615]
[3]
Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; Bi, Y.; Ma, X.; Zhan, F.; Wang, L.; Hu, T.; Zhou, H.; Hu, Z.; Zhou, W.; Zhao, L.; Chen, J.; Meng, Y.; Wang, J.; Lin, Y.; Yuan, J.; Xie, Z.; Ma, J.; Liu, W.J.; Wang, D.; Xu, W.; Holmes, E.C.; Gao, G.F.; Wu, G.; Chen, W.; Shi, W.; Tan, W. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet, 2020, 395(10224), 565-574.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[4]
Chan, J.F-W.; Kok, K-H.; Zhu, Z.; Chu, H.; To, K.K-W.; Yuan, S.; Yuen, K.Y. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes Infect., 2020, 9(1), 221-236.
[http://dx.doi.org/10.1080/22221751.2020.1719902] [PMID: 31987001]
[5]
Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G.F.; Tan, W. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med., 2020, 382(8), 727-733.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[6]
Azhar, A.; Al-hosaini, K.; Khan, P.A.; Oanz, A.M.; Zia, Q.; Banawas, S.; Dong, J-J.; Kamal, M.A.; Owais, M. Promiscuous biological features of newly emerged sars-cov-2 facilitate its unrestrained outbreak: An update. Coronaviruses, 2021, 2(10), e170821191027.
[http://dx.doi.org/10.2174/2666796702666210202125638]
[7]
Caldas, L.A.; Carneiro, F.A.; Higa, L.M.; Monteiro, F.L.; da Silva, G.P.; da Costa, L.J.; Durigon, E.L.; Tanuri, A.; de Souza, W. Ultrastructural analysis of SARS-CoV-2 interactions with the host cell via high resolution scanning electron microscopy. Sci. Rep., 2020, 10(1), 16099.
[http://dx.doi.org/10.1038/s41598-020-73162-5] [PMID: 32999356]
[8]
Zhou, P.; Yang, X-L.; Wang, X-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[9]
Wu, H.; Lau, E.S.H.; Ma, R.C.W.; Kong, A.P.S.; Wild, S.H.; Goggins, W.; Chow, E.; So, W.Y.; Chan, J.C.N.; Luk, A.O.Y. Secular trends in all-cause and cause-specific mortality rates in people with diabetes in Hong Kong, 2001-2016: A retrospective cohort study. Diabetologia, 2020, 63(4), 757-766.
[http://dx.doi.org/10.1007/s00125-019-05074-7] [PMID: 31942668]
[10]
Wu, Z.; McGoogan, J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA, 2020, 323(13), 1239-1242.
[http://dx.doi.org/10.1001/jama.2020.2648] [PMID: 32091533]
[11]
Emami, A.; Javanmardi, F.; Pirbonyeh, N.; Akbari, A. Prevalence of underlying diseases in hospitalized patients with Covid-19: A systematic review and meta-analysis. Arch. Acad. Emerg. Med., 2020, 8(1), e35.
[PMID: 32232218]
[12]
Muniyappa, R.; Gubbi, S. COVID-19 pandemic, coronaviruses, and diabetes mellitus. Am. J. Physiol. Endocrinol. Metab., 2020, 318(5), E736-E741.
[http://dx.doi.org/10.1152/ajpendo.00124.2020] [PMID: 32228322]
[13]
Geerlings, S.E.; Hoepelman, A.I.M. Immune dysfunction in patients with diabetes mellitus (DM). FEMS Immunol. Med. Microbiol., 1999, 26(3-4), 259-265.
[http://dx.doi.org/10.1111/j.1574-695X.1999.tb01397.x] [PMID: 10575137]
[14]
Hodgson, K.; Morris, J.; Bridson, T.; Govan, B.; Rush, C.; Ketheesan, N. Immunological mechanisms contributing to the double burden of diabetes and intracellular bacterial infections. Immunology, 2015, 144(2), 171-185.
[http://dx.doi.org/10.1111/imm.12394] [PMID: 25262977]
[15]
Gupta, R.; Hussain, A.; Misra, A. Diabetes and COVID-19: Evidence, current status and unanswered research questions. Eur. J. Clin. Nutr., 2020, 74(6), 864-870.
[http://dx.doi.org/10.1038/s41430-020-0652-1] [PMID: 32404898]
[16]
Nyambuya, T.M.; Dludla, P.V.; Mxinwa, V.; Nkambule, B.B. T-cell activation and cardiovascular risk in adults with type 2 diabetes mellitus: A systematic review and meta-analysis. Clin. Immunol., 2020, 210, 108313.
[http://dx.doi.org/10.1016/j.clim.2019.108313] [PMID: 31765833]
[17]
Ji, H-L.; Zhao, R.; Matalon, S.; Matthay, M.A. Elevated plasmin(ogen) as a common risk factor for COVID-19 susceptibility. Physiol. Rev., 2020, 100(3), 1065-1075.
[http://dx.doi.org/10.1152/physrev.00013.2020] [PMID: 32216698]
[18]
Guo, W.; Li, M.; Dong, Y.; Zhou, H.; Zhang, Z.; Tian, C.; Qin, R.; Wang, H.; Shen, Y.; Du, K.; Zhao, L.; Fan, H.; Luo, S.; Hu, D. Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes Metab. Res. Rev., 2020, 36(7), e3319.
[http://dx.doi.org/10.1002/dmrr.3319] [PMID: 32233013]
[19]
Fernandez, C.; Rysä, J.; Almgren, P.; Nilsson, J.; Engström, G.; Orho-Melander, M.; Ruskoaho, H.; Melander, O. Plasma levels of the proprotein convertase furin and incidence of diabetes and mortality. J. Intern. Med., 2018, 284(4), 377-387.
[http://dx.doi.org/10.1111/joim.12783] [PMID: 29888466]
[20]
Sun, Q.; Li, J.; Gao, F. New insights into insulin: The anti-inflammatory effect and its clinical relevance. World J. Diabetes, 2014, 5(2), 89-96.
[http://dx.doi.org/10.4239/wjd.v5.i2.89] [PMID: 24765237]
[21]
Langouche, L.; Vanhorebeek, I.; Vlasselaers, D.; Vander Perre, S.; Wouters, P.J.; Skogstrand, K.; Hansen, T.K.; Van den Berghe, G. Intensive insulin therapy protects the endothelium of critically ill patients. J. Clin. Invest., 2005, 115(8), 2277-2286.
[http://dx.doi.org/10.1172/JCI25385] [PMID: 16075063]
[22]
Gao, F.; Gao, E.; Yue, T-L.; Ohlstein, E.H.; Lopez, B.L.; Christopher, T.A.; Ma, X.L. Nitric oxide mediates the antiapoptotic effect of insulin in myocardial ischemia-reperfusion: The roles of PI3-kinase, Akt, and endothelial nitric oxide synthase phosphorylation. Circulation, 2002, 105(12), 1497-1502.
[http://dx.doi.org/10.1161/01.CIR.0000012529.00367.0F] [PMID: 11914261]
[23]
Zhang, Y.; Zhuang, R.; Geng, C.; Cai, X.; Lei, W.; Tian, N.; Gao, F. Insulin promotes T cell recovery in a murine model of autoimmune myocarditis. Clin. Exp. Immunol., 2013, 171(1), 46-53.
[http://dx.doi.org/10.1111/j.1365-2249.2012.04662.x] [PMID: 23199322]
[24]
Li, J.; Zhang, H.; Wu, F.; Nan, Y.; Ma, H.; Guo, W.; Wang, H.; Ren, J.; Das, U.N.; Gao, F. Insulin inhibits tumor necrosis factor-α induction in myocardial ischemia/reperfusion: Role of Akt and endothelial nitric oxide synthase phosphorylation. Crit. Care Med., 2008, 36(5), 1551-1558.
[http://dx.doi.org/10.1097/CCM.0b013e3181782335] [PMID: 18434880]
[25]
Li, J.; Wu, F.; Zhang, H.; Fu, F.; Ji, L.; Dong, L.; Li, Q.; Liu, W.; Zhang, Y.; Lv, A.; Wang, H.; Ren, J.; Gao, F. Insulin inhibits leukocyte-endothelium adherence via an Akt-NO-dependent mechanism in myocardial ischemia/reperfusion. J. Mol. Cell. Cardiol., 2009, 47(4), 512-519.
[http://dx.doi.org/10.1016/j.yjmcc.2009.07.010] [PMID: 19616003]
[26]
Esposito, K.; Nappo, F.; Marfella, R.; Giugliano, G.; Giugliano, F.; Ciotola, M.; Quagliaro, L.; Ceriello, A.; Giugliano, D. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: Role of oxidative stress. Circulation, 2002, 106(16), 2067-2072.
[http://dx.doi.org/10.1161/01.CIR.0000034509.14906.AE] [PMID: 12379575]
[27]
Hotamisligil, G.S.; Shargill, N.S.; Spiegelman, B.M. Adipose expression of tumor necrosis factor-alpha: Direct role in obesity-linked insulin resistance. Science, 1993, 259(5091), 87-91.
[http://dx.doi.org/10.1126/science.7678183] [PMID: 7678183]
[28]
Schmidt, M.I.; Duncan, B.B.; Sharrett, A.R.; Lindberg, G.; Savage, P.J.; Offenbacher, S.; Azambuja, M.I.; Tracy, R.P.; Heiss, G. Markers of inflammation and prediction of diabetes mellitus in adults (Atherosclerosis Risk in Communities study): A cohort study. Lancet, 1999, 353(9165), 1649-1652.
[http://dx.doi.org/10.1016/S0140-6736(99)01046-6] [PMID: 10335783]
[29]
Pradhan, A.D.; Manson, J.E.; Rifai, N.; Buring, J.E.; Ridker, P.M. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA, 2001, 286(3), 327-334.
[http://dx.doi.org/10.1001/jama.286.3.327] [PMID: 11466099]
[30]
Burrell, L.M.; Johnston, C.I.; Tikellis, C.; Cooper, M.E. ACE2, a new regulator of the renin-angiotensin system. Trends Endocrinol. Metab., 2004, 15(4), 166-169.
[http://dx.doi.org/10.1016/j.tem.2004.03.001] [PMID: 15109615]
[31]
Donoghue, M.; Hsieh, F.; Baronas, E.; Godbout, K.; Gosselin, M.; Stagliano, N.; Donovan, M.; Woolf, B.; Robison, K.; Jeyaseelan, R.; Breitbart, R.E.; Acton, S. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ. Res., 2000, 87(5), E1-E9.
[http://dx.doi.org/10.1161/01.RES.87.5.e1] [PMID: 10969042]
[32]
Harmer, D.; Gilbert, M.; Borman, R.; Clark, K.L. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett., 2002, 532(1-2), 107-110.
[http://dx.doi.org/10.1016/S0014-5793(02)03640-2] [PMID: 12459472]
[33]
Liu, M.; Wang, T.; Zhou, Y.; Zhao, Y.; Zhang, Y.; Li, J. Potential role of ACE2 in coronavirus disease 2019 (COVID-19) prevention and management. J. Transl. Int. Med., 2020, 8(1), 9-19.
[http://dx.doi.org/10.2478/jtim-2020-0003] [PMID: 32435607]
[34]
Brenner, B.M.; Cooper, M.E.; de Zeeuw, D.; Keane, W.F.; Mitch, W.E.; Parving, H-H.; Remuzzi, G.; Snapinn, S.M.; Zhang, Z.; Shahinfar, S. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med., 2001, 345(12), 861-869.
[http://dx.doi.org/10.1056/NEJMoa011161] [PMID: 11565518]
[35]
Li, W.; Moore, M.J.; Vasilieva, N.; Sui, J.; Wong, S.K.; Berne, M.A.; Somasundaran, M.; Sullivan, J.L.; Luzuriaga, K.; Greenough, T.C.; Choe, H.; Farzan, M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 2003, 426(6965), 450-454.
[http://dx.doi.org/10.1038/nature02145] [PMID: 14647384]
[36]
Tseng, C-T.K.; Tseng, J.; Perrone, L.; Worthy, M.; Popov, V.; Peters, C.J. Apical entry and release of severe acute respiratory syndrome-associated coronavirus in polarized Calu-3 lung epithelial cells. J. Virol., 2005, 79(15), 9470-9479.
[http://dx.doi.org/10.1128/JVI.79.15.9470-9479.2005] [PMID: 16014910]
[37]
Li, F.; Li, W.; Farzan, M.; Harrison, S.C. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science, 2005, 309(5742), 1864-1868.
[http://dx.doi.org/10.1126/science.1116480] [PMID: 16166518]
[38]
Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C-L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 2020, 367(6483), 1260-1263.
[http://dx.doi.org/10.1126/science.abb2507] [PMID: 32075877]
[39]
Bao, L.; Deng, W.; Huang, B.; Gao, H.; Liu, J.; Ren, L.; Wei, Q.; Yu, P.; Xu, Y.; Qi, F.; Qu, Y.; Li, F.; Lv, Q.; Wang, W.; Xue, J.; Gong, S.; Liu, M.; Wang, G.; Wang, S.; Song, Z.; Zhao, L.; Liu, P.; Zhao, L.; Ye, F.; Wang, H.; Zhou, W.; Zhu, N.; Zhen, W.; Yu, H.; Zhang, X.; Guo, L.; Chen, L.; Wang, C.; Wang, Y.; Wang, X.; Xiao, Y.; Sun, Q.; Liu, H.; Zhu, F.; Ma, C.; Yan, L.; Yang, M.; Han, J.; Xu, W.; Tan, W.; Peng, X.; Jin, Q.; Wu, G.; Qin, C. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature, 2020, 583(7818), 830-833.
[http://dx.doi.org/10.1038/s41586-020-2312-y] [PMID: 32380511]
[40]
Hoffmann, M; Kleine-Weber, H; Schroeder, S; Krüger, N; Herrler, T; Erichsen, S SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.
[41]
Simmons, G.; Gosalia, D.N.; Rennekamp, A.J.; Reeves, J.D.; Diamond, S.L.; Bates, P. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc. Natl. Acad. Sci. USA, 2005, 102(33), 11876-11881.
[http://dx.doi.org/10.1073/pnas.0505577102] [PMID: 16081529]
[42]
Walls, A.C.; Park, Y-J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 2020, 181(2), 281-292.e6.
[http://dx.doi.org/10.1016/j.cell.2020.02.058] [PMID: 32155444]
[43]
Matsuyama, S.; Nagata, N.; Shirato, K.; Kawase, M.; Takeda, M.; Taguchi, F. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J. Virol., 2010, 84(24), 12658-12664.
[http://dx.doi.org/10.1128/JVI.01542-10] [PMID: 20926566]
[44]
Fan, C.; Li, K.; Ding, Y.; Lu, W.L.; Wang, J. ACE2 expression in kidney and testis may cause kidney and testis damage after 2019-nCoV infection. MedRxiv, 2020, 30(10), 118-120.
[http://dx.doi.org/10.1101/2020.02.12.20022418]
[45]
Hu, H.; Li, L.; Kao, R.Y.; Kou, B.; Wang, Z.; Zhang, L.; Zhang, H.; Hao, Z.; Tsui, W.H.; Ni, A.; Cui, L.; Fan, B.; Guo, F.; Rao, S.; Jiang, C.; Li, Q.; Sun, M.; He, W.; Liu, G. Screening and identification of linear B-cell epitopes and entry-blocking peptide of severe acute respiratory syndrome (SARS)-associated coronavirus using synthetic overlapping peptide library. J. Comb. Chem., 2005, 7(5), 648-656.
[http://dx.doi.org/10.1021/cc0500607] [PMID: 16153058]
[46]
Hofmann, H.; Geier, M.; Marzi, A.; Krumbiegel, M.; Peipp, M.; Fey, G.H.; Gramberg, T.; Pöhlmann, S. Susceptibility to SARS coronavirus S protein-driven infection correlates with expression of angiotensin converting enzyme 2 and infection can be blocked by soluble receptor. Biochem. Biophys. Res. Commun., 2004, 319(4), 1216-1221.
[http://dx.doi.org/10.1016/j.bbrc.2004.05.114] [PMID: 15194496]
[47]
Huentelman, M.J.; Zubcevic, J.; Hernández Prada, J.A.; Xiao, X.; Dimitrov, D.S.; Raizada, M.K.; Ostrov, D.A. Structure-based discovery of a novel angiotensin-converting enzyme 2 inhibitor. Hypertension, 2004, 44(6), 903-906.
[http://dx.doi.org/10.1161/01.HYP.0000146120.29648.36] [PMID: 15492138]
[48]
Adedeji, A.O.; Severson, W.; Jonsson, C.; Singh, K.; Weiss, S.R.; Sarafianos, S.G. Novel inhibitors of severe acute respiratory syndrome coronavirus entry that act by three distinct mechanisms. J. Virol., 2013, 87(14), 8017-8028.
[http://dx.doi.org/10.1128/JVI.00998-13] [PMID: 23678171]
[49]
Vincent, M.J.; Bergeron, E.; Benjannet, S.; Erickson, B.R.; Rollin, P.E.; Ksiazek, T.G.; Seidah, N.G.; Nichol, S.T. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J., 2005, 2(1), 69.
[http://dx.doi.org/10.1186/1743-422X-2-69] [PMID: 16115318]
[50]
Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[51]
Pal, R.; Bhadada, S.K. Should anti-diabetic medications be reconsidered amid COVID-19 pandemic? Diabetes Res. Clin. Pract., 2020, 163, 108146.
[http://dx.doi.org/10.1016/j.diabres.2020.108146] [PMID: 32283128]
[52]
Tipnis, S.R.; Hooper, N.M.; Hyde, R.; Karran, E.; Christie, G.; Turner, A.J. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J. Biol. Chem., 2000, 275(43), 33238-33243.
[http://dx.doi.org/10.1074/jbc.M002615200] [PMID: 10924499]
[53]
Hamming, I.; Timens, W.; Bulthuis, M.L.C.; Lely, A.T.; Navis, G.; van Goor, H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol., 2004, 203(2), 631-637.
[http://dx.doi.org/10.1002/path.1570] [PMID: 15141377]
[54]
Chai, X.; Hu, L.; Zhang, Y.; Han, W.; Lu, Z.; Ke, A. Specific ACE2 expression in cholangiocytes may cause liver damage after., 2019. Available from: http://biorxiv.org/lookup/doi/10.1101/2020.02.03.931766
[55]
Lau, T.; Carlsson, P-O.; Leung, P.S. Evidence for a local angiotensin-generating system and dose-dependent inhibition of glucose-stimulated insulin release by angiotensin II in isolated pancreatic islets. Diabetologia, 2004, 47(2), 240-248.
[http://dx.doi.org/10.1007/s00125-003-1295-1] [PMID: 14722647]
[56]
Zou, X.; Chen, K.; Zou, J.; Han, P.; Hao, J.; Han, Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front. Med., 2020, 14(2), 185-192.
[http://dx.doi.org/10.1007/s11684-020-0754-0] [PMID: 32170560]
[57]
Santos, R.A.S.; Sampaio, W.O.; Alzamora, A.C.; Motta-Santos, D.; Alenina, N.; Bader, M.; Campagnole-Santos, M.J. The ACE2/Angiotensin-(1-7)/MAS axis of the renin-angiotensin system: focus on angiotensin-(1-7). Physiol. Rev., 2018, 98(1), 505-553.
[http://dx.doi.org/10.1152/physrev.00023.2016] [PMID: 29351514]
[58]
Patel, V.B.; Zhong, J-C.; Grant, M.B.; Oudit, G.Y. Role of the ACE2/angiotensin 1-7 axis of the renin-angiotensin system in heart failure. Circ. Res., 2016, 118(8), 1313-1326.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.307708] [PMID: 27081112]
[59]
Hamming, I.; Cooper, M.E.; Haagmans, B.L.; Hooper, N.M.; Korstanje, R.; Osterhaus, A.D.M.E.; Timens, W.; Turner, A.J.; Navis, G.; van Goor, H. The emerging role of ACE2 in physiology and disease. J. Pathol., 2007, 212(1), 1-11.
[http://dx.doi.org/10.1002/path.2162] [PMID: 17464936]
[60]
Li, XC; Zhang, J; Zhuo, JL The vasoprotective axes of the reninangiotensin system: Physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney diseases. Pharmacol Res., 2017, 125(Pt A), 21-38.
[61]
Chung, M.K.; Karnik, S.; Saef, J.; Bergmann, C.; Barnard, J.; Lederman, M.M.; Tilton, J.; Cheng, F.; Harding, C.V.; Young, J.B.; Mehta, N.; Cameron, S.J.; McCrae, K.R.; Schmaier, A.H.; Smith, J.D.; Kalra, A.; Gebreselassie, S.K.; Thomas, G.; Hawkins, E.S.; Svensson, L.G. SARS-CoV-2 and ACE2: The biology and clinical data settling the ARB and ACEI controversy. EBioMedicine, 2020, 58, 102907.
[http://dx.doi.org/10.1016/j.ebiom.2020.102907] [PMID: 32771682]
[62]
Varagic, J.; Ahmad, S.; Nagata, S.; Ferrario, C.M. ACE2: Angiotensin II/angiotensin-(1-7) balance in cardiac and renal injury. Curr. Hypertens. Rep., 2014, 16(3), 420.
[http://dx.doi.org/10.1007/s11906-014-0420-5] [PMID: 24510672]
[63]
Cure, E.; Cumhur Cure, M. Comment on “Organ-protective effect of angiotensin-converting enzyme 2 and its effect on the prognosis of COVID-19”. J. Med. Virol., 2020, 92(9), 1423-1424.
[http://dx.doi.org/10.1002/jmv.25848] [PMID: 32266994]
[64]
Fedson, D.S.; Jacobson, J.R.; Rordam, O.M.; Opal, S.M. Treating the host response to ebola virus disease with generic statins and angiotensin receptor blockers. MBio, 2015, 6(3), e00716-e15.
[http://dx.doi.org/10.1128/mBio.00716-15] [PMID: 26106080]
[65]
Jarcho, J.A.; Ingelfinger, J.R.; Hamel, M.B.; D’Agostino, R.B., Sr; Harrington, D.P. Inhibitors of the renin-angiotensin-aldosterone system and Covid-19. N. Engl. J. Med., 2020, 382(25), 2462-2464.
[http://dx.doi.org/10.1056/NEJMe2012924] [PMID: 32356625]
[66]
Fanaroff, A.C.; Califf, R.M.; Harrington, R.A.; Granger, C.B.; McMurray, J.J.V.; Patel, M.R.; Bhatt, D.L.; Windecker, S.; Hernandez, A.F.; Gibson, C.M.; Alexander, J.H.; Lopes, R.D. Randomized trials versus common sense and clinical observation: JACC review topic of the week. J. Am. Coll. Cardiol., 2020, 76(5), 580-589.
[http://dx.doi.org/10.1016/j.jacc.2020.05.069] [PMID: 32731936]
[67]
Lim, S.; Bae, J.H.; Kwon, H-S.; Nauck, M.A. COVID-19 and diabetes mellitus: From pathophysiology to clinical management. Nat. Rev. Endocrinol., 2021, 17(1), 11-30.
[http://dx.doi.org/10.1038/s41574-020-00435-4] [PMID: 33188364]
[68]
Kan, C.; Zhang, Y.; Han, F.; Xu, Q.; Ye, T.; Hou, N.; Sun, X. Mortality risk of antidiabetic agents for type 2 diabetes With COVID-19: A systematic review and meta-analysis. Front. Endocrinol. (Lausanne), 2021, 12, 708494.
[http://dx.doi.org/10.3389/fendo.2021.708494] [PMID: 34603199]
[69]
Nakhleh, A.; Shehadeh, N. Glycemic control of type 2 diabetic patients with coronavirus disease during hospitalization: A proposal for early insulin therapy. Am. J. Physiol. Endocrinol. Metab., 2020, 318(6), E835-E837.
[http://dx.doi.org/10.1152/ajpendo.00163.2020] [PMID: 32401039]
[70]
Palau, V.; Riera, M.; Soler, M.J. ADAM17 inhibition may exert a protective effect on COVID-19. Nephrol. Dial. Transplant., 2020, 35(6), 1071-1072.
[71]
Sardu, C.; D’Onofrio, N.; Balestrieri, M.L.; Barbieri, M.; Rizzo, M.R.; Messina, V.; Maggi, P.; Coppola, N.; Paolisso, G.; Marfella, R. Outcomes in patients with hyperglycemia affected by COVID-19: Can we do more on glycemic control? Diabetes Care, 2020, 43(7), 1408-1415.
[http://dx.doi.org/10.2337/dc20-0723] [PMID: 32430456]
[72]
Chen, Y.; Yang, D.; Cheng, B.; Chen, J.; Peng, A.; Yang, C.; Liu, C.; Xiong, M.; Deng, A.; Zhang, Y.; Zheng, L.; Huang, K. Clinical characteristics and outcomes of patients with diabetes and COVID-19 in association with glucose-lowering medication. Diabetes Care, 2020, 43(7), 1399-1407.
[http://dx.doi.org/10.2337/dc20-0660] [PMID: 32409498]
[73]
[74]
Justice, J.N.; Gubbi, S.; Kulkarni, A.S.; Bartley, J.M.; Kuchel, G.A.; Barzilai, N. A geroscience perspective on immune resilience and infectious diseases: A potential case for metformin. Geroscience, 2021, 43(3), 1093-1112.
[http://dx.doi.org/10.1007/s11357-020-00261-6] [PMID: 32902818]
[75]
Bramante, C.T.; Ingraham, N.E.; Murray, T.A.; Marmor, S.; Hovertsen, S.; Gronski, J.; McNeil, C.; Feng, R.; Guzman, G.; Abdelwahab, N.; King, S.; Tamariz, L.; Meehan, T.; Pendleton, K.M.; Benson, B.; Vojta, D.; Tignanelli, C.J. Metformin and risk of mortality in patients hospitalised with COVID-19: A retrospective cohort analysis. Lancet Healthy Longev., 2021, 2(1), e34-e41.
[http://dx.doi.org/10.1016/S2666-7568(20)30033-7] [PMID: 33521772]
[76]
Cameron, A.R.; Morrison, V.L.; Levin, D.; Mohan, M.; Forteath, C.; Beall, C.; McNeilly, A.D.; Balfour, D.J.; Savinko, T.; Wong, A.K.; Viollet, B.; Sakamoto, K.; Fagerholm, S.C.; Foretz, M.; Lang, C.C.; Rena, G. Anti-inflammatory effects of metformin irrespective of diabetes status. Circ. Res., 2016, 119(5), 652-665.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.308445] [PMID: 27418629]
[77]
Tufan, A.; Avanoğlu, Güler A.; Matucci-Cerinic, M. COVID-19, immune system response, hyperinflammation and repurposing antirheumatic drugs. Turk. J. Med. Sci., 2020, 50(SI-1), 620-632.
[http://dx.doi.org/10.3906/sag-2004-168] [PMID: 32299202]
[78]
Wang, H-C.; Huang, S-K. Metformin inhibits IgE- and aryl hydrocarbon receptor-mediated mast cell activation in vitro and in vivo. Eur. J. Immunol., 2018, 48(12), 1989-1996.
[http://dx.doi.org/10.1002/eji.201847706] [PMID: 30242842]
[79]
Liu, J.; Li, X.; Lu, Q.; Ren, D.; Sun, X.; Rousselle, T.; Li, J.; Leng, J. AMPK: A balancer of the renin-angiotensin system. Biosci. Rep., 2019, 39(9), BSR20181994.
[http://dx.doi.org/10.1042/BSR20181994] [PMID: 31413168]
[80]
Xian, H.; Liu, Y.; Rundberg Nilsson, A.; Gatchalian, R.; Crother, T.R.; Tourtellotte, W.G.; Zhang, Y.; Aleman-Muench, G.R.; Lewis, G.; Chen, W.; Kang, S.; Luevanos, M.; Trudler, D.; Lipton, S.A.; Soroosh, P.; Teijaro, J.; de la Torre, J.C.; Arditi, M.; Karin, M.; Sanchez-Lopez, E. Metformin inhibition of mitochondrial ATP and DNA synthesis abrogates NLRP3 inflammasome activation and pulmonary inflammation. Immunity, 2021, 54(7), 1463-1477.e11.
[http://dx.doi.org/10.1016/j.immuni.2021.05.004] [PMID: 34115964]
[81]
Costello, R.A.; Shivkumar, A. Sulfonylureas; StatPearls Internet, 2020.
[82]
Vitiello, A.; Ferrara, F. The impact of COVID-19 in diabetic patient. Arch Med. Health Sci., 2020, 8(1), 167.
[http://dx.doi.org/10.4103/amhs.amhs_117_20]
[83]
Santos, A.; Magro, D.O.; Evangelista-Poderoso, R.; Saad, M.J.A. Diabetes, obesity, and insulin resistance in COVID-19: Molecular interrelationship and therapeutic implications. Diabetol. Metab. Syndr., 2021, 13(1), 23.
[http://dx.doi.org/10.1186/s13098-021-00639-2] [PMID: 33648564]
[84]
Singh Tomar, P.P.; Arkin, I.T. SARS-CoV-2 E protein is a potential ion channel that can be inhibited by Gliclazide and Memantine. Biochem. Biophys. Res. Commun., 2020, 530(1), 10-14.
[http://dx.doi.org/10.1016/j.bbrc.2020.05.206] [PMID: 32828269]
[85]
Eggleton, J.S.; Jialal, I. Thiazolidinediones; StatPearls Internet., 2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK551656/
[86]
Singh, A.K.; Singh, R.; Saboo, B.; Misra, A. Non-insulin anti-diabetic agents in patients with type 2 diabetes and COVID-19: A critical appraisal of literature. Diabetes Metab. Syndr., 2021, 15(1), 159-167.
[http://dx.doi.org/10.1016/j.dsx.2020.12.026] [PMID: 33352455]
[87]
Dambha-Miller, H.; Albasri, A.; Hodgson, S.; Wilcox, C.R.; Khan, S.; Islam, N.; Little, P.; Griffin, S.J. Currently prescribed drugs in the UK that could upregulate or downregulate ACE2 in COVID-19 disease: A systematic review. BMJ Open, 2020, 10(9), e040644.
[http://dx.doi.org/10.1136/bmjopen-2020-040644] [PMID: 32928868]
[88]
Erol, A. Role of oxidized LDL-induced “trained macrophages” in the pathogenesis of COVID-19 and benefits of pioglitazone: A hypothesis. Diabetes Metab. Syndr., 2020, 14(4), 713-714.
[http://dx.doi.org/10.1016/j.dsx.2020.05.007] [PMID: 32470851]
[89]
Jagat, J.M.; Kalyan, K.G.; Subir, R. Use of pioglitazone in people with type 2 diabetes mellitus with coronavirus disease 2019 (COVID-19): Boon or bane? Diabetes Metab. Syndr., 2020, 14(5), 829-831.
[http://dx.doi.org/10.1016/j.dsx.2020.06.015] [PMID: 32540737]
[90]
Ugwueze, C.V.; Ezeokpo, B.C.; Nnolim, B.I.; Agim, E.A.; Anikpo, N.C.; Onyekachi, K.E. COVID-19 and diabetes mellitus: the link and clinical implications. Dubai Diabetes Endocrinol J., 2020, 26(2), 69-77.
[http://dx.doi.org/10.1159/000511354]
[91]
Li, Y.; Zhang, Z.; Yang, L.; Lian, X.; Xie, Y.; Li, S.; Xin, S.; Cao, P.; Lu, J. The MERS-CoV receptor DPP4 as a candidate binding target of the SARS-CoV-2 spike. iScience, 2020, 23(6), 101160.
[http://dx.doi.org/10.1016/j.isci.2020.101160] [PMID: 32405622]
[92]
Morieri, M.L.; Bonora, B.M.; Longato, E.; Di Camilo, B.; Sparacino, G.; Tramontan, L.; Avogaro, A.; Fadini, G.P. Exposure to dipeptidyl-peptidase 4 inhibitors and the risk of pneumonia among people with type 2 diabetes: Retrospective cohort study and meta-analysis. Diabetes Obes. Metab., 2020, 22(10), 1925-1934.
[http://dx.doi.org/10.1111/dom.14142] [PMID: 32691492]
[93]
Iacobellis, G. COVID-19 and diabetes: Can DPP4 inhibition play a role? Diabetes Res. Clin. Pract., 2020, 162, 108125.
[http://dx.doi.org/10.1016/j.diabres.2020.108125] [PMID: 32224164]
[94]
Baggio, L.L.; Varin, E.M.; Koehler, J.A.; Cao, X.; Lokhnygina, Y.; Stevens, S.R.; Holman, R.R.; Drucker, D.J. Plasma levels of DPP4 activity and sDPP4 are dissociated from inflammation in mice and humans. Nat. Commun., 2020, 11(1), 3766.
[http://dx.doi.org/10.1038/s41467-020-17556-z] [PMID: 32724076]
[95]
Bassendine, M.F.; Bridge, S.H.; McCaughan, G.W.; Gorrell, M.D. COVID-19 and comorbidities: A role for dipeptidyl peptidase 4 (DPP4) in disease severity? J. Diabetes, 2020, 12(9), 649-658.
[http://dx.doi.org/10.1111/1753-0407.13052] [PMID: 32394639]
[96]
Mozafari, N.; Azadi, S.; Mehdi-Alamdarlou, S.; Ashrafi, H.; Azadi, A. Inflammation: A bridge between diabetes and COVID-19, and possible management with sitagliptin. Med. Hypotheses, 2020, 143, 110111.
[http://dx.doi.org/10.1016/j.mehy.2020.110111] [PMID: 32721805]
[97]
Solerte, S.B.; D’Addio, F.; Trevisan, R.; Lovati, E.; Rossi, A.; Pastore, I.; Dell’Acqua, M.; Ippolito, E.; Scaranna, C.; Bellante, R.; Galliani, S.; Dodesini, A.R.; Lepore, G.; Geni, F.; Fiorina, R.M.; Catena, E.; Corsico, A.; Colombo, R.; Mirani, M.; De Riva, C.; Oleandri, S.E.; Abdi, R.; Bonventre, J.V.; Rusconi, S.; Folli, F.; Di Sabatino, A.; Zuccotti, G.; Galli, M.; Fiorina, P. Sitagliptin treatment at the time of hospitalization was associated with reduced mortality in patients with type 2 diabetes and COVID-19: A multicenter, case-control, retrospective, observational study. Diabetes Care, 2020, 43(12), 2999-3006.
[http://dx.doi.org/10.2337/dc20-1521] [PMID: 32994187]
[98]
Dastan, F.; Abedini, A.; Shahabi, S.; Kiani, A.; Saffaei, A.; Zare, A. Sitagliptin Repositioning in SARS-CoV-2: Effects on ACE-2, CD-26, and Inflammatory Cytokine Storms in the Lung. Iran J Allergy Asthma Immunol, 2020. Available from: https://publish.kne-publishing.com/index.php/IJAAI/article/view/2849 [cited 2021 May 31].
[99]
Longo, M; Caruso, P; Maiorino, MI; Bellastella, G; Giugliano, D Esposito, K Treating type 2 diabetes in COVID-19 patients: The potential benefits of injective therapies. Cardiovasc. Diabetol., 2020, 19(1), 115.
[100]
Sun, B.; Huang, S.; Zhou, J. Perspectives of antidiabetic drugs in diabetes with coronavirus infections. Front. Pharmacol., 2021, 11, 592439.
[http://dx.doi.org/10.3389/fphar.2020.592439] [PMID: 33584268]
[101]
Chen, S; Lin, W; Weng, J; Xie, B; Chen, L; Chen, G Is GLP-1R agonists effective and safe in severe COVID-19 patients with type 2 diabetes?-a case report and literature review. Case Rep Lit Rev, 2020, 2020, 8.
[102]
Belančić, A.; Kresović, A.; Troskot Dijan, M. Glucagon-like peptide-1 receptor agonists in the era of COVID-19: Friend or foe? Clin. Obes., 2021, 11(2), e12439.
[http://dx.doi.org/10.1111/cob.12439] [PMID: 33423388]
[103]
Fernandez-Fernandez, B.; D’Marco, L.; Górriz, J.L.; Jacobs-Cachá, C.; Kanbay, M.; Luis-Lima, S.; Porrini, E.; Sarafidis, P.; Soler, M.J.; Ortiz, A. Exploring sodium glucose Co-transporter-2 (SGLT2) inhibitors for organ protection in COVID-19. J. Clin. Med., 2020, 9(7), E2030.
[http://dx.doi.org/10.3390/jcm9072030] [PMID: 32605278]
[104]
Ferrannini, E. Sodium-glucose co-transporters and their inhibition: Clinical physiology. Cell Metab., 2017, 26(1), 27-38.
[http://dx.doi.org/10.1016/j.cmet.2017.04.011] [PMID: 28506519]
[105]
Koufakis, T.; Pavlidis, A.N.; Metallidis, S.; Kotsa, K. Sodium-glucose co-transporter 2 inhibitors in COVID-19: Meeting at the crossroads between heart, diabetes and infectious diseases. Int. J. Clin. Pharm., 2021, 43(3), 764-767.
[http://dx.doi.org/10.1007/s11096-021-01256-9] [PMID: 33751323]
[106]
Kosiborod, M.; Berwanger, O.; Koch, G.G.; Martinez, F.; Mukhtar, O.; Verma, S.; Chopra, V.; Javaheri, A.; Ambery, P.; Gasparyan, S.B.; Buenconsejo, J.; Sjöström, C.D.; Langkilde, A.M.; Oscarsson, J.; Esterline, R. Effects of dapagliflozin on prevention of major clinical events and recovery in patients with respiratory failure because of COVID-19: Design and rationale for the DARE-19 study. Diabetes Obes. Metab., 2021, 23(4), 886-896.
[http://dx.doi.org/10.1111/dom.14296] [PMID: 33319454]
[107]
Sainsbury, C.; Wang, J.; Gokhale, K.; Acosta-Mena, D.; Dhalla, S.; Byne, N.; Chandan, J.S.; Anand, A.; Cooper, J.; Okoth, K.; Subramanian, A.; Bangash, M.N.; Taverner, T.; Hanif, W.; Ghosh, S.; Narendran, P.; Cheng, K.K.; Marshall, T.; Gkoutos, G.; Toulis, K.; Thomas, N.; Tahrani, A.; Adderley, N.J.; Haroon, S.; Nirantharakumar, K. Sodium-glucose co-transporter-2 inhibitors and susceptibility to COVID-19: A population-based retrospective cohort study. Diabetes Obes. Metab., 2021, 23(1), 263-269.
[http://dx.doi.org/10.1111/dom.14203] [PMID: 32991065]
[108]
Laboratorios Silanes, S.A. Adaptive study to demonstrate efficacy and safety of metformin glycinate for the treatment of hospitalized patients with severe acute respiratory syndrome secondary to SARS-CoV-2. Randomized, Double-Blind, Phase IIIb clinicaltrials.gov., 2021. Available from: https://clinicaltrials.gov/ct2/show/NCT04625985
[109]
Annuzzi, G. Individualized, technological interventions for diabetes care in the COVID-19 ward. clinicaltrials.gov, 2021. Available from: https://clinicaltrials.gov/ct2/show/NCT04871958
[110]
Dasman Diabetes Institute. Effect of pioglitazone on inflammatory response and clinical outcome in T2DM patients With COVID-19 clinicaltrials.gov., 2021. Available from: https://clinicaltrials.gov/ct2/show/NCT04604223
[111]
Solini, A. Determining the impact of COVID-19 lockdown on metabolic control in individuals with type 2 diabetes. clinicaltrials.gov., 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT04501991
[112]
Abuhasira, R. Efficacy and safety of dipeptidyl peptidase-4 inhibitors in diabetic patients with established COVID-19. clinicaltrials.gov., 2021. Available from: https://clinicaltrials.gov/ct2/show/NCT04371978
[113]
An international, multicenter, randomized, double-blind, placebocontrolled, phase III study evaluating the efficacy and safety of dapagliflozin in respiratory failure in patients with COVID-19. 2021. Available from: https://clinicaltrials.gov/ct2/show/NCT04350593
[114]
Fundacion para la Investigacion Biomedica del Hospital Universitario ramon y cajal. non-blinded, randomized and controlled clinical trial of pioglitazone treatment in patients with type 2 diabetes mellitus and covid-19. clinicaltrials.gov, 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT04535700
[115]
Cheriyan, J.C. mulTi-Arm therapeutic study in Pre-ICu patients admitted with Covid-19 - experimental drugs and mechanisms (TACTIC-E). clinicaltrials.gov, 2021. Available from: https://clinicaltrials.gov/ct2/show/NCT04393246
[116]
Pilot study into the use of metformin and low dose naltrexone (ldn) for patients with coronavirus disease 2019 (COVID-19) - assessment of short and long term effects 2019. Available from: https://clinicaltrials.gov/ct2/show/NCT04604678
[117]
Mendoza, R.G. Effect of the combination of dipeptidyl peptidase-4 inhibitor (dpp4i) and insulin in comparison to insulin on metabolic control and prognosis in hospitalized patients with covid-19 clinicaltrials.gov., 2021. Available from: https://clinicaltrials.gov/ct2/show/NCT04542213
[118]
Fiorina, P. The Effect of sitagliptin treatment in COVID-19 positive diabetic patients clinicaltrials.gov, 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT04365517 [cited 2021 May 31].

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy