Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Therapeutic Approaches to Amyotrophic Lateral Sclerosis from the Lab to the Clinic

Author(s): Vivek P. Chavda*, Chirag Patel, Dharti Modh, Yavuz Nuri Ertas, Shreya S. Sonak, Nafesa K. Munshi, Krishnan Anand*, Arun Soni and Sonal Pande

Volume 23, Issue 3, 2022

Published on: 18 April, 2022

Page: [200 - 222] Pages: 23

DOI: 10.2174/1389200223666220310113110

Price: $65

Abstract

Amyotrophic Lateral Sclerosis (ALS) is a terminal neuro-degenerative disorder that is clinically recognized as a gradual degeneration of the upper and lower motor neurons, with an average duration of 3 to 5 years from initial of symptoms to death. The mechanisms underlying the pathogenesis and progression of the disease are multifactorial. Therefore, to find effective treatments, it is necessary to understand the heterogeneity underlying the progression of ALS. Recent developments in gene therapy have opened a new avenue to treat this condition, especially for the characterized genetic types. Gene therapy methods have been studied in various pre-clinical settings and clinical trials, and they may be a promising path for developing an effective and safe ALS cure. A growing body of evidence demonstrates abnormalities in metabolic energy at the cellular and whole-body level in animal models and people living with ALS. Using and incorporatig high-throughput "omics" methods have radically transformed our thoughts about ALS, strengthened our understanding of the disease's dynamic molecular architecture, differentiated distinct patient subtypes, and created a reasonable basis for identifying biomarkers and novel individualised treatments. Future clinical and laboratory trials would also focus on the diverse relationships between metabolism and ALS to address the issue of whether targeting poor metabolism in ALS is an effective way to change disease progression. In this review, we focus on the detailed pathogenesis of ALS and highlight principal genes, i.e., SOD1, TDP-43, C9orf72, and FUS, as well as targeted ALS therapies. An attempt is made to provide up-to-date clinical outcomes, including various biomarkers that are thought to be important players in early ALS detection.

Keywords: Amyotrophic lateral sclerosis, SOD1, TDP-43, FUS, biomarkers, treatment, clinical trials.

Graphical Abstract
[1]
Calvo, A.C.; Manzano, R.; Mendonça, D.M.F.; Muñoz, M.J.; Zaragoza, P.; Osta, R. Amyotrophic lateral sclerosis: A focus on disease pro-gression. In: BioMed Res. Int; , 2014; 2014, p. 925101.
[http://dx.doi.org/10.1155/2014/925101]
[2]
Masrori, P.; Van Damme, P. Amyotrophic lateral sclerosis: A clinical review. Eur. J. Neurol., 2020, 27(10), 1918-1929.
[http://dx.doi.org/10.1111/ene.14393]
[3]
Hardiman, O.; Al-Chalabi, A.; Chio, A.; Corr, E.M.; Logroscino, G.; Robberecht, W.; Shaw, P.J.; Simmons, Z.; van den Berg, L.H. Amyo-trophic lateral sclerosis. Nat. Rev. Dis. Primers, 2017, 3, 17071.
[http://dx.doi.org/10.1038/nrdp.2017.71] [PMID: 28980624]
[4]
Byrne, S.; Elamin, M.; Bede, P.; Shatunov, A.; Walsh, C.; Corr, B.; Heverin, M.; Jordan, N.; Kenna, K.; Lynch, C.; McLaughlin, R.L.; Iyer, P.M.; O’Brien, C.; Phukan, J.; Wynne, B.; Bokde, A.L.; Bradley, D.G.; Pender, N.; Al-Chalabi, A.; Hardiman, O. Cognitive and clinical char-acteristics of patients with amyotrophic lateral sclerosis carrying a C9orf72 repeat expansion: A population-based cohort study. Lancet Neurol., 2012, 11(3), 232-240.
[http://dx.doi.org/10.1016/S1474-4422(12)70014-5] [PMID: 22305801]
[5]
Mancuso, R.; Navarro, X. Amyotrophic lateral sclerosis: Current perspectives from basic research to the clinic. Prog. Neurobiol., 2015, 133, 1-26.
[http://dx.doi.org/10.1016/j.pneurobio.2015.07.004] [PMID: 26253783]
[6]
Chiò, A.; Logroscino, G.; Traynor, B.J.; Collins, J.; Simeone, J.C.; Goldstein, L.A.; White, L.A. Global epidemiology of amyotrophic lateral sclerosis: A systematic review. Neuroepidemiology, 2013, 41(2), 118-130.
[http://dx.doi.org/10.1159/000351153]
[7]
GBD 2016 Motor Neuron Disease Collaborators. Global, regional, and national burden of motor neuron diseases 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol., 2018, 17(12), 1083-1097.
[http://dx.doi.org/10.1016/S1474-4422(18)30404-6] [PMID: 30409709]
[8]
Mejzini, R.; Flynn, L.L.; Pitout, I.L.; Fletcher, S.; Wilton, S.D.; Akkari, P.A. ALS Genetics, mechanisms, and therapeutics: Where are we now? Front. Neurosci., 2019, 13, 1310.
[http://dx.doi.org/10.3389/fnins.2019.01310] [PMID: 31866818]
[9]
Oskarsson, B.; Horton, D.K.; Mitsumoto, H. Potential environmental factors in amyotrophic lateral sclerosis. Neurol. Clin., 2015, 33(4), 877-888.
[http://dx.doi.org/10.1016/j.ncl.2015.07.009] [PMID: 26515627]
[10]
Filippini, T.; Fiore, M.; Tesauro, M.; Malagoli, C.; Consonni, M.; Violi, F.; Arcolin, E.; Iacuzio, L.; Oliveri Conti, G.; Cristaldi, A.; Zuc-carello, P.; Zucchi, E.; Mazzini, L.; Pisano, F.; Gagliardi, I.; Patti, F.; Mandrioli, J.; Ferrante, M.; Vinceti, M. Clinical and lifestyle factors and risk of amyotrophic lateral sclerosis: A population-based case-control study. Int. J. Environ. Res. Public Health, 2020, 17(3), E857.
[http://dx.doi.org/10.3390/ijerph17030857] [PMID: 32019087]
[11]
van Es, M.A.; Goedee, H.S.; Westeneng, H-J.; Nijboer, T.C.W.; van den Berg, L.H. Is it accurate to classify ALS as a neuromuscular disor-der? Expert Rev. Neurother., 2020, 20(9), 895-906.
[http://dx.doi.org/10.1080/14737175.2020.1806061] [PMID: 32749157]
[12]
Brooks, BR; Miller, RG; Swash, M; Munsat, TL El Escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amy-otroph Lateral Scler Mot Neuron Disord, 2000, 1(5), 293-299.
[http://dx.doi.org/10.1080/146608200300079536]
[13]
Hoffman, E.K.; Wilcox, H.M.; Scott, R.W.; Siman, R. Proteasome inhibition enhances the stability of mouse Cu/Zn superoxide dismutase with mutations linked to familial amyotrophic lateral sclerosis. J. Neurol. Sci., 1996, 139(1), 15-20.
[http://dx.doi.org/10.1016/0022-510X(96)00031-7] [PMID: 8836967]
[14]
Zou, Z-Y.; Zhou, Z-R.; Che, C-H.; Liu, C-Y.; He, R-L.; Huang, H-P. Genetic epidemiology of amyotrophic lateral sclerosis: A systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry, 2017, 88(7), 540-549.
[http://dx.doi.org/10.1136/jnnp-2016-315018] [PMID: 28057713]
[15]
Cho, H.; Shukla, S. Role of edaravone as a treatment option for patients with amyotrophic lateral sclerosis. Pharmaceuticals, 2020, 14(1), 29.
[http://dx.doi.org/10.3390/ph14010029] [PMID: 33396271]
[16]
Cruz, M.P. Edaravone (Radicava): A novel neuroprotective agent for the treatment of amyotrophic lateral sclerosis. P&T, 2018, 43(1), 25-28.
[PMID: 29290672]
[17]
Calió, M.L.; Henriques, E.; Siena, A.; Bertoncini, C.R.A.; Gil-Mohapel, J.; Rosenstock, T.R. Mitochondrial dysfunction, neurogenesis, and epigenetics: Putative implications for amyotrophic lateral sclerosis neurodegeneration and treatment. Front. Neurosci., 2020, 14, 679.
[http://dx.doi.org/10.3389/fnins.2020.00679] [PMID: 32760239]
[18]
Ajroud-Driss, S.; Siddique, T. Sporadic and hereditary amyotrophic lateral sclerosis (ALS). Biochim. Biophys. Acta, 2015, 1852(4), 679-684.
[http://dx.doi.org/10.1016/j.bbadis.2014.08.010] [PMID: 25193032]
[19]
Chavda, V.P.; Prajapati, H.; Zadafiya, P.; Soniwala, M. Probiotics in autoimmune and inflammatory diseases. Probiotic Research in Thera-peutics; Eds. Kaur, I.P.; Deol, P.K., Eds.; Springer: Singapore, 2021.
[http://dx.doi.org/10.1007/978-981-15-8214-1_12]
[20]
Bonafede, R.; Mariotti, R. ALS Pathogenesis and therapeutic approaches: The role of mesenchymal stem cells and extracellular vesicles. Front. Cell. Neurosci., 2017, 11, 80.
[http://dx.doi.org/10.3389/fncel.2017.00080] [PMID: 28377696]
[21]
Rosen, D.R. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature, 1993, 364, 362.
[22]
Hadano, S.; Hand, C.K.; Osuga, H.; Yanagisawa, Y.; Otomo, A.; Devon, R.S.; Miyamoto, N.; Showguchi-Miyata, J.; Okada, Y.; Singaraja, R.; Figlewicz, D.A.; Kwiatkowski, T.; Hosler, B.A.; Sagie, T.; Skaug, J.; Nasir, J.; Brown, R.H.J., Jr; Scherer, S.W.; Rouleau, G.A.; Hayden, M.R.; Ikeda, J.E. A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Nat. Genet., 2001, 29(2), 166-173.
[http://dx.doi.org/10.1038/ng1001-166] [PMID: 11586298]
[23]
Hand, C.K.; Khoris, J.; Salachas, F.; Gros-Louis, F.; Lopes, A.A.S.; Mayeux-Portas, V.; Brewer, C.G.; Brown, R.H.J., Jr; Meininger, V.; Ca-mu, W.; Rouleau, G.A. A novel locus for familial amyotrophic lateral sclerosis, on chromosome 18q. Am. J. Hum. Genet., 2002, 70(1), 251-256.
[http://dx.doi.org/10.1086/337945] [PMID: 11706389]
[24]
Chen, Y-Z.; Bennett, C.L.; Huynh, H.M.; Blair, I.P.; Puls, I.; Irobi, J.; Dierick, I.; Abel, A.; Kennerson, M.L.; Rabin, B.A.; Nicholson, G.A.; Auer-Grumbach, M.; Wagner, K.; De Jonghe, P.; Griffin, J.W.; Fischbeck, K.H.; Timmerman, V.; Cornblath, D.R.; Chance, P.F. DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). Am. J. Hum. Genet., 2004, 74(6), 1128-1135.
[http://dx.doi.org/10.1086/421054] [PMID: 15106121]
[25]
Pozner, T.; Regensburger, M.; Engelhorn, T.; Winkler, J.; Winner, B. Janus-faced spatacsin (SPG11): Involvement in neurodevelopment and multisystem neurodegeneration. Brain, 2020, 143(8), 2369-2379.
[http://dx.doi.org/10.1093/brain/awaa099] [PMID: 32355960]
[26]
Stevanin, G.; Santorelli, F.M.; Azzedine, H.; Coutinho, P.; Chomilier, J.; Denora, P.S.; Martin, E.; Ouvrard-Hernandez, A-M.; Tessa, A.; Bouslam, N.; Lossos, A.; Charles, P.; Loureiro, J.L.; Elleuch, N.; Confavreux, C.; Cruz, V.T.; Ruberg, M.; Leguern, E.; Grid, D.; Tazir, M.; Fontaine, B.; Filla, A.; Bertini, E.; Durr, A.; Brice, A. Mutations in SPG11, encoding spatacsin, are a major cause of spastic paraplegia with thin corpus callosum. Nat. Genet., 2007, 39(3), 366-372.
[http://dx.doi.org/10.1038/ng1980] [PMID: 17322883]
[27]
Valdmanis, P.N.; Daoud, H.; Dion, P.A.; Rouleau, G.A. Recent advances in the genetics of amyotrophic lateral sclerosis. Curr. Neurol. Neurosci. Rep., 2009, 9(3), 198-205.
[http://dx.doi.org/10.1007/s11910-009-0030-9] [PMID: 19348708]
[28]
Kwiatkowski, T.J.J., Jr; Bosco, D.A.; Leclerc, A.L.; Tamrazian, E.; Vanderburg, C.R.; Russ, C.; Davis, A.; Gilchrist, J.; Kasarskis, E.J.; Mun-sat, T.; Valdmanis, P.; Rouleau, G.A.; Hosler, B.A.; Cortelli, P.; de Jong, P.J.; Yoshinaga, Y.; Haines, J.L.; Pericak-Vance, M.A.; Yan, J.; Ticoz-zi, N.; Siddique, T.; McKenna-Yasek, D.; Sapp, P.C.; Horvitz, H.R.; Landers, J.E.; Brown, R.H.J., Jr Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science, 2009, 323(5918), 1205-1208.
[http://dx.doi.org/10.1126/science.1166066] [PMID: 19251627]
[29]
Nishimura, A.L.; Mitne-Neto, M.; Silva, H.C.A.; Richieri-Costa, A.; Middleton, S.; Cascio, D.; Kok, F.; Oliveira, J.R.M.; Gillingwater, T.; Webb, J.; Skehel, P.; Zatz, M. A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am. J. Hum. Genet., 2004, 75(5), 822-831.
[http://dx.doi.org/10.1086/425287] [PMID: 15372378]
[30]
Greenway, M.J.; Andersen, P.M.; Russ, C.; Ennis, S.; Cashman, S.; Donaghy, C.; Patterson, V.; Swingler, R.; Kieran, D.; Prehn, J.; Morrison, K.E.; Green, A.; Acharya, K.R.; Brown, R.H.J., Jr; Hardiman, O. ANG mutations segregate with familial and ‘sporadic’ amyotrophic lateral sclerosis. Nat. Genet., 2006, 38(4), 411-413.
[http://dx.doi.org/10.1038/ng1742] [PMID: 16501576]
[31]
Suk, T.R.; Rousseaux, M.W.C. The role of TDP-43 mislocalization in amyotrophic lateral sclerosis. Mol. Neurodegener., 2020, 15(1), 45.
[http://dx.doi.org/10.1186/s13024-020-00397-1] [PMID: 32799899]
[32]
Zhang, Y.; Zolov, S.N.; Chow, C.Y.; Slutsky, S.G.; Richardson, S.C.; Piper, R.C.; Yang, B.; Nau, J.J.; Westrick, R.J.; Morrison, S.J.; Meisler, M.H.; Weisman, L.S. Loss of Vac14, a regulator of the signaling lipid phosphatidylinositol 3,5-bisphosphate, results in neurodegeneration in mice. Proc. Natl. Acad. Sci. USA, 2007, 104(44), 17518-17523.
[http://dx.doi.org/10.1073/pnas.0702275104] [PMID: 17956977]
[33]
Maruyama, H.; Morino, H.; Ito, H.; Izumi, Y.; Kato, H.; Watanabe, Y.; Kinoshita, Y.; Kamada, M.; Nodera, H.; Suzuki, H.; Komure, O.; Matsuura, S.; Kobatake, K.; Morimoto, N.; Abe, K.; Suzuki, N.; Aoki, M.; Kawata, A.; Hirai, T.; Kato, T.; Ogasawara, K.; Hirano, A.; Ta-kumi, T.; Kusaka, H.; Hagiwara, K.; Kaji, R.; Kawakami, H. Mutations of optineurin in amyotrophic lateral sclerosis. Nature, 2010, 465(7295), 223-226.
[http://dx.doi.org/10.1038/nature08971] [PMID: 20428114]
[34]
Elden, A.C.; Kim, H-J.; Hart, M.P.; Chen-Plotkin, A.S.; Johnson, B.S.; Fang, X.; Armakola, M.; Geser, F.; Greene, R.; Lu, M.M.; Pad-manabhan, A.; Clay-Falcone, D.; McCluskey, L.; Elman, L.; Juhr, D.; Gruber, P.J.; Rüb, U.; Auburger, G.; Trojanowski, J.Q.; Lee, V.M-Y.; Van Deerlin, V.M.; Bonini, N.M.; Gitler, A.D. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature, 2010, 466(7310), 1069-1075.
[http://dx.doi.org/10.1038/nature09320] [PMID: 20740007]
[35]
Forman, M.S.; Mackenzie, I.R.; Cairns, N.J.; Swanson, E.; Boyer, P.J.; Drachman, D.A.; Jhaveri, B.S.; Karlawish, J.H.; Pestronk, A.; Smith, T.W.; Tu, P-H.; Watts, G.D.J.; Markesbery, W.R.; Smith, C.D.; Kimonis, V.E. Novel ubiquitin neuropathology in frontotemporal dementia with valosin-containing protein gene mutations. J. Neuropathol. Exp. Neurol., 2006, 65(6), 571-581.
[http://dx.doi.org/10.1097/00005072-200606000-00005] [PMID: 16783167]
[36]
Deng, H-X.; Chen, W.; Hong, S-T.; Boycott, K.M.; Gorrie, G.H.; Siddique, N.; Yang, Y.; Fecto, F.; Shi, Y.; Zhai, H.; Jiang, H.; Hirano, M.; Rampersaud, E.; Jansen, G.H.; Donkervoort, S.; Bigio, E.H.; Brooks, B.R.; Ajroud, K.; Sufit, R.L.; Haines, J.L.; Mugnaini, E.; Pericak-Vance, M.A.; Siddique, T. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset alS and ALS/dementia. Nature, 2011, 477(7363), 211-215.
[http://dx.doi.org/10.1038/nature10353] [PMID: 21857683]
[37]
Al-Saif, A.; Al-Mohanna, F.; Bohlega, S. A mutation in sigma-1 receptor causes juvenile amyotrophic lateral sclerosis. Ann. Neurol., 2011, 70(6), 913-919.
[http://dx.doi.org/10.1002/ana.22534] [PMID: 21842496]
[38]
Cannon, A.; Baker, M.; Boeve, B.; Josephs, K.; Knopman, D.; Petersen, R.; Parisi, J.; Dickison, D.; Adamson, J.; Snowden, J.; Neary, D.; Mann, D.; Hutton, M.; Pickering-Brown, S.M. CHMP2B mutations are not a common cause of frontotemporal lobar degeneration. Neurosci. Lett., 2006, 398(1-2), 83-84.
[http://dx.doi.org/10.1016/j.neulet.2005.12.056] [PMID: 16431024]
[39]
Wu, C-H.; Fallini, C.; Ticozzi, N.; Keagle, P.J.; Sapp, P.C.; Piotrowska, K.; Lowe, P.; Koppers, M.; McKenna-Yasek, D.; Baron, D.M.; Kost, J.E.; Gonzalez-Perez, P.; Fox, A.D.; Adams, J.; Taroni, F.; Tiloca, C.; Leclerc, A.L.; Chafe, S.C.; Mangroo, D.; Moore, M.J.; Zitzewitz, J.A.; Xu, Z-S.; van den Berg, L.H.; Glass, J.D.; Siciliano, G.; Cirulli, E.T.; Goldstein, D.B.; Salachas, F.; Meininger, V.; Rossoll, W.; Ratti, A.; Gel-lera, C.; Bosco, D.A.; Bassell, G.J.; Silani, V.; Drory, V.E.; Brown, R.H.J., Jr; Landers, J.E. Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Nature, 2012, 488(7412), 499-503.
[http://dx.doi.org/10.1038/nature11280] [PMID: 22801503]
[40]
Takahashi, Y.; Fukuda, Y.; Yoshimura, J.; Toyoda, A.; Kurppa, K.; Moritoyo, H.; Belzil, V.V.; Dion, P.A.; Higasa, K.; Doi, K.; Ishiura, H.; Mitsui, J.; Date, H.; Ahsan, B.; Matsukawa, T.; Ichikawa, Y.; Moritoyo, T.; Ikoma, M.; Hashimoto, T.; Kimura, F.; Murayama, S.; Onodera, O.; Nishizawa, M.; Yoshida, M.; Atsuta, N.; Sobue, G.; Fifita, J.A.; Williams, K.L.; Blair, I.P.; Nicholson, G.A.; Gonzalez-Perez, P.; Brown, R.H.J., Jr; Nomoto, M.; Elenius, K.; Rouleau, G.A.; Fujiyama, A.; Morishita, S.; Goto, J.; Tsuji, S. JaCALS. ERBB4 mutations that disrupt the neuregulin-ErbB4 pathway cause amyotrophic lateral sclerosis type 19. Am. J. Hum. Genet., 2013, 93(5), 900-905.
[http://dx.doi.org/10.1016/j.ajhg.2013.09.008] [PMID: 24119685]
[41]
Bekenstein, U.; Soreq, H. Heterogeneous nuclear ribonucleoprotein A1 in health and neurodegenerative disease: From structural insights to post-transcriptional regulatory roles. Mol. Cell. Neurosci., 2013, 56, 436-446.
[http://dx.doi.org/10.1016/j.mcn.2012.12.002] [PMID: 23247072]
[42]
Johnson, J.O.; Glynn, S.M.; Gibbs, J.R.; Nalls, M.A.; Sabatelli, M.; Restagno, G.; Drory, V.E.; Chiò, A.; Rogaeva, E.; Traynor, B.J. Mutations in the CHCHD10 gene are a common cause of familial amyotrophic lateral sclerosis. Brain, 2014, 137(Pt 12), e311.
[http://dx.doi.org/10.1093/brain/awu265] [PMID: 25261972]
[43]
Smith, B.N.; Ticozzi, N.; Fallini, C.; Gkazi, A.S.; Topp, S.; Kenna, K.P.; Scotter, E.L.; Kost, J.; Keagle, P.; Miller, J.W.; Calini, D.; Vance, C.; Danielson, E.W.; Troakes, C.; Tiloca, C.; Al-Sarraj, S.; Lewis, E.A.; King, A.; Colombrita, C.; Pensato, V.; Castellotti, B.; de Belleroche, J.; Baas, F.; ten Asbroek, A.L.M.A.; Sapp, P.C.; McKenna-Yasek, D.; McLaughlin, R.L.; Polak, M.; Asress, S.; Esteban-Pérez, J.; Muñoz-Blanco, J.L.; Simpson, M.; van Rheenen, W.; Diekstra, F.P.; Lauria, G.; Duga, S.; Corti, S.; Cereda, C.; Corrado, L.; Sorarù, G.; Morrison, K.E.; Williams, K.L.; Nicholson, G.A.; Blair, I.P.; Dion, P.A.; Leblond, C.S.; Rouleau, G.A.; Hardiman, O.; Veldink, J.H.; van den Berg, L.H.; Al-Chalabi, A.; Pall, H.; Shaw, P.J.; Turner, M.R.; Talbot, K.; Taroni, F.; García-Redondo, A.; Wu, Z.; Glass, J.D.; Gellera, C.; Ratti, A.; Brown, R.H.J., Jr; Silani, V.; Shaw, C.E.; Landers, J.E. SLAGEN Consortium. Exome-wide rare variant analysis identifies TUBA4A muta-tions associated with familial ALS. Neuron, 2014, 84(2), 324-331.
[http://dx.doi.org/10.1016/j.neuron.2014.09.027] [PMID: 25374358]
[44]
Smith, B.N.; Topp, S.D.; Fallini, C.; Shibata, H.; Chen, H-J.; Troakes, C.; King, A.; Ticozzi, N.; Kenna, K.P.; Soragia-Gkazi, A.; Miller, J.W.; Sato, A.; Dias, D.M.; Jeon, M.; Vance, C.; Wong, C.H.; de Majo, M.; Kattuah, W.; Mitchell, J.C.; Scotter, E.L.; Parkin, N.W.; Sapp, P.C.; No-lan, M.; Nestor, P.J.; Simpson, M.; Weale, M.; Lek, M.; Baas, F.; Vianney de Jong, J.M.; Ten Asbroek, A.L.M.A.; Redondo, A.G.; Esteban-Pérez, J.; Tiloca, C.; Verde, F.; Duga, S.; Leigh, N.; Pall, H.; Morrison, K.E.; Al-Chalabi, A.; Shaw, P.J.; Kirby, J.; Turner, M.R.; Talbot, K.; Hardiman, O.; Glass, J.D.; De Belleroche, J.; Maki, M.; Moss, S.E.; Miller, C.; Gellera, C.; Ratti, A.; Al-Sarraj, S.; Brown, R.H.J., Jr; Silani, V.; Landers, J.E.; Shaw, C.E. Mutations in the vesicular trafficking protein annexin A11 are associated with amyotrophic lateral sclerosis. Sci. Transl. Med., 2017, 9(388), eaad9157.
[http://dx.doi.org/10.1126/scitranslmed.aad9157] [PMID: 28469040]
[45]
Prasad, A.; Bharathi, V.; Sivalingam, V.; Girdhar, A.; Patel, B.K. Molecular mechanisms of TDP-43 misfolding and pathology in amyo-trophic lateral sclerosis. Front. Mol. Neurosci., 2019, 12, 25.
[http://dx.doi.org/10.3389/fnmol.2019.00025] [PMID: 30837838]
[46]
DeJesus-Hernandez, M.; Mackenzie, I.R.; Boeve, B.F.; Boxer, A.L.; Baker, M.; Rutherford, N.J.; Nicholson, A.M.; Finch, N.A.; Flynn, H.; Adamson, J.; Kouri, N.; Wojtas, A.; Sengdy, P.; Hsiung, G-Y.R.; Karydas, A.; Seeley, W.W.; Josephs, K.A.; Coppola, G.; Geschwind, D.H.; Wszolek, Z.K.; Feldman, H.; Knopman, D.S.; Petersen, R.C.; Miller, B.L.; Dickson, D.W.; Boylan, K.B.; Graff-Radford, N.R.; Rademakers, R. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron, 2011, 72(2), 245-256.
[http://dx.doi.org/10.1016/j.neuron.2011.09.011] [PMID: 21944778]
[47]
Bannwarth, S.; Ait-El-Mkadem, S.; Chaussenot, A.; Genin, E.C.; Lacas-Gervais, S.; Fragaki, K.; Berg-Alonso, L.; Kageyama, Y.; Serre, V.; Moore, D.; Verschueren, A.; Rouzier, C.; Le Ber, I.; Augé, G.; Cochaud, C.; Lespinasse, F.; N’Guyen, K.; de Septenville, A.; Brice, A.; Yu-Wai-Man, P.; Sesaki, H.; Pouget, J.; Paquis-Flucklinger, V. Reply: Two novel mutations in conserved codons indicate that CHCHD10 is a gene associated with motor neuron disease. Brain, 2014, 137(Pt 12), e310.
[http://dx.doi.org/10.1093/brain/awu228] [PMID: 25113788]
[48]
Gal, J.; Ström, A-L.; Kwinter, D.M.; Kilty, R.; Zhang, J.; Shi, P.; Fu, W.; Wooten, M.W.; Zhu, H. Sequestosome 1/p62 links familial ALS mutant SOD1 to LC3 via an ubiquitin-independent mechanism. J. Neurochem., 2009, 111(4), 1062-1073.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06388.x] [PMID: 19765191]
[49]
Yerbury, J.J.; Farrawell, N.E.; McAlary, L. Proteome homeostasis dysfunction: A unifying principle in ALS pathogenesis. Trends Neurosci., 2020, 43(5), 274-284.
[http://dx.doi.org/10.1016/j.tins.2020.03.002] [PMID: 32353332]
[50]
Webster, C.P.; Smith, E.F.; Shaw, P.J.; De Vos, K.J. Protein homeostasis in amyotrophic lateral sclerosis: Therapeutic opportunities? Front. Mol. Neurosci., 2017, 10, 123.
[http://dx.doi.org/10.3389/fnmol.2017.00123] [PMID: 28512398]
[51]
Medinas, D.B.; Valenzuela, V.; Hetz, C. Proteostasis disturbance in amyotrophic lateral sclerosis. Hum. Mol. Genet., 2017, 26(R2), R91-R104.
[http://dx.doi.org/10.1093/hmg/ddx274] [PMID: 28977445]
[52]
Ruegsegger, C.; Saxena, S. Proteostasis impairment in ALS. Brain Res., 2016, 1648(Pt B), 571-579.
[http://dx.doi.org/10.1016/j.brainres.2016.03.032] [PMID: 27033833]
[53]
Colombrita, C.; Onesto, E.; Tiloca, C.; Ticozzi, N.; Silani, V.; Ratti, A. RNA-binding proteins and RNA metabolism: A new scenario in the pathogenesis of Amyotrophic lateral sclerosis. Arch. Ital. Biol., 2011, 149(1), 83-99.
[PMID: 21412718]
[54]
Strong, M.J. The evidence for altered RNA metabolism in amyotrophic lateral sclerosis (ALS). J. Neurol. Sci., 2010, 288(1-2), 1-12.
[http://dx.doi.org/10.1016/j.jns.2009.09.029] [PMID: 19840884]
[55]
Liu, J.; Wang, F. Role of neuroinflammation in amyotrophic lateral sclerosis: Cellular mechanisms and therapeutic implications. Front. Immunol., 2017, 8, 1005.
[http://dx.doi.org/10.3389/fimmu.2017.01005] [PMID: 28871262]
[56]
Goutman, S.A.; Chen, K.S.; Paez-Colasante, X.; Feldman, E.L. Emerging understanding of the genotype-phenotype relationship in amyo-trophic lateral sclerosis. Handb. Clin. Neurol., 2018, 148, 603-623.
[http://dx.doi.org/10.1016/B978-0-444-64076-5.00039-9] [PMID: 29478603]
[57]
Butti, Z.; Patten, S.A. RNA Dysregulation in amyotrophic lateral sclerosis. Front. Genet., 2019, 9, 712.
[http://dx.doi.org/10.3389/fgene.2018.00712] [PMID: 30723494]
[58]
Kim, B.W.; Jeong, Y.E.; Wong, M.; Martin, L.J. DNA damage accumulates and responses are engaged in human ALS brain and spinal motor neurons and DNA repair is activatable in iPSC-derived motor neurons with SOD1 mutations. Acta Neuropathol. Commun., 2020, 8(1), 7.
[http://dx.doi.org/10.1186/s40478-019-0874-4] [PMID: 32005289]
[59]
Moreira, M-C.; Klur, S.; Watanabe, M.; Németh, A.H.; Le Ber, I.; Moniz, J-C.; Tranchant, C.; Aubourg, P.; Tazir, M.; Schöls, L.; Pandolfo, M.; Schulz, J.B.; Pouget, J.; Calvas, P.; Shizuka-Ikeda, M.; Shoji, M.; Tanaka, M.; Izatt, L.; Shaw, C.E.; M’Zahem, A.; Dunne, E.; Bomont, P.; Benhassine, T.; Bouslam, N.; Stevanin, G.; Brice, A.; Guimarães, J.; Mendonça, P.; Barbot, C.; Coutinho, P.; Sequeiros, J.; Dürr, A.; Wart-er, J-M.; Koenig, M. Senataxin, the ortholog of a yeast RNA helicase, is mutant in ataxia-ocular apraxia 2. Nat. Genet., 2004, 36(3), 225-227.
[http://dx.doi.org/10.1038/ng1303] [PMID: 14770181]
[60]
Olkowski, Z.L. Mutant AP endonuclease in patients with amyotrophic lateral sclerosis. Neuroreport, 1998, 9(2), 239-242.
[http://dx.doi.org/10.1097/00001756-199801260-00012] [PMID: 9507962]
[61]
Benarroch, E.E. Nucleocytoplasmic transport: Mechanisms and involvement in neurodegenerative disease. Neurology, 2019, 92(16), 757-764.
[http://dx.doi.org/10.1212/WNL.0000000000007305] [PMID: 30894450]
[62]
Kim, H.J.; Taylor, J.P. Lost in transportation: Nucleocytoplasmic transport defects in ALS and other neurodegenerative diseases. Neuron, 2017, 96(2), 285-297.
[http://dx.doi.org/10.1016/j.neuron.2017.07.029] [PMID: 29024655]
[63]
Fahrenkrog, B.; Harel, A. Perturbations in traffic: Aberrant nucleocytoplasmic transport at the heart of neurodegeneration. Cells, 2018, 7(12), E232.
[http://dx.doi.org/10.3390/cells7120232] [PMID: 30486313]
[64]
Dormann, D.; Rodde, R.; Edbauer, D.; Bentmann, E.; Fischer, I.; Hruscha, A.; Than, M.E.; Mackenzie, I.R.A.; Capell, A.; Schmid, B.; Neu-mann, M.; Haass, C. ALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import. EMBO J., 2010, 29(16), 2841-2857.
[http://dx.doi.org/10.1038/emboj.2010.143] [PMID: 20606625]
[65]
Jiang, J.; Zhu, Q.; Gendron, T.F.; Saberi, S.; McAlonis-Downes, M.; Seelman, A.; Stauffer, J.E.; Jafar-Nejad, P.; Drenner, K.; Schulte, D.; Chun, S.; Sun, S.; Ling, S-C.; Myers, B.; Engelhardt, J.; Katz, M.; Baughn, M.; Platoshyn, O.; Marsala, M.; Watt, A.; Heyser, C.J.; Ard, M.C.; De Muynck, L.; Daughrity, L.M.; Swing, D.A.; Tessarollo, L.; Jung, C.J.; Delpoux, A.; Utzschneider, D.T.; Hedrick, S.M.; de Jong, P.J.; Edbauer, D.; Van Damme, P.; Petrucelli, L.; Shaw, C.E.; Bennett, C.F.; Da Cruz, S.; Ravits, J.; Rigo, F.; Cleveland, D.W.; Lagier-Tourenne, C. Gain of toxicity from ALS/FTD-linked repeat expansions in C9ORF72 is alleviated by antisense oligonucleotides targeting GGGGCC-containing RNAs. Neuron, 2016, 90(3), 535-550.
[http://dx.doi.org/10.1016/j.neuron.2016.04.006] [PMID: 27112497]
[66]
Freibaum, B.D.; Taylor, J.P. The role of dipeptide repeats in C9ORF72-related ALS-FTD. Front. Mol. Neurosci., 2017, 10, 35.
[http://dx.doi.org/10.3389/fnmol.2017.00035] [PMID: 28243191]
[67]
Cleary, J.D.; Pattamatta, A.; Ranum, L.P.W. Repeat-associated non-ATG (RAN) translation. J. Biol. Chem., 2018, 293(42), 16127-16141.
[http://dx.doi.org/10.1074/jbc.R118.003237] [PMID: 30213863]
[68]
Freibaum, B.D.; Lu, Y.; Lopez-Gonzalez, R.; Kim, N.C.; Almeida, S.; Lee, K-H.; Badders, N.; Valentine, M.; Miller, B.L.; Wong, P.C.; Petrucelli, L.; Kim, H.J.; Gao, F-B.; Taylor, J.P. GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature, 2015, 525(7567), 129-133.
[http://dx.doi.org/10.1038/nature14974] [PMID: 26308899]
[69]
Zhang, K.; Donnelly, C.J.; Haeusler, A.R.; Grima, J.C.; Machamer, J.B.; Steinwald, P.; Daley, E.L.; Miller, S.J.; Cunningham, K.M.; Viden-sky, S.; Gupta, S.; Thomas, M.A.; Hong, I.; Chiu, S-L.; Huganir, R.L.; Ostrow, L.W.; Matunis, M.J.; Wang, J.; Sattler, R.; Lloyd, T.E.; Roth-stein, J.D. The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature, 2015, 525(7567), 56-61.
[http://dx.doi.org/10.1038/nature14973] [PMID: 26308891]
[70]
Ferrara, D.; Pasetto, L.; Bonetto, V.; Basso, M. Role of extracellular vesicles in amyotrophic lateral sclerosis. Front. Neurosci., 2018, 12, 574.
[http://dx.doi.org/10.3389/fnins.2018.00574] [PMID: 30174585]
[71]
Pimpinelli, F.; Lehmann, S.; Maridonneau-Parini, I. The scrapie prion protein is present in flotillin-1-positive vesicles in central- but not peripheral-derived neuronal cell lines. Eur. J. Neurosci., 2005, 21(8), 2063-2072.
[http://dx.doi.org/10.1111/j.1460-9568.2005.04049.x] [PMID: 15869502]
[72]
Saman, S.; Kim, W.; Raya, M.; Visnick, Y.; Miro, S.; Saman, S.; Jackson, B.; McKee, A.C.; Alvarez, V.E.; Lee, N.C.Y.; Hall, G.F. Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease. J. Biol. Chem., 2012, 287(6), 3842-3849.
[http://dx.doi.org/10.1074/jbc.M111.277061] [PMID: 22057275]
[73]
Sibilla, C.; Bertolotti, A. Prion properties of SOD1 in amyotrophic lateral sclerosis and potential therapy. Cold Spring Harb. Perspect. Biol., 2017, 9(10), a024141.
[http://dx.doi.org/10.1101/cshperspect.a024141] [PMID: 28096265]
[74]
Sreedharan, J.; Blair, I.P.; Tripathi, V.B.; Hu, X.; Vance, C.; Rogelj, B.; Ackerley, S.; Durnall, J.C.; Williams, K.L.; Buratti, E.; Baralle, F.; de Belleroche, J.; Mitchell, J.D.; Leigh, P.N.; Al-Chalabi, A.; Miller, C.C.; Nicholson, G.; Shaw, C.E. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science, 2008, 319(5870), 1668-1672.
[http://dx.doi.org/10.1126/science.1154584] [PMID: 18309045]
[75]
Silverman, J.M.; Fernando, S.M.; Grad, L.I.; Hill, A.F.; Turner, B.J.; Yerbury, J.J.; Cashman, N.R. Disease mechanisms in ALS: Misfolded SOD1 transferred through exosome-dependent and exosome-independent pathways. Cell. Mol. Neurobiol., 2016, 36(3), 377-381.
[http://dx.doi.org/10.1007/s10571-015-0294-3] [PMID: 26908139]
[76]
Smith, E.F.; Shaw, P.J.; De Vos, K.J. The role of mitochondria in amyotrophic lateral sclerosis. Neurosci. Lett., 2019, 710, 132933.
[http://dx.doi.org/10.1016/j.neulet.2017.06.052] [PMID: 28669745]
[77]
Bidhendi, E.E.; Bergh, J.; Zetterström, P.; Andersen, P.M.; Marklund, S.L.; Brännström, T. Two superoxide dismutase prion strains transmit amyotrophic lateral sclerosis-like disease. J. Clin. Invest., 2016, 126(6), 2249-2253.
[http://dx.doi.org/10.1172/JCI84360] [PMID: 27140399]
[78]
Chevalier-Larsen, E.; Holzbaur, E.L.F. Axonal transport and neurodegenerative disease. Biochim. Biophys. Acta, 2006, 1762(11-12), 1094-1108.
[http://dx.doi.org/10.1016/j.bbadis.2006.04.002] [PMID: 16730956]
[79]
Vilariño-Güell, C.; Wider, C.; Soto-Ortolaza, A.I.; Cobb, S.A.; Kachergus, J.M.; Keeling, B.H.; Dachsel, J.C.; Hulihan, M.M.; Dickson, D.W.; Wszolek, Z.K.; Uitti, R.J.; Graff-Radford, N.R.; Boeve, B.F.; Josephs, K.A.; Miller, B.; Boylan, K.B.; Gwinn, K.; Adler, C.H.; Aasly, J.O.; Hentati, F.; Destée, A.; Krygowska-Wajs, A.; Chartier-Harlin, M-C.; Ross, O.A.; Rademakers, R.; Farrer, M.J. Characterization of DCTN1 ge-netic variability in neurodegeneration. Neurology, 2009, 72(23), 2024-2028.
[http://dx.doi.org/10.1212/WNL.0b013e3181a92c4c] [PMID: 19506225]
[80]
Rademakers, R.; van Blitterswijk, M. Excess of rare damaging TUBA4A variants suggests cytoskeletal defects in ALS. Neuron, 2014, 84(2), 241-243.
[http://dx.doi.org/10.1016/j.neuron.2014.10.002] [PMID: 25374348]
[81]
Swerdlow, RH; Parks, JK; Pattee, G; Parker, WDJ Role of mitochondria in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Mot neuron Disord, 2000, 1(3), 185-190.
[http://dx.doi.org/10.1080/14660820050515179]
[82]
Hong, K.; Li, Y.; Duan, W.; Guo, Y.; Jiang, H.; Li, W.; Li, C. Full-length TDP-43 and its C-terminal fragments activate mitophagy in NSC34 cell line. Neurosci. Lett., 2012, 530(2), 144-149.
[http://dx.doi.org/10.1016/j.neulet.2012.10.003] [PMID: 23063673]
[83]
Magrané, J.; Cortez, C.; Gan, W-B.; Manfredi, G. Abnormal mitochondrial transport and morphology are common pathological denomina-tors in SOD1 and TDP43 ALS mouse models. Hum. Mol. Genet., 2014, 23(6), 1413-1424.
[http://dx.doi.org/10.1093/hmg/ddt528] [PMID: 24154542]
[84]
Wang, W.; Li, L.; Lin, W-L.; Dickson, D.W.; Petrucelli, L.; Zhang, T.; Wang, X. The ALS disease-associated mutant TDP-43 impairs mito-chondrial dynamics and function in motor neurons. Hum. Mol. Genet., 2013, 22(23), 4706-4719.
[http://dx.doi.org/10.1093/hmg/ddt319] [PMID: 23827948]
[85]
Tradewell, M.L.; Yu, Z.; Tibshirani, M.; Boulanger, M-C.; Durham, H.D.; Richard, S. Arginine methylation by PRMT1 regulates nuclear-cytoplasmic localization and toxicity of FUS/TLS harbouring ALS-linked mutations. Hum. Mol. Genet., 2012, 21(1), 136-149.
[http://dx.doi.org/10.1093/hmg/ddr448] [PMID: 21965298]
[86]
Genin, E.C.; Plutino, M.; Bannwarth, S.; Villa, E.; Cisneros-Barroso, E.; Roy, M.; Ortega-Vila, B.; Fragaki, K.; Lespinasse, F.; Pinero-Martos, E.; Augé, G.; Moore, D.; Burté, F.; Lacas-Gervais, S.; Kageyama, Y.; Itoh, K.; Yu-Wai-Man, P.; Sesaki, H.; Ricci, J-E.; Vives-Bauza, C.; Paquis-Flucklinger, V. CHCHD10 mutations promote loss of mitochondrial cristae junctions with impaired mitochondrial genome mainte-nance and inhibition of apoptosis. EMBO Mol. Med., 2016, 8(1), 58-72.
[http://dx.doi.org/10.15252/emmm.201505496] [PMID: 26666268]
[87]
Van Den Bosch, L.; Van Damme, P.; Bogaert, E.; Robberecht, W. The role of excitotoxicity in the pathogenesis of amyotrophic lateral scle-rosis. Biochim. Biophys. Acta, 2006, 1762(11-12), 1068-1082.
[http://dx.doi.org/10.1016/j.bbadis.2006.05.002] [PMID: 16806844]
[88]
Yin, H.Z.; Weiss, J.H. Marked synergism between mutant SOD1 and glutamate transport inhibition in the induction of motor neuronal de-generation in spinal cord slice cultures. Brain Res., 2012, 1448, 153-162.
[http://dx.doi.org/10.1016/j.brainres.2012.02.005] [PMID: 22370146]
[89]
Doble, A. The pharmacology and mechanism of action of riluzole. Neurology, 1996, 47(6)(Suppl. 4), S233-S241.
[http://dx.doi.org/10.1212/WNL.47.6_Suppl_4.233S] [PMID: 8959995]
[90]
Nonneman, A.; Robberecht, W.; Van Den Bosch, L. The role of oligodendroglial dysfunction in amyotrophic lateral sclerosis. Neurodegener. Dis. Manag., 2014, 4(3), 223-239.
[http://dx.doi.org/10.2217/nmt.14.21] [PMID: 25095817]
[91]
Kang, S.H.; Li, Y.; Fukaya, M.; Lorenzini, I.; Cleveland, D.W.; Ostrow, L.W.; Rothstein, J.D.; Bergles, D.E. Degeneration and impaired re-generation of gray matter oligodendrocytes in amyotrophic lateral sclerosis. Nat. Neurosci., 2013, 16(5), 571-579.
[http://dx.doi.org/10.1038/nn.3357] [PMID: 23542689]
[92]
Higuchi, M.; Zhang, B.; Forman, M.S.; Yoshiyama, Y.; Trojanowski, J.Q.; Lee, V.M-Y. Axonal degeneration induced by targeted expression of mutant human tau in oligodendrocytes of transgenic mice that model glial tauopathies. J. Neurosci., 2005, 25(41), 9434-9443.
[http://dx.doi.org/10.1523/JNEUROSCI.2691-05.2005] [PMID: 16221853]
[93]
Yazawa, I.; Giasson, B.I.; Sasaki, R.; Zhang, B.; Joyce, S.; Uryu, K.; Trojanowski, J.Q.; Lee, V.M-Y. Mouse model of multiple system atro-phy alpha-synuclein expression in oligodendrocytes causes glial and neuronal degeneration. Neuron, 2005, 45(6), 847-859.
[http://dx.doi.org/10.1016/j.neuron.2005.01.032] [PMID: 15797547]
[94]
O’Rourke, J.G.; Bogdanik, L.; Yáñez, A.; Lall, D.; Wolf, A.J.; Muhammad, A.K.M.G.; Ho, R.; Carmona, S.; Vit, J.P.; Zarrow, J.; Kim, K.J.; Bell, S.; Harms, M.B.; Miller, T.M.; Dangler, C.A.; Underhill, D.M.; Goodridge, H.S.; Lutz, C.M.; Baloh, R.H. C9orf72 is required for prop-er macrophage and microglial function in mice. Science, 2016, 351(6279), 1324-1329.
[http://dx.doi.org/10.1126/science.aaf1064] [PMID: 26989253]
[95]
Liao, B.; Zhao, W.; Beers, D.R.; Henkel, J.S.; Appel, S.H. Transformation from a neuroprotective to a neurotoxic microglial phenotype in a mouse model of ALS. Exp. Neurol., 2012, 237(1), 147-152.
[http://dx.doi.org/10.1016/j.expneurol.2012.06.011] [PMID: 22735487]
[96]
Beers, D.R.; Zhao, W.; Liao, B.; Kano, O.; Wang, J.; Huang, A.; Appel, S.H.; Henkel, J.S. Neuroinflammation modulates distinct regional and temporal clinical responses in ALS mice. Brain Behav. Immun., 2011, 25(5), 1025-1035.
[http://dx.doi.org/10.1016/j.bbi.2010.12.008] [PMID: 21176785]
[97]
Forsberg, K.; Andersen, P.M.; Marklund, S.L.; Brännström, T. Glial nuclear aggregates of superoxide dismutase-1 are regularly present in patients with amyotrophic lateral sclerosis. Acta Neuropathol., 2011, 121(5), 623-634.
[http://dx.doi.org/10.1007/s00401-011-0805-3] [PMID: 21287393]
[98]
Zhang, H.; Tan, C-F.; Mori, F.; Tanji, K.; Kakita, A.; Takahashi, H.; Wakabayashi, K. TDP-43-immunoreactive neuronal and glial inclusions in the neostriatum in amyotrophic lateral sclerosis with and without dementia. Acta Neuropathol., 2008, 115(1), 115-122.
[http://dx.doi.org/10.1007/s00401-007-0285-7] [PMID: 17786458]
[99]
Bruijn, L.I.; Becher, M.W.; Lee, M.K.; Anderson, K.L.; Jenkins, N.A.; Copeland, N.G.; Sisodia, S.S.; Rothstein, J.D.; Borchelt, D.R.; Price, D.L.; Cleveland, D.W. ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron, 1997, 18(2), 327-338.
[http://dx.doi.org/10.1016/S0896-6273(00)80272-X] [PMID: 9052802]
[100]
Molnár, T.; Mázló, A.; Tslaf, V. Szöllösi, A.G.; Emri, G.; Koncz, G. Current translational potential and underlying molecular mechanisms of necroptosis. Cell Death Dis., 2019, 10(11), 860.
[http://dx.doi.org/10.1038/s41419-019-2094-z] [PMID: 31719524]
[101]
Miller, T.M.; Pestronk, A.; David, W.; Rothstein, J.; Simpson, E.; Appel, S.H.; Andres, P.L.; Mahoney, K.; Allred, P.; Alexander, K.; Ostrow, L.W.; Schoenfeld, D.; Macklin, E.A.; Norris, D.A.; Manousakis, G.; Crisp, M.; Smith, R.; Bennett, C.F.; Bishop, K.M.; Cudkowicz, M.E. An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: A phase 1, ran-domised, first-in-man study. Lancet Neurol., 2013, 12(5), 435-442.
[http://dx.doi.org/10.1016/S1474-4422(13)70061-9] [PMID: 23541756]
[102]
Raffaele, S.; Boccazzi, M.; Fumagalli, M. Oligodendrocyte dysfunction in amyotrophic lateral sclerosis: Mechanisms and therapeutic per-spectives. Cells, 2021, 10(3), 565.
[http://dx.doi.org/10.3390/cells10030565] [PMID: 33807572]
[103]
Doucette, P.A.; Whitson, L.J.; Cao, X.; Schirf, V.; Demeler, B.; Valentine, J.S.; Hansen, J.C.; Hart, P.J. Dissociation of human copper-zinc superoxide dismutase dimers using chaotrope and reductant. Insights into the molecular basis for dimer stability. J. Biol. Chem., 2004, 279(52), 54558-54566.
[http://dx.doi.org/10.1074/jbc.M409744200] [PMID: 15485869]
[104]
Pansarasa, O.; Bordoni, M.; Diamanti, L.; Sproviero, D.; Gagliardi, S.; Cereda, C. SOD1 in amyotrophic lateral sclerosis: “Ambivalent” behavior connected to the disease. Int. J. Mol. Sci., 2018, 19(5), E1345.
[http://dx.doi.org/10.3390/ijms19051345] [PMID: 29751510]
[105]
van Zundert, B.; Brown, R.H.J. Jr Silencing strategies for therapy of SOD1-mediated ALS. Neurosci. Lett., 2017, 636, 32-39.
[http://dx.doi.org/10.1016/j.neulet.2016.07.059] [PMID: 27507699]
[106]
Hayashi, Y.; Homma, K.; Ichijo, H. SOD1 in neurotoxicity and its controversial roles in SOD1 mutation-negative ALS. Adv. Biol. Regul., 2016, 60, 95-104.
[http://dx.doi.org/10.1016/j.jbior.2015.10.006] [PMID: 26563614]
[107]
Abati, E.; Bresolin, N.; Comi, G.; Corti, S. Silence superoxide dismutase 1 (SOD1): A promising therapeutic target for amyotrophic lateral sclerosis (ALS). Expert Opin. Ther. Targets, 2020, 24(4), 295-310.
[http://dx.doi.org/10.1080/14728222.2020.1738390] [PMID: 32125907]
[108]
Ly, C.V.; Miller, T.M. Emerging antisense oligonucleotide and viral therapies for amyotrophic lateral sclerosis. Curr. Opin. Neurol., 2018, 31(5), 648-654.
[http://dx.doi.org/10.1097/WCO.0000000000000594] [PMID: 30028737]
[109]
Wightman, B.; Ha, I.; Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern for-mation in C. elegans. Cell, 1993, 75(5), 855-862.
[http://dx.doi.org/10.1016/0092-8674(93)90530-4] [PMID: 8252622]
[110]
Fire, A.; Xu, S.; Montgomery, M.K.; Kostas, S.A.; Driver, S.E.; Mello, C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391(6669), 806-811.
[http://dx.doi.org/10.1038/35888] [PMID: 9486653]
[111]
Zhang, Y.; Zheng, S.; Geng, Y.; Xue, J.; Wang, Z.; Xie, X.; Wang, J.; Zhang, S.; Hou, Y. MicroRNA profiling of atrial fibrillation in canines: miR-206 modulates intrinsic cardiac autonomic nerve remodeling by regulating SOD1. PLoS One, 2015, 10(3), e0122674.
[http://dx.doi.org/10.1371/journal.pone.0122674] [PMID: 25816284]
[112]
Di Pietro, L.; Baranzini, M.; Berardinelli, M.G.; Lattanzi, W.; Monforte, M.; Tasca, G.; Conte, A.; Logroscino, G.; Michetti, F.; Ricci, E.; Sabatelli, M.; Bernardini, C. Potential therapeutic targets for ALS: MIR206, MIR208b and MIR499 are modulated during disease progres-sion in the skeletal muscle of patients. Sci. Rep., 2017, 7(1), 9538.
[http://dx.doi.org/10.1038/s41598-017-10161-z] [PMID: 28842714]
[113]
Ralph, G.S.; Radcliffe, P.A.; Day, D.M.; Carthy, J.M.; Leroux, M.A.; Lee, D.C.P.; Wong, L-F.; Bilsland, L.G.; Greensmith, L.; Kingsman, S.M.; Mitrophanous, K.A.; Mazarakis, N.D.; Azzouz, M. Silencing mutant SOD1 using RNAi protects against neurodegeneration and ex-tends survival in an ALS model. Nat. Med., 2005, 11(4), 429-433.
[http://dx.doi.org/10.1038/nm1205] [PMID: 15768029]
[114]
Raoul, C.; Abbas-Terki, T.; Bensadoun, J-C.; Guillot, S.; Haase, G.; Szulc, J.; Henderson, C.E.; Aebischer, P. Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS. Nat. Med., 2005, 11(4), 423-428.
[http://dx.doi.org/10.1038/nm1207] [PMID: 15768028]
[115]
Mueller, C.; Berry, J.D.; McKenna-Yasek, D.M.; Gernoux, G.; Owegi, M.A.; Pothier, L.M.; Douthwright, C.L.; Gelevski, D.; Luppino, S.D.; Blackwood, M.; Wightman, N.S.; Oakley, D.H.; Frosch, M.P.; Flotte, T.R.; Cudkowicz, M.E.; Brown, R.H.J., Jr SOD1 suppression with adeno-associated virus and microRNA in familial ALS. N. Engl. J. Med., 2020, 383(2), 151-158.
[http://dx.doi.org/10.1056/NEJMoa2005056] [PMID: 32640133]
[116]
Smith, R.A.; Miller, T.M.; Yamanaka, K.; Monia, B.P.; Condon, T.P.; Hung, G.; Lobsiger, C.S.; Ward, C.M.; McAlonis-Downes, M.; Wei, H.; Wancewicz, E.V.; Bennett, C.F.; Cleveland, D.W. Antisense oligonucleotide therapy for neurodegenerative disease. J. Clin. Invest., 2006, 116(8), 2290-2296.
[http://dx.doi.org/10.1172/JCI25424] [PMID: 16878173]
[117]
Stein, C.A.; Castanotto, D. FDA-Approved oligonucleotide therapies in 2017. Mol. Ther., 2017, 25(5), 1069-1075.
[http://dx.doi.org/10.1016/j.ymthe.2017.03.023] [PMID: 28366767]
[118]
Mercuri, E.; Darras, B.T.; Chiriboga, C.A.; Day, J.W.; Campbell, C.; Connolly, A.M.; Iannaccone, S.T.; Kirschner, J.; Kuntz, N.L.; Saito, K.; Shieh, P.B.; Tulinius, M.; Mazzone, E.S.; Montes, J.; Bishop, K.M.; Yang, Q.; Foster, R.; Gheuens, S.; Bennett, C.F.; Farwell, W.; Schneider, E.; De Vivo, D.C.; Finkel, R.S. CHERISH Study Group. Nusinersen versus Sham Control in Later-Onset Spinal Muscular Atrophy. N. Engl. J. Med., 2018, 378(7), 625-635.
[http://dx.doi.org/10.1056/NEJMoa1710504] [PMID: 29443664]
[119]
Gaj, T.; Ojala, D.S.; Ekman, F.K.; Byrne, L.C.; Limsirichai, P.; Schaffer, D.V. In vivo genome editing improves motor function and extends survival in a mouse model of ALS. Sci. Adv., 2017, 3(12), eaar3952.
[http://dx.doi.org/10.1126/sciadv.aar3952] [PMID: 29279867]
[120]
Anzalone, A.V.; Randolph, P.B.; Davis, J.R.; Sousa, A.A.; Koblan, L.W.; Levy, J.M.; Chen, P.J.; Wilson, C.; Newby, G.A.; Raguram, A.; Liu, D.R. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 2019, 576(7785), 149-157.
[http://dx.doi.org/10.1038/s41586-019-1711-4] [PMID: 31634902]
[121]
Iguchi, Y.; Katsuno, M.; Ikenaka, K.; Ishigaki, S.; Sobue, G. Amyotrophic lateral sclerosis: An update on recent genetic insights. J. Neurol., 2013, 260(11), 2917-2927.
[http://dx.doi.org/10.1007/s00415-013-7112-y] [PMID: 24085347]
[122]
Wu, L-S.; Cheng, W-C.; Hou, S-C.; Yan, Y-T.; Jiang, S-T.; Shen, C-K.J. TDP-43, a neuro-pathosignature factor, is essential for early mouse embryogenesis. Genesis, 2010, 48(1), 56-62.
[PMID: 20014337]
[123]
Arai, T.; Hasegawa, M.; Akiyama, H.; Ikeda, K.; Nonaka, T.; Mori, H.; Mann, D.; Tsuchiya, K.; Yoshida, M.; Hashizume, Y.; Oda, T. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem. Biophys. Res. Commun., 2006, 351(3), 602-611.
[http://dx.doi.org/10.1016/j.bbrc.2006.10.093] [PMID: 17084815]
[124]
Gao, J.; Wang, L.; Huntley, M.L.; Perry, G.; Wang, X. Pathomechanisms of TDP-43 in neurodegeneration. J. Neurochem., 2018.
[http://dx.doi.org/10.1111/jnc.14327] [PMID: 29486049]
[125]
Berning, B.A.; Walker, A.K. The pathobiology of TDP-43 C-terminal fragments in ALS and FTLD. Front. Neurosci., 2019, 13, 335.
[http://dx.doi.org/10.3389/fnins.2019.00335] [PMID: 31031584]
[126]
Smethurst, P.; Sidle, K.C.L.; Hardy, J. Review: Prion-like mechanisms of transactive response DNA binding protein of 43 kDa (TDP-43) in amyotrophic lateral sclerosis (ALS). Neuropathol. Appl. Neurobiol., 2015, 41(5), 578-597.
[http://dx.doi.org/10.1111/nan.12206] [PMID: 25487060]
[127]
McGurk, L.; Lee, V.M.; Trojanowksi, J.Q.; Van Deerlin, V.M.; Lee, E.B.; Bonini, N.M. Poly-A binding protein-1 localization to a subset of TDP-43 inclusions in amyotrophic lateral sclerosis occurs more frequently in patients harboring an expansion in C9orf72. J. Neuropathol. Exp. Neurol., 2014, 73(9), 837-845.
[http://dx.doi.org/10.1097/NEN.0000000000000102] [PMID: 25111021]
[128]
Khalfallah, Y.; Kuta, R.; Grasmuck, C.; Prat, A.; Durham, H.D.; Vande Velde, C. TDP-43 regulation of stress granule dynamics in neuro-degenerative disease-relevant cell types. Sci. Rep., 2018, 8(1), 7551.
[http://dx.doi.org/10.1038/s41598-018-25767-0] [PMID: 29765078]
[129]
Budini, M.; Baralle, F.E.; Buratti, E. Targeting TDP-43 in neurodegenerative diseases. Expert Opin. Ther. Targets, 2014, 18(6), 617-632.
[http://dx.doi.org/10.1517/14728222.2014.896905] [PMID: 24649927]
[130]
Moujalled, D.; James, J.L.; Parker, S.J.; Lidgerwood, G.E.; Duncan, C.; Meyerowitz, J.; Nonaka, T.; Hasegawa, M.; Kanninen, K.M.; Grub-man, A.; Liddell, J.R.; Crouch, P.J.; White, A.R. Kinase inhibitor screening identifies cyclin-dependent kinases and glycogen synthase kinase 3 as potential modulators of TDP-43 cytosolic accumulation during cell stress. PLoS One, 2013, 8(6), e67433.
[http://dx.doi.org/10.1371/journal.pone.0067433] [PMID: 23840699]
[131]
Fang, H.Y.; Chen, S.B.; Guo, D.J.; Pan, S.Y.; Yu, Z.L. Proteomic identification of differentially expressed proteins in curcumin-treated MCF-7 cells. Phytomedicine, 2011, 18(8-9), 697-703.
[http://dx.doi.org/10.1016/j.phymed.2010.11.012] [PMID: 21239154]
[132]
Buratti, E. Targeting TDP-43 proteinopathy with drugs and drug-like small molecules. Br. J. Pharmacol., 2021, 178(6), 1298-1315.
[http://dx.doi.org/10.1111/bph.15148] [PMID: 32469420]
[133]
Chang, C-F.; Lee, Y-C.; Lee, K-H.; Lin, H-C.; Chen, C-L.; Shen, C.J.; Huang, C-C. Therapeutic effect of berberine on TDP-43-related path-ogenesis in FTLD and ALS. J. Biomed. Sci., 2016, 23(1), 72.
[http://dx.doi.org/10.1186/s12929-016-0290-z] [PMID: 27769241]
[134]
Chen, Y.; Wang, H.; Ying, Z.; Gao, Q. Ibudilast enhances the clearance of SOD1 and TDP-43 aggregates through TFEB-mediated autopha-gy and lysosomal biogenesis: The new molecular mechanism of ibudilast and its implication for neuroprotective therapy. Biochem. Biophys. Res. Commun., 2020, 526(1), 231-238.
[http://dx.doi.org/10.1016/j.bbrc.2020.03.051] [PMID: 32204915]
[135]
Davis, D.A.; Cox, P.A.; Banack, S.A.; Lecusay, P.D.; Garamszegi, S.P.; Hagan, M.J.; Powell, J.T.; Metcalf, J.S.; Palmour, R.M.; Beierschmitt, A.; Bradley, W.G.; Mash, D.C. l-Serine reduces spinal cord pathology in a vervet model of preclinical ALS/MND. J. Neuropathol. Exp. Neurol., 2020, 79(4), 393-406.
[http://dx.doi.org/10.1093/jnen/nlaa002] [PMID: 32077471]
[136]
Oberstadt, M.; Stieler, J.; Simpong, D.L.; Römuß, U.; Urban, N.; Schaefer, M.; Arendt, T.; Holzer, M. TDP-43 self-interaction is modulated by redox-active compounds Auranofin, Chelerythrine and Riluzole. Sci. Rep., 2018, 8(1), 2248.
[http://dx.doi.org/10.1038/s41598-018-20565-0] [PMID: 29396541]
[137]
Lei, Y.; Zhang, Z-F.; Lei, R-X.; Wang, S.; Zhuang, Y.; Liu, A-C.; Wu, Y.; Chen, J.; Tang, J-C.; Pan, M-X.; Liu, R.; Liao, W-J.; Feng, Y-G.; Wan, Q.; Zheng, M. DJ-1 Suppresses cytoplasmic TDP-43 Aggregation in oxidative stress-induced cell injury. J. Alzheimers Dis., 2018, 66(3), 1001-1014.
[http://dx.doi.org/10.3233/JAD-180460] [PMID: 30372676]
[138]
Pinarbasi, E.S. Cağatay, T.; Fung, H.Y.J.; Li, Y.C.; Chook, Y.M.; Thomas, P.J. Active nuclear import and passive nuclear export are the pri-mary determinants of TDP-43 localization. Sci. Rep., 2018, 8(1), 7083. [Internet
[http://dx.doi.org/10.1038/s41598-018-25008-4] [PMID: 29728608]
[139]
Ederle, H.; Funk, C.; Abou-Ajram, C.; Hutten, S.; Funk, E.B.E.; Kehlenbach, R.H.; Bailer, S.M.; Dormann, D. Nuclear egress of TDP-43 and FUS occurs independently of Exportin-1/CRM1. Sci. Rep., 2018, 8(1), 7084. [Internet]
[http://dx.doi.org/ 10.1038/s41598-018-25007-5] [PMID: 29728564]
[140]
Cooper-Knock, J.; Walsh, M.J.; Higginbottom, A.; Robin Highley, J.; Dickman, M.J.; Edbauer, D.; Ince, P.G.; Wharton, S.B.; Wilson, S.A.; Kirby, J.; Hautbergue, G.M.; Shaw, P.J. Sequestration of multiple RNA recognition motif-containing proteins by C9orf72 repeat expansions. Brain, 2014, 137(Pt 7), 2040-2051.
[http://dx.doi.org/10.1093/brain/awu120] [PMID: 24866055]
[141]
Simone, R.; Balendra, R.; Moens, T.G.; Preza, E.; Wilson, K.M.; Heslegrave, A.; Woodling, N.S.; Niccoli, T.; Gilbert-Jaramillo, J.; Abdelka-rim, S.; Clayton, E.L.; Clarke, M.; Konrad, M-T.; Nicoll, A.J.; Mitchell, J.S.; Calvo, A.; Chio, A.; Houlden, H.; Polke, J.M.; Ismail, M.A.; Stephens, C.E.; Vo, T.; Farahat, A.A.; Wilson, W.D.; Boykin, D.W.; Zetterberg, H.; Partridge, L.; Wray, S.; Parkinson, G.; Neidle, S.; Patani, R.; Fratta, P.; Isaacs, A.M. G-quadruplex-binding small molecules ameliorate C9orf72 FTD/ALS pathology in vitro and in vivo. EMBO Mol. Med., 2018, 10(1), 22-31.
[http://dx.doi.org/10.15252/emmm.201707850] [PMID: 29113975]
[142]
Donnelly, C.J.; Zhang, P-W.; Pham, J.T.; Haeusler, A.R.; Mistry, N.A.; Vidensky, S.; Daley, E.L.; Poth, E.M.; Hoover, B.; Fines, D.M.; Maragakis, N.; Tienari, P.J.; Petrucelli, L.; Traynor, B.J.; Wang, J.; Rigo, F.; Bennett, C.F.; Blackshaw, S.; Sattler, R.; Rothstein, J.D. RNA tox-icity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron, 2013, 80(2), 415-428.
[http://dx.doi.org/10.1016/j.neuron.2013.10.015] [PMID: 24139042]
[143]
Sareen, D.; O’Rourke, J.G.; Meera, P.; Muhammad, A.K.M.G.; Grant, S.; Simpkinson, M.; Bell, S.; Carmona, S.; Ornelas, L.; Sahabian, A.; Gendron, T.; Petrucelli, L.; Baughn, M.; Ravits, J.; Harms, M.B.; Rigo, F.; Bennett, C.F.; Otis, T.S.; Svendsen, C.N.; Baloh, R.H. Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion. Sci. Transl. Med., 2013, 5(208), 208ra149.
[http://dx.doi.org/10.1126/scitranslmed.3007529] [PMID: 24154603]
[144]
Martier, R.; Liefhebber, J.M.; Miniarikova, J.; van der Zon, T.; Snapper, J.; Kolder, I.; Petry, H.; van Deventer, S.J.; Evers, M.M.; Konstanti-nova, P. Artificial MicroRNAs targeting C9orf72 can reduce accumulation of intra-nuclear transcripts in ALS and FTD patients. Mol. Ther. Nucleic Acids, 2019, 14, 593-608.
[http://dx.doi.org/10.1016/j.omtn.2019.01.010] [PMID: 30776581]
[145]
Haeusler, A.R.; Donnelly, C.J.; Periz, G.; Simko, E.A.J.; Shaw, P.G.; Kim, M-S.; Maragakis, N.J.; Troncoso, J.C.; Pandey, A.; Sattler, R.; Rothstein, J.D.; Wang, J. C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature, 2014, 507(7491), 195-200.
[http://dx.doi.org/10.1038/nature13124] [PMID: 24598541]
[146]
van Blitterswijk, M.; Gendron, T.F.; Baker, M.C.; DeJesus-Hernandez, M.; Finch, N.A.; Brown, P.H.; Daughrity, L.M.; Murray, M.E.; Heck-man, M.G.; Jiang, J.; Lagier-Tourenne, C.; Edbauer, D.; Cleveland, D.W.; Josephs, K.A.; Parisi, J.E.; Knopman, D.S.; Petersen, R.C.; Petrucelli, L.; Boeve, B.F.; Graff-Radford, N.R.; Boylan, K.B.; Dickson, D.W.; Rademakers, R. Novel clinical associations with specific C9ORF72 transcripts in patients with repeat expansions in C9ORF72. Acta Neuropathol., 2015, 130(6), 863-876.
[http://dx.doi.org/10.1007/s00401-015-1480-6] [PMID: 26437865]
[147]
Shi, Y.; Lin, S.; Staats, K.A.; Li, Y.; Chang, W-H.; Hung, S-T.; Hendricks, E.; Linares, G.R.; Wang, Y.; Son, E.Y.; Wen, X.; Kisler, K.; Wil-kinson, B.; Menendez, L.; Sugawara, T.; Woolwine, P.; Huang, M.; Cowan, M.J.; Ge, B.; Koutsodendris, N.; Sandor, K.P.; Komberg, J.; Vangoor, V.R.; Senthilkumar, K.; Hennes, V.; Seah, C.; Nelson, A.R.; Cheng, T-Y.; Lee, S-J.J.; August, P.R.; Chen, J.A.; Wisniewski, N.; Hanson-Smith, V.; Belgard, T.G.; Zhang, A.; Coba, M.; Grunseich, C.; Ward, M.E.; van den Berg, L.H.; Pasterkamp, R.J.; Trotti, D.; Zlokovic, B.V.; Ichida, J.K. Haploinsufficiency leads to neurodegeneration in C9ORF72 ALS/FTD human induced motor neurons. Nat. Med., 2018, 24(3), 313-325.
[http://dx.doi.org/10.1038/nm.4490] [PMID: 29400714]
[148]
Jiang, J.; Ravits, J. Pathogenic mechanisms and therapy development for C9orf72 amyotrophic lateral sclerosis/frontotemporal dementia. Neurother J. Am. Soc. Exp. Neurother., 2019, 16(4), 1115-1132.
[http://dx.doi.org/10.1007/s13311-019-00797-2] [PMID: 31667754]
[149]
Salvi, J.S.; Mekhail, K. R-loops highlight the nucleus in ALS. Nucleus, 2015, 6(1), 23-29.
[http://dx.doi.org/10.1080/19491034.2015.1004952] [PMID: 25587791]
[150]
Giannini, M.; Bayona-Feliu, A.; Sproviero, D.; Barroso, S.I.; Cereda, C.; Aguilera, A. TDP-43 mutations link amyotrophic lateral sclerosis with r-loop homeostasis and R loop-mediated DNA damage. PLoS Genet., 2020, 16(12), e1009260.
[http://dx.doi.org/10.1371/journal.pgen.1009260] [PMID: 33301444]
[151]
Nolan, M.; Talbot, K.; Ansorge, O. Pathogenesis of FUS-associated ALS and FTD: Insights from rodent models. Acta Neuropathol. Commun., 2016, 4(1), 99.
[http://dx.doi.org/10.1186/s40478-016-0358-8] [PMID: 27600654]
[152]
Deng, H.; Gao, K.; Jankovic, J. The role of FUS gene variants in neurodegenerative diseases. Nat. Rev. Neurol., 2014, 10(6), 337-348.
[http://dx.doi.org/10.1038/nrneurol.2014.78] [PMID: 24840975]
[153]
Duan, S.; Yuan, G.; Liu, X.; Ren, R.; Li, J.; Zhang, W.; Wu, J.; Xu, X.; Fu, L.; Li, Y.; Yang, J.; Zhang, W.; Bai, R.; Yi, F.; Suzuki, K.; Gao, H.; Esteban, C.R.; Zhang, C.; Izpisua Belmonte, J.C.; Chen, Z.; Wang, X.; Jiang, T.; Qu, J.; Tang, F.; Liu, G-H. PTEN deficiency reprogrammes human neural stem cells towards a glioblastoma stem cell-like phenotype. Nat. Commun., 2015, 6, 10068.
[http://dx.doi.org/10.1038/ncomms10068] [PMID: 26632666]
[154]
Wang, L.; Yi, F.; Fu, L.; Yang, J.; Wang, S.; Wang, Z.; Suzuki, K.; Sun, L.; Xu, X.; Yu, Y.; Qiao, J.; Belmonte, J.C.I.; Yang, Z.; Yuan, Y.; Qu, J.; Liu, G-H. CRISPR/Cas9-mediated targeted gene correction in amyotrophic lateral sclerosis patient iPSCs. Protein Cell, 2017, 8(5), 365-378.
[http://dx.doi.org/10.1007/s13238-017-0397-3] [PMID: 28401346]
[155]
Vandoorne, T.; Veys, K.; Guo, W.; Sicart, A.; Vints, K.; Swijsen, A.; Moisse, M.; Eelen, G.; Gounko, N.V.; Fumagalli, L.; Fazal, R.; Germeys, C.; Quaegebeur, A.; Fendt, S-M.; Carmeliet, P.; Verfaillie, C.; Van Damme, P.; Ghesquière, B.; De Bock, K.; Van Den Bosch, L. Differentia-tion but not ALS mutations in FUS rewires motor neuron metabolism. Nat. Commun., 2019, 10(1), 4147.
[http://dx.doi.org/10.1038/s41467-019-12099-4] [PMID: 31515480]
[156]
Bhinge, A.; Namboori, S.C.; Zhang, X.; VanDongen, A.M.J.; Stanton, L.W. Genetic correction of SOD1 mutant iPSCs reveals ERK and JNK activated AP1 as a driver of neurodegeneration in amyotrophic lateral sclerosis. Stem Cell Reports, 2017, 8(4), 856-869.
[http://dx.doi.org/10.1016/j.stemcr.2017.02.019] [PMID: 28366453]
[157]
Wang, H.; Guo, W.; Mitra, J.; Hegde, P.M.; Vandoorne, T.; Eckelmann, B.J.; Mitra, S.; Tomkinson, A.E.; Van Den Bosch, L.; Hegde, M.L. Mutant FUS causes DNA ligation defects to inhibit oxidative damage repair in Amyotrophic Lateral Sclerosis. Nat. Commun., 2018, 9(1), 3683.
[http://dx.doi.org/10.1038/s41467-018-06111-6] [PMID: 30206235]
[158]
Miller, T.; Cudkowicz, M.; Shaw, P.J.; Andersen, P.M.; Atassi, N.; Bucelli, R.C.; Genge, A.; Glass, J.; Ladha, S.; Ludolph, A.L.; Maragakis, N.J.; McDermott, C.J.; Pestronk, A.; Ravits, J.; Salachas, F.; Trudell, R.; Van Damme, P.; Zinman, L.; Bennett, C.F.; Lane, R.; Sandrock, A.; Runz, H.; Graham, D.; Houshyar, H.; McCampbell, A.; Nestorov, I.; Chang, I.; McNeill, M.; Fanning, L.; Fradette, S.; Ferguson, T.A. Phase 1-2 Trial of antisense oligonucleotide tofersen for SOD1 ALS. N. Engl. J. Med., 2020, 383(2), 109-119.
[http://dx.doi.org/10.1056/NEJMoa2003715] [PMID: 32640130]
[159]
Tefera, T.W.; Steyn, F.J.; Ngo, S.T.; Borges, K. CNS glucose metabolism in amyotrophic lateral sclerosis: A therapeutic target? Cell Biosci., 2021, 11(1), 14.
[http://dx.doi.org/10.1186/s13578-020-00511-2] [PMID: 33431046]
[160]
Vandoorne, T.; De Bock, K.; Van Den Bosch, L. Energy metabolism in ALS: An underappreciated opportunity? Acta Neuropathol., 2018, 135(4), 489-509.
[http://dx.doi.org/10.1007/s00401-018-1835-x] [PMID: 29549424]
[161]
Tilocca, B.; Pieroni, L.; Soggiu, A.; Britti, D.; Bonizzi, L.; Roncada, P.; Greco, V. Gut-brain axis and neurodegeneration: State-of-the-art of meta-omics sciences for microbiota characterization. Int. J. Mol. Sci., 2020, 21(11), E4045.
[http://dx.doi.org/10.3390/ijms21114045] [PMID: 32516966]
[162]
Suzuki, N.; Akiyama, T.; Warita, H.; Aoki, M. Omics approach to axonal dysfunction of motor neurons in amyotrophic lateral sclerosis (ALS). Front. Neurosci., 2020, 14, 194.
[http://dx.doi.org/10.3389/fnins.2020.00194] [PMID: 32269505]
[163]
Pahan, K. Broad application of CRISPR Cas9 in infectious, inflammatory and neurodegenerative diseases. J. Neuroimmune Pharmacol., 2019, 14(4), 534-536.
[164]
Rosengren, L.E.; Karlsson, J.E.; Karlsson, J.O.; Persson, L.I.; Wikkelsø, C. Patients with amyotrophic lateral sclerosis and other neurodegen-erative diseases have increased levels of neurofilament protein in CSF. J. Neurochem., 1996, 67(5), 2013-2018.
[http://dx.doi.org/10.1046/j.1471-4159.1996.67052013.x] [PMID: 8863508]
[165]
Gratten, J.; Zhao, Q.; Benyamin, B.; Garton, F.; He, J.; Leo, P.J.; Mangelsdorf, M.; Anderson, L.; Zhang, Z-H.; Chen, L.; Chen, X-D.; Cre-min, K.; Deng, H-W.; Edson, J.; Han, Y-Y.; Harris, J.; Henders, A.K.; Jin, Z-B.; Li, Z.; Lin, Y.; Liu, X.; Marshall, M.; Mowry, B.J.; Ran, S.; Reutens, D.C.; Song, S.; Tan, L-J.; Tang, L.; Wallace, R.H.; Wheeler, L.; Wu, J.; Yang, J.; Xu, H.; Visscher, P.M.; Bartlett, P.F.; Brown, M.A.; Wray, N.R.; Fan, D. Whole-exome sequencing in amyotrophic lateral sclerosis suggests NEK1 is a risk gene in Chinese. Genome Med., 2017, 9(1), 97.
[http://dx.doi.org/10.1186/s13073-017-0487-0] [PMID: 29149916]
[166]
Nguyen, H.P.; Van Broeckhoven, C.; van der Zee, J. ALS genes in the genomic era and their implications for FTD. Trends Genet., 2018, 34(6), 404-423.
[http://dx.doi.org/10.1016/j.tig.2018.03.001] [PMID: 29605155]
[167]
Geyer, F.C.; Decker, T.; Reis-Filho, J.S. Genomweite Expressionsprofile als klinische Entscheidungshilfe: Bereit für die Praxis? Pathologe, 2009, 30(2), 141-146.
[http://dx.doi.org/10.1007/s00292-008-1104-1] [PMID: 19219435]
[168]
Ravits, J.; Traynor, B.J. Current and future directions in genomics of amyotrophic lateral sclerosis. Phys. Med. Rehabil. Clin. N. Am., 2008, 19(3), 461-477.
[http://dx.doi.org/10.1016/j.pmr.2008.04.001] [PMID: 18625410]
[169]
Gama-Carvalho, M.; L Garcia-Vaquero, M.; R Pinto, F.; Besse, F.; Weis, J.; Voigt, A.; Schulz, J.B.; De Las Rivas, J. Linking amyotrophic lateral sclerosis and spinal muscular atrophy through RNA-transcriptome homeostasis: A genomics perspective. J. Neurochem., 2017, 141(1), 12-30.
[http://dx.doi.org/10.1111/jnc.13945] [PMID: 28054357]
[170]
Chavda, V.P. Nanotherapeutics and Nanobiotechnology. Applications of Targeted Nano Drugs and Delivery Systems; Elsevier, 2019, pp. 1-13.
[http://dx.doi.org/10.1016/B978-0-12-814029-1.00001-6]
[171]
Chavda, V.; Sheta, S.; Changani, D.; Chavda, D. New Bioinformatics Platform-Based Approach for Drug Design. In: Computation in Bioin-formatics; Wwiley Online Books, 2021; pp. 101-120.
[http://dx.doi.org/10.1002/9781119654803.ch6]
[172]
Chavda, V.; Thalkari, Y.; Marwadi, S. New Strategies in Drug Discovery. In: Computation in Bioinformatics; Wiley Online Books, 2021; pp. 25-48.
[http://dx.doi.org/10.1002/9781119654803.ch2]
[173]
Hardiman, O.; van den Berg, L.H. The beginning of genomic therapies for ALS. N. Engl. J. Med., 2020, 383(2), 180-181.
[http://dx.doi.org/10.1056/NEJMe2012930] [PMID: 32640137]
[174]
Dangond, F.; Hwang, D.; Camelo, S.; Pasinelli, P.; Frosch, M.P.; Stephanopoulos, G.; Stephanopoulos, G.; Brown, R.H., Jr; Gullans, S.R. Molecular signature of late-stage human ALS revealed by expression profiling of postmortem spinal cord gray matter. Physiol. Genomics, 2004, 16(2), 229-239.
[http://dx.doi.org/10.1152/physiolgenomics.00087.2001] [PMID: 14645737]
[175]
Cooper-Knock, J.; Kirby, J.; Ferraiuolo, L.; Heath, P.R.; Rattray, M.; Shaw, P.J. Gene expression profiling in human neurodegenerative dis-ease. Nat. Rev. Neurol., 2012, 8(9), 518-530.
[http://dx.doi.org/10.1038/nrneurol.2012.156] [PMID: 22890216]
[176]
Heath, P.R.; Kirby, J.; Shaw, P.J. Investigating cell death mechanisms in amyotrophic lateral sclerosis using transcriptomics. Front. Cell. Neurosci., 2013, 7(DEC), 259.
[http://dx.doi.org/10.3389/fncel.2013.00259] [PMID: 24381542]
[177]
Maniatis, S.; Äijö, T.; Vickovic, S.; Braine, C.; Kang, K.; Mollbrink, A.; Fagegaltier, D.; Andrusivová, Ž.; Saarenpää, S.; Saiz-Castro, G.; Cuevas, M.; Watters, A.; Lundeberg, J.; Bonneau, R.; Phatnani, H. Spatiotemporal dynamics of molecular pathology in amyotrophic lat-eralsclerosis. Science, 2019, 364(6435), 89-93.
[http://dx.doi.org/10.1101/389270]
[178]
Krokidis, M.G.; Vlamos, P. Transcriptomics in amyotrophic lateral sclerosis. Front. Biosci. (Elite Ed.), 2018, 10, 103-121.
[http://dx.doi.org/10.2741/e811] [PMID: 28930607]
[179]
Krokidis, M.G. Transcriptomics and metabolomics in amyotrophic lateral sclerosis. Adv. Exp. Med. Biol., 2020, 1195, 205-212.
[http://dx.doi.org/10.1007/978-3-030-32633-3_29] [PMID: 32468479]
[180]
Balendra, R.; Moens, T.G.; Isaacs, A.M. Could expedite the journey towards effective therapies., 2017, 9, 853-855.
[181]
Umoh, M.E.; Dammer, E.B.; Dai, J.; Duong, D.M.; Lah, J.J.; Levey, A.I.; Gearing, M.; Glass, J.D.; Seyfried, N.T. A proteomic network ap-proach across the ALS-FTD disease spectrum resolves clinical phenotypes and genetic vulnerability in human brain. EMBO Mol. Med., 2018, 10(1), 48-62.
[http://dx.doi.org/10.15252/emmm.201708202] [PMID: 29191947]
[182]
Brown, R.H.; Al-Chalabi, A. Amyotrophic lateral sclerosis. N. Engl. J. Med., 2017, 377(2), 162-172.
[http://dx.doi.org/10.1056/NEJMra1603471] [PMID: 28700839]
[183]
Garone, M.G.; Alfano, V.; Salvatori, B.; Braccia, C.; Peruzzi, G.; Colantoni, A.; Bozzoni, I.; Armirotti, A.; Rosa, A. Proteomics analysis of FUS mutant human motoneurons reveals altered regulation of cytoskeleton and other ALS-linked proteins via 3'UTR binding. Sci. Rep., 2020, 10(1), 11827.
[http://dx.doi.org/10.1038/s41598-020-68794-6] [PMID: 32678235]
[184]
Hedl, T.J.; San Gil, R.; Cheng, F.; Rayner, S.L.; Davidson, J.M.; De Luca, A.; Villalva, M.D.; Ecroyd, H.; Walker, A.K.; Lee, A. Proteomics approaches for biomarker and drug target discovery in ALS and FTD. Front. Neurosci., 2019, 13, 548.
[http://dx.doi.org/10.3389/fnins.2019.00548] [PMID: 31244593]
[185]
Vivek, C.; Patel, C. Bhadani, J. Metabolomics: at a glance. Res. Rev. A. J. Drug Formul. Dev. Prod., 2017, 4(1), 23-30.
[186]
Kumar, A.; Ghosh, D.; Singh, R.L. Amyotrophic lateral sclerosis and metabolomics: Clinical implication and therapeutic approach. J biomarkers, 2013, 2013, 538765.
[187]
Quinones, M.P.; Kaddurah-Daouk, R. Metabolomics tools for identifying biomarkers for neuropsychiatric diseases. Neurobiol. Dis., 2009, 35(2), 165-176.
[http://dx.doi.org/10.1016/j.nbd.2009.02.019] [PMID: 19303440]
[188]
Rozen, S.; Cudkowicz, M.E.; Bogdanov, M.; Matson, W.R.; Kristal, B.S.; Beecher, C.; Harrison, S.; Vouros, P.; Flarakos, J.; Vigneau-Callahan, K.; Matson, T.D.; Newhall, K.M.; Beal, M.F.; Brown, R.H.J., Jr; Kaddurah-Daouk, R. Metabolomic analysis and signatures in mo-tor neuron disease. Metabolomics, 2005, 1(2), 101-108.
[http://dx.doi.org/10.1007/s11306-005-4810-1] [PMID: 18820733]
[189]
Chen, Y.; Meininger, V.; Guillemin, G.J. Recent advances in the treatment of amyotrophic lateral sclerosis. Emphasis on kynurenine pathway inhibitors. Cent. Nerv. Syst. Agents Med. Chem., 2009, 9(1), 32-39.
[http://dx.doi.org/10.2174/187152409787601941] [PMID: 20021336]
[190]
Lanznaster, D.; de Assis, D.R.; Corcia, P.; Pradat, P-F.; Blasco, H. Metabolomics biomarkers: A strategy toward therapeutics improvement in ALS. Front. Neurol., 2018, 9, 1126.
[http://dx.doi.org/10.3389/fneur.2018.01126] [PMID: 30619076]
[191]
Cieslarova, Z.; Lopes, F.S.; do Lago, C.L.; França, M.C.J., Jr; Colnaghi Simionato, A.V. Capillary electrophoresis tandem mass spectrometry determination of glutamic acid and homocysteine’s metabolites: Potential biomarkers of amyotrophic lateral sclerosis. Talanta, 2017, 170, 63-68.
[http://dx.doi.org/10.1016/j.talanta.2017.03.103] [PMID: 28501214]
[192]
Jia, R.; Chen, Q.; Zhou, Q.; Zhang, R.; Jin, J.; Hu, F.; Liu, X.; Qin, X.; Kang, L.; Zhao, S.; Dang, Y.; Dang, J. Characteristics of serum me-tabolites in sporadic amyotrophic lateral sclerosis patients based on gas chromatography-mass spectrometry. Sci. Rep., 2021, 11(1), 20786.
[http://dx.doi.org/10.1038/s41598-021-00312-8] [PMID: 34675267]
[193]
Lawton, K.A.; Cudkowicz, M.E.; Brown, M.V.; Alexander, D.; Caffrey, R.; Wulff, J.E.; Bowser, R.; Lawson, R.; Jaffa, M.; Milburn, M.V.; Ryals, J.A.; Berry, J.D. Biochemical alterations associated with ALS. Amyotroph. Lateral Scler., 2012, 13(1), 110-118.
[http://dx.doi.org/10.3109/17482968.2011.619197]
[194]
Xiao, J.F.; Zhou, B.; Ressom, H.W. Metabolite identification and quantitation in LC-MS/MS-based metabolomics. Trends Analyt. Chem., 2012, 32, 1-14.
[http://dx.doi.org/10.1016/j.trac.2011.08.009] [PMID: 22345829]
[195]
Yang, Q.; Zhang, A.; Miao, J.; Sun, H.; Han, Y.; Yan, G.; Wu, F.; Wang, X. Metabolomics biotechnology, applications, and future trends: a systematic review. RSC Advances, 2019, 9(64), 37245-37257.
[http://dx.doi.org/10.1039/C9RA06697G]
[196]
Dorst, J.; Kühnlein, P.; Hendrich, C.; Kassubek, J.; Sperfeld, A.D.; Ludolph, A.C. Patients with elevated triglyceride and cholesterol serum levels have a prolonged survival in amyotrophic lateral sclerosis. J. Neurol., 2011, 258(4), 613-617.
[http://dx.doi.org/10.1007/s00415-010-5805-z] [PMID: 21128082]
[197]
Ma, G.; Wang, Y.; Li, Y.; Cui, L.; Zhao, Y.; Zhao, B.; Li, K. MiR-206, a key modulator of skeletal muscle development and disease. Int. J. Biol. Sci., 2015, 11(3), 345-352.
[http://dx.doi.org/10.7150/ijbs.10921] [PMID: 25678853]
[198]
Toivonen, J.M.; Manzano, R.; Oliván, S.; Zaragoza, P.; García-Redondo, A.; Osta, R. MicroRNA-206: A potential circulating biomarker candidate for amyotrophic lateral sclerosis. PLoS One, 2014, 9(2), e89065.
[http://dx.doi.org/10.1371/journal.pone.0089065] [PMID: 24586506]
[199]
Liu, W.; Yang, C.; Liu, Y.; Jiang, G. CRISPR/Cas9 System and its research progress in gene therapy. Anticancer. Agents Med. Chem., 2019, 19(16), 1912-1919.
[http://dx.doi.org/10.2174/1871520619666191014103711] [PMID: 31633477]
[200]
Taylor, J.P.; Brown, R.H.J., Jr; Cleveland, D.W. Decoding ALS: From genes to mechanism. Nature, 2016, 539(7628), 197-206.
[http://dx.doi.org/10.1038/nature20413] [PMID: 27830784]
[201]
Cai, Y.; Arikkath, J.; Yang, L.; Guo, M-L.; Periyasamy, P.; Buch, S. Interplay of endoplasmic reticulum stress and autophagy in neurodegen-erative disorders. Autophagy, 2016, 12(2), 225-244.
[http://dx.doi.org/10.1080/15548627.2015.1121360] [PMID: 26902584]
[202]
Kukharsky, M.S.; Skvortsova, V.I.; Bachurin, S.O.; Buchman, V.L. In a search for efficient treatment for amyotrophic lateral sclerosis: Old drugs for new approaches. Med. Res. Rev., 2020, 1-19.
[PMID: 32815157]
[203]
Béland, L-C.; Markovinovic, A.; Jakovac, H.; De Marchi, F.; Bilic, E.; Mazzini, L.; Kriz, J.; Munitic, I. Immunity in amyotrophic lateral sclerosis: Blurred lines between excessive inflammation and inefficient immune responses. Brain Commun., 2020, 2(2), fcaa124.
[http://dx.doi.org/10.1093/braincomms/fcaa124]
[204]
Endo, F.; Komine, O.; Fujimori-Tonou, N.; Katsuno, M.; Jin, S.; Watanabe, S.; Sobue, G.; Dezawa, M.; Wyss-Coray, T.; Yamanaka, K. As-trocyte-derived TGF-β1 accelerates disease progression in ALS mice by interfering with the neuroprotective functions of microglia and T cells. Cell Rep., 2015, 11(4), 592-604.
[http://dx.doi.org/10.1016/j.celrep.2015.03.053] [PMID: 25892237]
[205]
Khalid, S.I.; Ampie, L.; Kelly, R.; Ladha, S.S.; Dardis, C. Immune modulation in the treatment of amyotrophic lateral sclerosis: A review of clinical trials. Front. Neurol., 2017, 8, 486.
[http://dx.doi.org/10.3389/fneur.2017.00486] [PMID: 28993751]
[206]
Hohn, O.; Hanke, K.; Bannert, N. HERV-K(HML-2), the best preserved family of HERVs: Endogenization, expression, and implications in health and disease. Front. Oncol., 2013, 3, 246.
[http://dx.doi.org/10.3389/fonc.2013.00246] [PMID: 24066280]
[207]
Strunecka, A.; Strunecky, O. Mechanisms of fluoride toxicity: From enzymes to underlying integrative networks. Appl. Sci., 2020, 10(20), 7100.
[http://dx.doi.org/10.3390/app10207100]
[208]
Gordon, P.; Corcia, P.; Meininger, V. New therapy options for amyotrophic lateral sclerosis. Expert Opin. Pharmacother., 2013, 14(14), 1907-1917.
[http://dx.doi.org/10.1517/14656566.2013.819344] [PMID: 23855817]
[209]
McGurk, L.; Rifai, O.M.; Bonini, N.M. Poly(ADP-Ribosylation) in age-related neurological disease. Trends Genet., 2019, 35(8), 601-613.
[210]
Brown, D.G.; Shorter, J.; Wobst, H.J. Emerging small-molecule therapeutic approaches for amyotrophic lateral sclerosis and frontotemporal dementia. Bioorg. Med. Chem. Lett., 2020, 30(4), 126942.
[http://dx.doi.org/10.1016/j.bmcl.2019.126942] [PMID: 31926785]
[211]
Calandra, T.; Roger, T. Macrophage migration inhibitory factor: a regulator of innate immunity. Nat. Rev. Immunol., 2003, 3(10), 791-800.
[http://dx.doi.org/10.1038/nri1200] [PMID: 14502271]
[212]
Malik, R.; Wiedau, M. Therapeutic approaches targeting protein aggregation in amyotrophic lateral sclerosis. Front. Mol. Neurosci., 2020, 13, 98.
[http://dx.doi.org/10.3389/fnmol.2020.00098] [PMID: 32581709]
[213]
Chavda, V.P. In: Chapter 4 Nanobased nano drug delivery a comprehensive review., 2021, pp. 69-92.
[214]
Chavda, V.P. A review on novel emulsification technique: A nanoemulsion. Trends Drug Delivery., 2016, 3(2), 25-34.
[215]
Chavda, V.P.; Shah, D. In: Chapter 25 - Self-emulsifying delivery systems: One step ahead in improving solubility of poorly soluble drugs. Micro and Nano Technologies; Ficai, A; Grumezescu, AMBT-N, Eds.; Elsevier, 2017, pp. 653-718.
[216]
Chavda, V.P. Archaeo somes: A robust liposome. Intern. J. Pharm. Biol. Sci. Arch., 2013, 1(1), 38-45.
[217]
Chavda, Vivek P Niosome: A vesicular weapon for targeted and controlled drug delivery. Indian J. Nov. Drug Deliv., 2016, 8(3), 133-156.
[218]
Shah, D.; Vivek Chavda, K.D. Microemulsion: novel carrier for drug delivery. Trends Drug Deliv., 2016, 3(1), 1-18.
[PMID: 24758139]
[219]
Chavda, V.P.; Shah, D.J. A review on novel emulsification technique: A nanoemulsion. Res. Rev. J. Pharmacol. Toxicol. Stud., 2017, 5(1), 29-38.
[220]
Vivek, P. Chavda DS. A review on novel emulsification technique: A nanoemulsion. Trends Drug Deliv., 2016, 3(2), 25-34.
[221]
Ravits, J.M.; La Spada, A.R. ALS motor phenotype heterogeneity, focality, and spread: Deconstructing motor neuron degeneration. Neurology, 2009, 73(10), 805-811.
[http://dx.doi.org/10.1212/WNL.0b013e3181b6bbbd] [PMID: 19738176]
[222]
Parvizi, J.; Anderson, S.W.; Martin, C.O.; Damasio, H.; Damasio, A.R. Pathological laughter and crying: A link to the cerebellum. Brain, 2001, 124(Pt 9), 1708-1719.
[http://dx.doi.org/10.1093/brain/124.9.1708] [PMID: 11522574]
[223]
Swash, M; de Carvalho, M. The neurophysiological index in ALS. Amyotroph lateral Scler other Mot neuron Disord, 2004, 5(Suppl 1), 108-110.
[http://dx.doi.org/10.1080/17434470410020067]
[224]
Biomarkers definitions working group. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther., 2001, 69(3), 89-95.
[http://dx.doi.org/10.1067/mcp.2001.113989] [PMID: 11240971]
[225]
Paganoni, S.; Cudkowicz, M.; Berry, J.D. Outcome measures in amyotrophic lateral sclerosis clinical trials. Clin. Investig. (Lond.), 2014, 4(7), 605-618.
[http://dx.doi.org/10.4155/cli.14.52] [PMID: 28203356]
[226]
Chiò, A.; Calvo, A.; Bovio, G.; Canosa, A.; Bertuzzo, D.; Galmozzi, F.; Cugnasco, P.; Clerico, M.; De Mercanti, S.; Bersano, E.; Camma-rosano, S.; Ilardi, A.; Manera, U.; Moglia, C.; Sideri, R.; Marinou, K.; Bottacchi, E.; Pisano, F.; Cantello, R.; Mazzini, L.; Mora, G. Piemonte and Valle d’Aosta Register for Amyotrophic Lateral Sclerosis. Amyotrophic lateral sclerosis outcome measures and the role of albumin and creatinine: A population-based study. JAMA Neurol., 2014, 71(9), 1134-1142.
[http://dx.doi.org/10.1001/jamaneurol.2014.1129] [PMID: 25048026]
[227]
Shepheard, S.R.; Wuu, J.; Cardoso, M.; Wiklendt, L.; Dinning, P.G.; Chataway, T.; Schultz, D.; Benatar, M.; Rogers, M-L. Urinary p75ECD: A prognostic, disease progression, and pharmacodynamic biomarker in ALS. Neurology, 2017, 88(12), 1137-1143.
[http://dx.doi.org/10.1212/WNL.0000000000003741] [PMID: 28228570]
[228]
Scarmeas, N.; Shih, T.; Stern, Y.; Ottman, R.; Rowland, L.P. Premorbid weight, body mass, and varsity athletics in ALS. Neurology, 2002, 59(5), 773-775.
[http://dx.doi.org/10.1212/WNL.59.5.773] [PMID: 12221178]
[229]
Marin, B.; Desport, J.C.; Kajeu, P.; Jesus, P.; Nicolaud, B.; Nicol, M.; Preux, P.M.; Couratier, P. Alteration of nutritional status at diagnosis is a prognostic factor for survival of amyotrophic lateral sclerosis patients. J. Neurol. Neurosurg. Psychiatry, 2011, 82(6), 628-634.
[http://dx.doi.org/10.1136/jnnp.2010.211474] [PMID: 21097551]
[230]
Claassen, D.O.; Josephs, K.A.; Peller, P.J. The stripe of primary lateral sclerosis: Focal primary motor cortex hypometabolism seen on fluorodeoxyglucose F18 positron emission tomography. Arch. Neurol., 2010, 67(1), 122-125.
[http://dx.doi.org/10.1001/archneurol.2009.298] [PMID: 20065142]
[231]
Bauckneht, M.; Lai, R.; Miceli, A.; Schenone, D.; Cossu, V.; Donegani, M.I.; Raffa, S.; Borra, A.; Marra, S.; Campi, C.; Orengo, A.; Mas-sone, A.M.; Tagliafico, A.; Caponnetto, C.; Cabona, C.; Cistaro, A.; Chiò, A.; Morbelli, S.; Nobili, F.; Sambuceti, G.; Piana, M.; Marini, C. Spinal cord hypermetabolism extends to skeletal muscle in amyotrophic lateral sclerosis: A computational approach to [18F]-fluorodeoxyglucose PET/CT images. EJNMMI Res., 2020, 10(1), 23.
[http://dx.doi.org/10.1186/s13550-020-0607-5] [PMID: 32201914]
[232]
Floyd, A.G.; Yu, Q.P.; Piboolnurak, P.; Tang, M.X.; Fang, Y.; Smith, W.A.; Yim, J.; Rowland, L.P.; Mitsumoto, H.; Pullman, S.L. Transcranial magnetic stimulation in ALS: Utility of central motor conduction tests. Neurology, 2009, 72(6), 498-504.
[http://dx.doi.org/10.1212/01.wnl.0000341933.97883.a4] [PMID: 19204259]
[233]
Zaidman, C.M.; Wang, L.L.; Connolly, A.M.; Florence, J.; Wong, B.L.; Parsons, J.A.; Apkon, S.; Goyal, N.; Williams, E.; Escolar, D.; Rutkove, S.B.; Bohorquez, J.L. DART-EIM Clinical Evaluators ConsortiumElectrical impedance myography in Duchenne muscular dys-trophy and healthy controls: A multicenter study of reliability and validity. Muscle Nerve, 2015, 52(4), 592-597.
[http://dx.doi.org/10.1002/mus.24611] [PMID: 25702806]
[234]
McComas, A.J.; Fawcett, P.R.; Campbell, M.J.; Sica, R.E. Electrophysiological estimation of the number of motor units within a human muscle. J. Neurol. Neurosurg. Psychiatry, 1971, 34(2), 121-131.
[http://dx.doi.org/10.1136/jnnp.34.2.121] [PMID: 5571599]
[235]
Tai, H.; Cui, L.; Guan, Y.; Liu, M.; Li, X.; Shen, D.; Li, D.; Cui, B.; Fang, J.; Ding, Q.; Zhang, K.; Liu, S. Correlation of creatine kinase levels with clinical features and survival in amyotrophic lateral sclerosis. Front. Neurol., 2017, 8, 322.
[http://dx.doi.org/10.3389/fneur.2017.00322] [PMID: 28717355]
[236]
Wiedemann, F.R.; Winkler, K.; Kuznetsov, A.V.; Bartels, C.; Vielhaber, S.; Feistner, H.; Kunz, W.S. Impairment of mitochondrial function in skeletal muscle of patients with amyotrophic lateral sclerosis. J. Neurol. Sci., 1998, 156(1), 65-72.
[http://dx.doi.org/10.1016/S0022-510X(98)00008-2] [PMID: 9559989]
[237]
Palamiuc, L.; Schlagowski, A.; Ngo, S.T.; Vernay, A.; Dirrig-Grosch, S.; Henriques, A.; Boutillier, A-L.; Zoll, J.; Echaniz-Laguna, A.; Loef-fler, J-P.; René, F. A metabolic switch toward lipid use in glycolytic muscle is an early pathologic event in a mouse model of amyotrophic lateral sclerosis. EMBO Mol. Med., 2015, 7(5), 526-546.
[http://dx.doi.org/10.15252/emmm.201404433] [PMID: 25820275]
[238]
Blasco, H.; Veyrat-Durebex, C.; Bocca, C.; Patin, F.; Vourc’h, P.; Kouassi Nzoughet, J.; Lenaers, G.; Andres, C.R.; Simard, G.; Corcia, P.; Reynier, P. Lipidomics reveals cerebrospinal-fluid signatures of ALS. Sci. Rep., 2017, 7(1), 17652.
[http://dx.doi.org/10.1038/s41598-017-17389-9] [PMID: 29247199]
[239]
Yesavage, J.A.; Tinklenberg, J.R.; Hollister, L.E.; Berger, P.A. Effect of nafronyl on lactate and pyruvate in the cerebrospinal fluid of patients with senile dementia. J. Am. Geriatr. Soc., 1982, 30(2), 105-108.
[http://dx.doi.org/10.1111/j.1532-5415.1982.tb01283.x] [PMID: 6173407]
[240]
Bilic, E.; Bilic, E.; Rudan, I.; Kusec, V.; Zurak, N.; Delimar, D.; Zagar, M. Comparison of the growth hormone, IGF-1 and insulin in cere-brospinal fluid and serum between patients with motor neuron disease and healthy controls. Eur. J. Neurol., 2006, 13(12), 1340-1345.
[http://dx.doi.org/10.1111/j.1468-1331.2006.01503.x] [PMID: 17116217]
[241]
Kirk, S.E.; Tracey, T.J.; Steyn, F.J.; Ngo, S.T. Biomarkers of metabolism in amyotrophic lateral sclerosis. Front. Neurol., 2019, 10, 191.
[http://dx.doi.org/10.3389/fneur.2019.00191] [PMID: 30936848]
[242]
Patacchioli, F.R.; Monnazzi, P.; Scontrini, A.; Tremante, E.; Caridi, I.; Brunetti, E.; Buttarelli, F.R.; Pontieri, F.E. Adrenal dysregulation in amyotrophic lateral sclerosis. J. Endocrinol. Invest., 2003, 26(12), RC23-RC25.
[http://dx.doi.org/10.1007/BF03349149] [PMID: 15055464]
[243]
Yang, X.; Gao, L.; Wu, X.; Zhang, Y.; Zang, D. Increased levels of MIP-1α in CSF and serum of ALS. Acta Neurol. Scand., 2016, 134(2), 94-100.
[http://dx.doi.org/10.1111/ane.12513] [PMID: 26427609]
[244]
Butovsky, O.; Siddiqui, S.; Gabriely, G.; Lanser, A.J.; Dake, B.; Murugaiyan, G.; Doykan, C.E.; Wu, P.M.; Gali, R.R.; Iyer, L.K.; Lawson, R.; Berry, J.; Krichevsky, A.M.; Cudkowicz, M.E.; Weiner, H.L. Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS. J. Clin. Invest., 2012, 122(9), 3063-3087.
[http://dx.doi.org/10.1172/JCI62636] [PMID: 22863620]
[245]
Mitsumoto, H.; Saito, T. A prognostic biomarker in amyotrophic lateral sclerosis. Rinsho Shinkeigaku, 2018, 58(12), 729-736. [A prognostic biomarker in amyotrophic lateral sclerosis].
[http://dx.doi.org/ 10.5692/clinicalneurol.cn-001220] [PMID: 30487362]
[246]
Gomeni, R.; Fava, M. Pooled Resource Open-Access ALS Clinical Trials Consortium. Amyotrophic lateral sclerosis disease progression model. Amyotroph. Lateral Scler. Frontotemporal Degener., 2014, 15(1-2), 119-129.
[http://dx.doi.org/10.3109/21678421.2013.838970] [PMID: 24070404]
[247]
Bourke, S.C.; Tomlinson, M.; Williams, T.L.; Bullock, R.E.; Shaw, P.J.; Gibson, G.J. Effects of non-invasive ventilation on survival and quality of life in patients with amyotrophic lateral sclerosis: A randomised controlled trial. Lancet Neurol., 2006, 5(2), 140-147.
[http://dx.doi.org/10.1016/S1474-4422(05)70326-4] [PMID: 16426990]
[248]
Verber, N.S.; Shepheard, S.R.; Sassani, M.; McDonough, H.E.; Moore, S.A.; Alix, J.J.P.; Wilkinson, I.D.; Jenkins, T.M.; Shaw, P.J. Biomarkers in motor neuron disease: A state of the art review. Front. Neurol., 2019, 10, 291. Available from: https://pubmed.ncbi.nlm.nih.gov/31001186 [Internet].
[http://dx.doi.org/ 10.3389/fneur.2019.00291] [PMID: 31001186]
[249]
Feng, Z.; Yasui, Y. Statistical considerations in combining biomarkers for disease classification. Dis. Markers, 2004, 20(2), 45-51.
[http://dx.doi.org/10.1155/2004/214152] [PMID: 15322313]
[250]
Malaspina, A.; Puentes, F.; Amor, S. Disease origin and progression in amyotrophic lateral sclerosis: An immunology perspective. Int. Immunol., 2015, 27(3), 117-129.
[http://dx.doi.org/10.1093/intimm/dxu099] [PMID: 25344935]
[251]
Spencer, P.S.; Palmer, V.S. Interrelationships of undernutrition and neurotoxicity: Food for thought and research attention. Neurotoxicology, 2012, 33(3), 605-616.
[http://dx.doi.org/10.1016/j.neuro.2012.02.015] [PMID: 22394483]
[252]
Vejux, A.; Namsi, A.; Nury, T.; Moreau, T.; Lizard, G. Biomarkers of amyotrophic lateral sclerosis: Current status and interest of oxysterols and phytosterols. Front. Mol. Neurosci., 2018, 11, 12.
[http://dx.doi.org/10.3389/fnmol.2018.00012] [PMID: 29445325]
[253]
Renton, A.E.; Chiò, A.; Traynor, B.J. State of play in amyotrophic lateral sclerosis genetics. Nat. Neurosci., 2014, 17(1), 17-23.
[http://dx.doi.org/10.1038/nn.3584] [PMID: 24369373]
[254]
Otto, M; Bowser, R; Turner, M; Berry, J; Brettschneider, J; Connor, J; Costa, J; Cudkowicz, M; Glass, J; Jahn, O; Lehnert, S; Malaspina, A; Parnetti, L; Petzold, A; Shaw, P; Sherman, A; Steinacker, P; Süssmuth, S; Teunissen, C; Tumani, H; Wuolikainen, A; Ludolph, A. Roadmap and standard operating procedures for biobanking and discovery of neurochemical markers in ALS. Amyotroph. Lateral Scler., 2012, 13(1), 1-10.
[http://dx.doi.org/10.3109/17482968.2011.627589]
[255]
Mitsumoto, H.; Factor-Litvak, P.; Andrews, H.; Goetz, R.R.; Andrews, L.; Rabkin, J.G.; McElhiney, M.; Nieves, J.; Santella, R.M.; Murphy, J.; Hupf, J.; Singleton, J.; Merle, D.; Kilty, M.; Heitzman, D.; Bedlack, R.S.; Miller, R.G.; Katz, J.S.; Forshew, D.; Barohn, R.J.; Sorenson, E.J.; Oskarsson, B.; Fernandes Filho, J.A.M.; Kasarskis, E.J.; Lomen-Hoerth, C.; Mozaffar, T.; Rollins, Y.D.; Nations, S.P.; Swenson, A.J.; Shefner, J.M.; Andrews, J.A.; Koczon-Jaremko, B.A. ALS COSMOS Study Group. ALS Multicenter Cohort Study of Oxidative Stress (ALS COSMOS): Study methodology, recruitment, and baseline demographic and disease characteristics. Amyotroph. Lateral Scler. Frontotemporal Degener., 2014, 15(3-4), 192-203.
[http://dx.doi.org/10.3109/21678421.2013.864312] [PMID: 24564738]
[256]
Barber, S.C.; Shaw, P.J. Oxidative stress in ALS: Key role in motor neuron injury and therapeutic target. Free Radic. Biol. Med., 2010, 48(5), 629-641.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.11.018] [PMID: 19969067]
[257]
Siciliano, G.; Piazza, S.; Carlesi, C.; Del Corona, A.; Franzini, M.; Pompella, A.; Malvaldi, G.; Mancuso, M.; Paolicchi, A.; Murri, L. Antiox-idant capacity and protein oxidation in cerebrospinal fluid of amyotrophic lateral sclerosis. J. Neurol., 2007, 254(5), 575-580.
[http://dx.doi.org/10.1007/s00415-006-0301-1] [PMID: 17426914]
[258]
Liu, J.; Gao, L.; Zang, D. Elevated levels of IFN-γ in CSF and serum of patients with amyotrophic lateral sclerosis. PLoS One, 2015, 10(9), e0136937.
[http://dx.doi.org/10.1371/journal.pone.0136937] [PMID: 26332465]
[259]
Guo, J.; Yang, X.; Gao, L.; Zang, D. Evaluating the levels of CSF and serum factors in ALS. Brain Behav., 2017, 7(3), e00637.
[http://dx.doi.org/10.1002/brb3.637] [PMID: 28293476]
[260]
Hardiman, O. Major advances in amyotrophic lateral sclerosis in 2020. Lancet Neurol., 2021, 20(1), 14-15.
[http://dx.doi.org/10.1016/S1474-4422(20)30447-6] [PMID: 33340474]
[261]
Chen, S.; Zhang, X.; Song, L.; Le, W. Autophagy dysregulation in amyotrophic lateral sclerosis. Brain Pathol., 2012, 22(1), 110-116.
[http://dx.doi.org/10.1111/j.1750-3639.2011.00546.x] [PMID: 22150926]
[262]
Mazzini, L.; Ferrero, I.; Luparello, V.; Rustichelli, D.; Gunetti, M.; Mareschi, K.; Testa, L.; Stecco, A.; Tarletti, R.; Miglioretti, M.; Fava, E.; Nasuelli, N.; Cisari, C.; Massara, M.; Vercelli, R.; Oggioni, G.D.; Carriero, A.; Cantello, R.; Monaco, F.; Fagioli, F. Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: A Phase I clinical trial. Exp. Neurol., 2010, 223(1), 229-237.
[http://dx.doi.org/10.1016/j.expneurol.2009.08.007] [PMID: 19682989]
[263]
Abati, E.; Bresolin, N.; Comi, G.; Corti, S. Advances, challenges, and perspectives in translational stem cell therapy for amyotrophic lateral sclerosis. Mol. Neurobiol., 2019, 56(10), 6703-6715.
[http://dx.doi.org/10.1007/s12035-019-1554-x] [PMID: 30911936]
[264]
Petrou, P.; Gothelf, Y.; Argov, Z.; Gotkine, M.; Levy, Y.S.; Kassis, I.; Vaknin-Dembinsky, A.; Ben-Hur, T.; Offen, D.; Abramsky, O.; Mela-med, E.; Karussis, D. Safety and clinical effects of mesenchymal stem cells secreting neurotrophic factor transplantation in patients with am-yotrophic lateral sclerosis: Results of phase 1/2 and 2a clinical trials. JAMA Neurol., 2016, 73(3), 337-344.
[http://dx.doi.org/10.1001/jamaneurol.2015.4321] [PMID: 26751635]
[265]
Apellis Pharmaceuticals I. MERIDIAN: A study to evaluate the efficacy and safety of pegcetacoplan in adults with amyotrophic lateral sclerosis (ALS). NCT04579666,
[266]
Amado, D.A.; Davidson, B.L. Gene therapy for ALS: A review. Mol. Ther., 2021, 29(12), 3345-3358.
[http://dx.doi.org/10.1016/j.ymthe.2021.04.008] [PMID: 33839324]
[267]
Wang, G.Y.; Rayner, S.L.; Chung, R.; Shi, B.Y.; Liang, X.J. Advances in nanotechnology-based strategies for the treatments of amyotrophic lateral sclerosis. Mater. Today Bio, 202s0, 6, 100055.
[http://dx.doi.org/10.1016/j.mtbio.2020.100055] [PMID: 32529183]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy