Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Recent Updates on Oral and Dermal Film-based Formulations and their Applications

Author(s): Saily Shinde, Mihir Ghonge and Harsha Kathpalia*

Volume 20, Issue 4, 2023

Published on: 01 August, 2022

Page: [335 - 349] Pages: 15

DOI: 10.2174/1567201819666220307112525

Price: $65

Abstract

On the one hand, oral formulations are susceptible to problems, including instability accompanied by erratic absorption throughout the gastrointestinal tract, first-pass metabolism, and patientrelated and pathological difficulties in consumption. On the other hand, the world has been observing a shift from conventional dermal formulations to the more cosmetically attractive ones. Amid all these, polymeric films and film-forming systems have emerged as promising candidates for addressing the above problems. Oral films have been studied for their potential applications in immediate and sustained- release formulations and have markedly shown increased plasma concentrations of drugs that otherwise undergo degradation in the gastrointestinal tract and the liver and have an obvious edge in treating pathologies of the oral cavity. At the same time, a variety of dermal film formulations have been developed and studied for treating wounds, skin infections and pathologies, corns and calluses, and managing pain. This review article attempts to cover significant findings in oral and dermal applications of these formulations under one umbrella and provide readers with a compilation of relevant research works and marketed formulations.

Keywords: Film-forming system, sustained-release film, mucoadhesive film, wound dressing, mucositis, marketed film formulation

Graphical Abstract
[1]
Greene, J.E. Review Article: Tracing the recorded history of thinfilm sputter deposition: From the 1800s to 2017. J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., 2017, 35(5), 05C204.
[http://dx.doi.org/10.1116/1.4998940]
[2]
Greene, J.E. Tracing the 4000 Year history of organic thin films: from monolayers on liquids to multilayers on solidsa. Appl. Phys. Rev., 2015, 2(1), 011101.
[http://dx.doi.org/10.1063/1.4907770]
[3]
Piedade, A. P.; Romeu, F.; Branco, R.; Morais, P. V. Thin films for medical and environmental applications. In: Methods for Film Synthesis and Coating Procedures; László, Nánai; Aneeya, Samantara; László, Fábián; and Satyajit, Ratha, Eds.; IntechOpen: London, 2018.
[http://dx.doi.org/10.5772/intechopen.80021]
[4]
Van Savage, G.; Rhodes, C.T. The sustained release coating of solid dosage forms: A historical review. Drug Dev. Ind. Pharm., 1995, 21(1), 93-118.
[http://dx.doi.org/10.3109/03639049509048098]
[5]
Quarterman, J.C.; Geary, S.M.; Salem, A.K. Evolution of drug-eluting biomedical implants for sustained drug delivery. Eur. J. Pharm. Biopharm., 2021, 159, 21-35.
[http://dx.doi.org/10.1016/j.ejpb.2020.12.005] [PMID: 33338604]
[6]
Karki, S.; Kim, H.; Na, S.J.; Shin, D.; Jo, K.; Lee, J. Thin films as an emerging platform for drug delivery. Asian J. Pharm. Sci., 2016, 11(5), 559-574.
[http://dx.doi.org/10.1016/j.ajps.2016.05.004]
[7]
de Oliveira, F.F.D.; de Menezes, L.R.; Tavares, M.I.B. Film-forming systems in topically administered pharmaceutical formulations. Mater. Sci. Appl., 2020, 11(08), 576-590.
[http://dx.doi.org/10.4236/msa.2020.118038]
[8]
Garvie-Cook, H.; Frederiksen, K.; Petersson, K.; Guy, R.H.; Gordeev, S. Characterization of topical film-forming systems using atomic force microscopy and Raman microspectroscopy. Mol. Pharm., 2015, 12(3), 751-757.
[http://dx.doi.org/10.1021/mp500582j] [PMID: 25586343]
[9]
Kathe, K.; Kathpalia, H. Film forming systems for topical and transdermal drug delivery. Asian J. Pharm. Sci., 2017, 12(6), 487-497.
[http://dx.doi.org/10.1016/j.ajps.2017.07.004] [PMID: 32104362]
[10]
McAuley, W.J.; Caserta, F. Film-Forming and Heated Systems.Novel Delivery Systems for Transdermal and Intradermal Drug Delivery; Donnelly, R.F.; Singh, T.R.R., Eds.; John Wiley and Sons Ltd: Chichester, UK, 2015, pp. 97-124.
[http://dx.doi.org/10.1002/9781118734506.ch5]
[11]
Tran, T.T.D.; Tran, P.H.L. Controlled release film forming systems in drug delivery: the potential for efficient drug delivery. Pharm, 2019, 11(6), 290.
[http://dx.doi.org/10.3390/pharmaceutics11060290]
[12]
Qureshi, D.; Behera, K.P.; Mohanty, D.; Mahapatra, S.K.; Verma, S.; Sukyai, P.; Banerjee, I.; Pal, S.K.; Mohanty, B.; Kim, D. Synthesis of novel poly (vinyl alcohol)/tamarind gum/bentonite-based composite films for drug delivery applications. Colloids Surf. A Physicochem. Eng. Asp., 2021, 613, 126043.
[http://dx.doi.org/10.1016/j.colsurfa.2020.126043]
[13]
Zelikin, A.N. Drug releasing polymer thin films: new era of surface-mediated drug delivery. ACS Nano, 2010, 4(5), 2494-2509.
[http://dx.doi.org/10.1021/nn100634r] [PMID: 20423067]
[14]
Lieb, S.; Szeimies, R.M.; Lee, G. Self-adhesive thin films for topical delivery of 5-aminolevulinic acid. Eur. J. Pharm. Biopharm., 2002, 53(1), 99-106.
[http://dx.doi.org/10.1016/S0939-6411(01)00193-X] [PMID: 11777757]
[15]
Zurdo Schroeder, I.; Franke, P.; Schaefer, U.F.; Lehr, C.M. Development and characterization of film forming polymeric solutions for skin drug delivery. Eur. J. Pharm. Biopharm., 2007, 65(1), 111-121.
[http://dx.doi.org/10.1016/j.ejpb.2006.07.015] [PMID: 16950609]
[16]
Film formers for solid oral dosage forms – functional solutions from BASF Available from: https://pharmaceutical.basf.com/global/en/drug-formulation/solution-platforms/instant-modified-release/film-formers.html (Accessed on Dec 19, 2020).
[17]
Crendhuty, F.D.; Sriwidodo, S.; Wardhana, Y.W. Sistem penghantaran obat berbasis biopolimer kitosan pada formulasi film forming system. Maj. Farmasetika, 2021, 6(1), 38-55.
[http://dx.doi.org/10.24198/mfarmasetika.v6i1.27457]
[18]
Rojas-Graü, M.A.; Oms-Oliu, G.; Soliva-Fortuny, R.; Martín-Belloso, O. The use of packaging techniques to maintain freshness in fresh-cut fruits and vegetables: A review. Int. J. Food Sci. Technol., 2009, 44(5), 875-889.
[http://dx.doi.org/10.1111/j.1365-2621.2009.01911.x]
[19]
Pascall, M. A.; Lin, S.-J. The application of edible polymeric films and coatings in the food industry. J. Food Process. Technol., 2013, 4(2), e116.
[http://dx.doi.org/10.4172/2157-7110.1000e116]
[20]
Klykken, P.; Servinski, M.; Thomas, X. Silicone film-forming technologies for health care applications, 2004.
[21]
Reddy, P.P. Pathogenesis-Related Proteins. In: Recent Advances in Crop Protection; , 2013; pp. 242-252.
[http://dx.doi.org/10.1007/978-81-322-0723-8]
[22]
Yasir, M.; Nagar, P.; Chauhan, I. Insights into polymers: Film formers in mouth dissolving films. Drug Invent. Today, 2011, 3(12), 280-289.
[23]
Irfan, M.; Rabel, S.; Bukhtar, Q.; Qadir, M.I.; Jabeen, F.; Khan, A. Orally disintegrating films: A modern expansion in drug delivery system. Saudi Pharm. J., 2016, 24(5), 537-546.
[http://dx.doi.org/10.1016/j.jsps.2015.02.024] [PMID: 27752225]
[24]
Hanif, M.; Zaman, M.; Chaurasiya, V. Polymers used in buccal film: A review. 2014, 18(2), 105-111.
[http://dx.doi.org/10.1080/15685551.2014.971389]
[25]
Zaman, M.; Hassan, R.; Razzaq, S.; Mahmood, A.; Amjad, M.W.; Raja, M.A.G.; Qaisar, A.A.; Majeed, A.; Hanif, M.; Tahir, R.A. Fabrication of polyvinyl alcohol based fast dissolving oral strips of sumatriptan succinate and metoclopramide HCL. Sci. Prog., 2020, 103(4), 36850420964302.
[http://dx.doi.org/10.1177/0036850420964302] [PMID: 33151131]
[26]
Borges, A.F.; Silva, C.; Coelho, J.F.J.; Simões, S. Oral films: Current status and future perspectives: I - Galenical development and quality attributes. J. Control. Release, 2015, 206, 1-19.
[http://dx.doi.org/10.1016/j.jconrel.2015.03.006] [PMID: 25747406]
[27]
Darwish, M. K. Preparation and evaluation of zaleplon fast dissolving films using different film forming polymers. Manal K. Darwish / JGTPS, 2014, 5(4), 2055-2060.
[28]
Sharma, R.; Parikh, R.; Gohel, M.; Soniwala, M. Development of taste masked film of valdecoxib for oral use. Indian J. Pharm. Sci., 2007, 69(2), 320-323.
[http://dx.doi.org/10.4103/0250-474X.33174]
[29]
Kathpalia, H.; Gupte, A. An introduction to fast dissolving oral thin film drug delivery systems: A review. Curr. Drug Deliv., 2013, 10(6), 667-684.
[http://dx.doi.org/10.2174/156720181006131125150249] [PMID: 24274635]
[30]
Bahri-Najafi, R.; Tavakoli, N.; Senemar, M.; Peikanpour, M. Preparation and pharmaceutical evaluation of glibenclamide slow release mucoadhesive buccal film. Res. Pharm. Sci., 2014, 9(3), 213-223.
[PMID: 25657792]
[31]
Umar, A.K.; Butarbutar, M.; Sriwidodo, S.; Wathoni, N. Film-forming sprays for topical drug delivery. Drug Des. Devel. Ther., 2020, 14, 2909-2925.
[http://dx.doi.org/10.2147/DDDT.S256666] [PMID: 32884234]
[32]
Üstündağ Okur, N.; Hökenek, N.; Okur, M.E.; Ayla, Ş; Yoltaş, A.; Siafaka, P.I.; Cevher, E. An alternative approach to wound healing field; new composite films from natural polymers for mupirocin dermal delivery. Saudi Pharm. J., 2019, 27(5), 738-752.
[http://dx.doi.org/10.1016/j.jsps.2019.04.010] [PMID: 31297030]
[33]
Pereira, G.G.; Guterres, S.S.; Balducci, A.G.; Colombo, P.; Sonvico, F. Polymeric films loaded with vitamin E and Aloe vera for topical application in the treatment of burn wounds. BioMed Res. Int., 2014, 2014, 641590.
[http://dx.doi.org/10.1155/2014/641590] [PMID: 24524083]
[34]
Hoogstraate, J.A.J.; Wertz, P.W. Drug delivery via the buccal mucosa. Pharm. Sci. Technol. Today, 1998, 1(7), 309-316.
[http://dx.doi.org/10.1016/S1461-5347(98)00076-5]
[35]
Stegemann, S.; Gosch, M.; Breitkreutz, J. Swallowing dysfunction and dysphagia is an unrecognized challenge for oral drug therapy. Int. J. Pharm., 2012, 430(1-2), 197-206.
[http://dx.doi.org/10.1016/j.ijpharm.2012.04.022] [PMID: 22525080]
[36]
Jadcherla, S.R. Advances with neonatal aerodigestive science in the pursuit of safe swallowing in infants: Invited review. Dysphagia, 2017, 32(1), 15-26.
[http://dx.doi.org/10.1007/s00455-016-9773-z] [PMID: 28044203]
[37]
Aslam, M.; Vaezi, M.F. Dysphagia in the elderly. Gastroenterol. Hepatol. (N. Y.), 2013, 9(12), 784-795.
[PMID: 24772045]
[38]
Wening, K.; Breitkreutz, J. Oral drug delivery in personalized medicine: unmet needs and novel approaches. Int. J. Pharm., 2011, 404(1-2), 1-9.
[http://dx.doi.org/10.1016/j.ijpharm.2010.11.001] [PMID: 21070842]
[39]
Masaoka, Y.; Tanaka, Y.; Kataoka, M.; Sakuma, S.; Yamashita, S. Site of drug absorption after oral administration: assessment of membrane permeability and luminal concentration of drugs in each segment of gastrointestinal tract. Eur. J. Pharm. Sci., 2006, 29(3-4), 240-250.
[http://dx.doi.org/10.1016/j.ejps.2006.06.004] [PMID: 16876987]
[40]
Montenegro-Nicolini, M.; Morales, J. O. Overview and future potential of buccal mucoadhesive films as drug delivery systems for biologics. AAPS PharmSciTech, 2016, 18(1), 3-14.
[http://dx.doi.org/10.1208/s12249-016-0525-z]
[41]
Lai, K.L.; Fang, Y.; Han, H.; Li, Q.; Zhang, S.; Li, H.Y.; Chow, S.F.; Lam, T.N.; Lee, W.Y.T. Orally-dissolving film for sublingual and buccal delivery of ropinirole. Colloids Surf. B Biointerfaces, 2018, 163, 9-18.
[http://dx.doi.org/10.1016/j.colsurfb.2017.12.015] [PMID: 29268211]
[42]
Londhe, V.; Shirsat, R. Formulation and characterization of fast-dissolving sublingual film of iloperidone using box–behnken design for enhancement of oral bioavailability. AAPS PharmSciTech, 2018, 19(3), 1392-1400.
[http://dx.doi.org/10.1208/s12249-018-0954-y]
[43]
Naz, K.; Shahnaz, G.; Ahmed, N.; Qureshi, N. A.; Sarwar, H. S.; Imran, M.; Khan, G. M. Formulation and in vitro characterization of thiolated buccoadhesive film of fluconazole. AAPS PharmSciTech, 2016, 18(4), 1043-1055.
[http://dx.doi.org/10.1208/s12249-016-0607-y]
[44]
Pekoz, A. Y.; Erdal, M. S.; Okyar, A.; Ocak, M.; Tekeli, F.; Kaptan, E.; Sagirli, O.; Araman, A. Preparation and in-vivo evaluation of dimenhydrinate buccal mucoadhesive films with enhanced bioavailability. 2015, 42(6), 916-925.
[http://dx.doi.org/10.3109/03639045.2015.1091470]
[45]
Sayed, S.; Ibrahim, H.K.; Mohamed, M.I.; El-Milligi, M.F. Fast-dissolving sublingual films of terbutaline sulfate: formulation and in vitro/in vivo evaluation. Mol. Pharm., 2013, 10(8), 2942-2947.
[http://dx.doi.org/10.1021/mp4000713] [PMID: 23883311]
[46]
Salehi, S.; Boddohi, S. New formulation and approach for mucoadhesive buccal film of rizatriptan benzoate. Prog. Biomater., 2017, 6(4), 175-187.
[http://dx.doi.org/10.1007/s40204-017-0077-7]
[47]
Hearnden, V.; Sankar, V.; Hull, K.; Juras, D.V.; Greenberg, M.; Kerr, A.R.; Lockhart, P.B.; Patton, L.L.; Porter, S.; Thornhill, M.H. New developments and opportunities in oral mucosal drug delivery for local and systemic disease. Adv. Drug Deliv. Rev., 2012, 64(1), 16-28.
[http://dx.doi.org/10.1016/j.addr.2011.02.008] [PMID: 21371513]
[48]
Squier, C.A. The permeability of oral mucosa. Crit. Rev. Oral Biol. Med., 1991, 2(1), 13-32.
[http://dx.doi.org/10.1177/10454411910020010301] [PMID: 1912142]
[49]
Fathi, M.; Alami-Milani, M.; Salatin, S.; Sattari, S.; Montazam, H.; Fekrat, F.; Jelvehgari, M. Fast dissolving sublingual strips: A novel approach for the delivery of isosorbide dinitrate. Pharm. Sci., 2019, 25(4), 311-318.
[http://dx.doi.org/10.15171/PS.2019.34]
[50]
Doijad, R.; Manvi, F.; Rao, V.S. M.; Patel, P. Buccoadhesive drug delivery system of isosorbide dinitrate: Formulation and evaluation. Indian J. Pharm. Sci., 2006, 68(6), 744.
[http://dx.doi.org/10.4103/0250-474X.31007]
[51]
Joshi, H.R.; Shah, Y.D.; Rajbongshi, S.; Sajib, A.U. Formulation development and in vitro evaluation of sublingual film of isosorbide dinitrate. Hardik al. World J. Pharm. Res. J. Pharm. Res. SJIF Impact Factor, 2017, 6(11), 494.
[http://dx.doi.org/10.20959/wjpr201711-9426]
[52]
Esim, O.; Ozkan, C. K.; Kurbanoglu, S.; Arslan, A.; Tas, C.; Savaser, A.; Ozkan, S. A.; Ozkan, Y. Development and in vitro/in vivo evaluation of dihydroergotamine mesylate loaded maltodextrin-pullulan sublingual films. 2019, 45(6), 914-921.
[http://dx.doi.org/10.1080/03639045.2019.1578788]
[53]
Elagamy, H.I.; Essa, E.A.; Nouh, A.; El Maghraby, G.M. Development and evaluation of rapidly dissolving buccal films of naftopidil: In vitro and in vivo, 2019, 45(10), 1695-1706.
[http://dx.doi.org/10.1080/03639045.2019.1656734]
[54]
Maheshwari, R.; Kuche, K.; Mane, A.; Chourasiya, Y.; Tekade, M.; Tekade, R.K. Manipulation of physiological processes for pharmaceutical product development. Dos. Form Des. Considerations, 2018, I, 701-729.
[http://dx.doi.org/10.1016/B978-0-12-814423-7.00020-4]
[55]
Yun, G.-A.; Choi, S.-U.; Park, K.-H.; Rhee, Y.-S.; Lee, B.-J.; Lee, J.-H. Pharmaceutical devices for oral cavity-based local and systemic drug delivery. J. Pharm. Investig, 2010, 40(spc), 113-118.
[http://dx.doi.org/10.4333/KPS.2010.40.S.113]
[56]
Harris, D.; Robinson, J.R. Drug delivery via the mucous membranes of the oral cavity. J. Pharm. Sci., 1992, 81(1), 1-10.
[http://dx.doi.org/10.1002/jps.2600810102] [PMID: 1619560]
[57]
Nagaraju, T.; Gowthami, R.; Rajashekar, M.; Sandeep, S.; Mallesham, M.; Sathish, D.; Shravan Kumar, Y. Comprehensive review on oral disintegrating films. Curr. Drug Deliv., 2013, 10(1), 96-108.
[http://dx.doi.org/10.2174/1567201811310010016] [PMID: 22920576]
[58]
Tran, P.H.L.; Duan, W.; Tran, T.T.D. Recent developments of nanoparticle-delivered dosage forms for buccal delivery. Int. J. Pharm., 2019, 571, 118697.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118697] [PMID: 31526839]
[59]
Allam, A.; Fetih, G. Sublingual fast dissolving niosomal films for enhanced bioavailability and prolonged effect of metoprolol tartrate. Drug Des. Devel. Ther., 2016, 10, 2421-2433.
[http://dx.doi.org/10.2147/DDDT.S113775] [PMID: 27536063]
[60]
Loprete, L.; Leuratti, C.; Frangione, V.; Radicioni, M. Pharmacokinetics of a novel sildenafil orodispersible film administered by the supralingual and the sublingual route to healthy men. Clin. Drug Investig., 2018, 38(8), 765-772.
[http://dx.doi.org/10.1007/s40261-018-0665-x]
[61]
Preis, M.; Woertz, C.; Schneider, K.; Kukawka, J.; Broscheit, J.; Roewer, N.; Breitkreutz, J. Design and evaluation of bilayered buccal film preparations for local administration of lidocaine hydrochloride. Eur. J. Pharm. Biopharm., 2014, 86(3), 552-561.
[http://dx.doi.org/10.1016/j.ejpb.2013.12.019] [PMID: 24388912]
[62]
Peh, K.K.; Wong, C.F. Polymeric films as vehicle for buccal delivery: swelling, mechanical, and bioadhesive properties. J. Pharm. Pharm. Sci., 1999, 2(2), 53-61.
[PMID: 10952770]
[63]
Di Prima, G.; Conigliaro, A.; De Caro, V. Mucoadhesive polymeric films to enhance barbaloin penetration into buccal mucosa: a novel approach to chemoprevention. AAPS PharmSciTech, 2019, 20(1), 18.
[http://dx.doi.org/10.1208/s12249-018-1202-1] [PMID: 30603884]
[64]
Bibby, D.C.; Davies, N.M.; Tucker, I.G. Mechanisms by which cyclodextrins modify drug release from polymeric drug delivery systems. Int. J. Pharm., 2000, 197(1-2), 1-11.
[http://dx.doi.org/10.1016/S0378-5173(00)00335-5] [PMID: 10704788]
[65]
Jug, M.; Bećirević-Laćan, M.; Bengez, S. Novel cyclodextrin-based film formulation intended for buccal delivery of atenolol. Drug Dev. Ind. Pharm., 2009, 35(7), 796-807.
[http://dx.doi.org/10.1080/03639040802596212] [PMID: 19259876]
[66]
El-Kattan, A.; Varm, M. Oral absorption, intestinal metabolism and human oral bioavailability. In: Topics on Drug Metabol. [James Parton, Ed.; IntechOpen, 2012, London;
[http://dx.doi.org/10.5772/31087]
[67]
Mortazavian, E.; Dorkoosh, F.A.; Rafiee-Tehrani, M. Design, characterization and ex vivo evaluation of chitosan film integrating of insulin nanoparticles composed of thiolated chitosan derivative for buccal delivery of insulin. Drug Dev. Ind. Pharm., 2014, 40(5), 691-698.
[http://dx.doi.org/10.3109/03639045.2014.886590] [PMID: 24524272]
[68]
Maher, S.; Brayden, D. J.; Casettari, L.; Illum, L. Application of permeation enhancers in oral delivery of macromolecules: An update. pharmaceutics. Pharmaceutics, 2019, 11(1), 41.
[http://dx.doi.org/10.3390/pharmaceutics11010041]
[69]
Laffleur, F.; Bernkop-Schnürch, A. Strategies for improving mucosal drug delivery. Nanomedicine (Lond.), 2013, 8(12), 2061-2075.
[http://dx.doi.org/10.2217/nnm.13.178] [PMID: 24279493]
[70]
Mudshinge, S. R.; Deore, A. B.; Patil, S.; Bhalgat, C. M. Nanoparticles: Emerging carriers for drug delivery. Saudi Pharm. J., 2011, 19(3), 129-141.
[http://dx.doi.org/10.1016/j.jsps.2011.04.001] [PMID: 23960751]
[71]
Al-Dhubiab, B.E.; Nair, A.B.; Kumria, R.; Attimarad, M.; Harsha, S. Formulation and evaluation of nano based drug delivery system for the buccal delivery of acyclovir. Colloids Surf. B Biointerfaces, 2015, 136, 878-884.
[http://dx.doi.org/10.1016/j.colsurfb.2015.10.045] [PMID: 26547315]
[72]
Castro, P.M.; Baptista, P.; Zuccheri, G.; Madureira, A.R.; Sarmento, B.; Pintado, M.E. Film-nanoparticle composite for enhanced oral delivery of alpha-casozepine. Colloids Surf. B Biointerfaces, 2019, 181, 149-157.
[http://dx.doi.org/10.1016/j.colsurfb.2019.05.029] [PMID: 31128515]
[73]
Castro, P.M.; Fonte, P.; Sousa, F.; Madureira, A.R.; Sarmento, B.; Pintado, M.E. Oral films as breakthrough tools for oral delivery of proteins/peptides. J. Control. Release, 2015, 211, 63-73.
[http://dx.doi.org/10.1016/j.jconrel.2015.05.258] [PMID: 25979328]
[74]
Castro, P.M.; Baptista, P.; Madureira, A.R.; Sarmento, B.; Pintado, M.E. Combination of PLGA nanoparticles with mucoadhesive guar-gum films for buccal delivery of antihypertensive peptide. Int. J. Pharm., 2018, 547(1-2), 593-601.
[http://dx.doi.org/10.1016/j.ijpharm.2018.05.051] [PMID: 29800740]
[75]
Worsley, D.J.; Marshman, Z.; Robinson, P.G.; Jones, K. Global oral health of older people – call for public health action. Community Dent. Health, 2016, 33(1), 9-14.
[http://dx.doi.org/10.1922/CDH] [PMID: 27149767]
[76]
Elad, S.; Zadik, Y. Chronic oral mucositis after radiotherapy to the head and neck: a new insight. Support. Care Cancer, 2016, 24(11), 4825-4830.
[http://dx.doi.org/10.1007/s00520-016-3337-5] [PMID: 27475958]
[77]
Paderni, C.; Compilato, D.; Giannola, L.I.; Campisi, G. Oral local drug delivery and new perspectives in oral drug formulation. Oral Surg. Oral Med. Oral Pathol. Oral Radiol., 2012, 114(3), e25-e34.
[http://dx.doi.org/10.1016/j.oooo.2012.02.016] [PMID: 22771408]
[78]
Pagano, C.; Giovagnoli, S.; Perioli, L.; Tiralti, M.C.; Ricci, M. Development and characterization of mucoadhesive-thermoresponsive gels for the treatment of oral mucosa diseases. Eur. J. Pharm. Sci., 2020, 142, 105125.
[http://dx.doi.org/10.1016/j.ejps.2019.105125] [PMID: 31682975]
[79]
Kim, D.W.; Kim, Y.I.; Ud Din, F.; Cho, K.H.; Kim, J.O.; Choi, H.G. Development of a novel triamcinolone acetonide-loaded spray solution for the treatment of stomatitis. Pharmazie, 2014, 69(7), 512-517.
[http://dx.doi.org/10.1691/ph.2014.3235] [PMID: 25073396]
[80]
Li, T.; Bao, Q.; Shen, J.; Lalla, R.V.; Burgess, D.J. Mucoadhesive in situ forming gel for oral mucositis pain control. Int. J. Pharm., 2020, 580, 119238.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119238] [PMID: 32194210]
[81]
Kalia, V.; Garg, T.; Rath, G.; Goyal, A.K. Development and evaluation of a sublingual film of the antiemetic granisetron hydrochloride. Artif. Cells Nanomed. Biotechnol., 2016, 44(3), 842-846.
[http://dx.doi.org/10.3109/21691401.2014.984303] [PMID: 25435408]
[82]
Shah, J.N.; Shah, K.N.; Mehta, T.A. Hydroxy Propyl β-cyclodextrin complexation of promethazine hydrochloride for the formulation of fast dissolving sublingual film: In vitro and in vivo evaluation. J. Pharm. Investig., 2015, 45(1), 91-99.
[http://dx.doi.org/10.1007/s40005-014-0150-3]
[83]
Singh, H.; Singla, Y.P.; Narang, R.S.; Pandita, D.; Singh, S.; Narang, J.K. Frovatriptan loaded hydroxy propyl methyl cellulose/treated chitosan based composite fast dissolving sublingual films for management of migraine. J. Drug Deliv. Sci. Technol., 2018, 47, 230-239.
[http://dx.doi.org/10.1016/j.jddst.2018.06.018]
[84]
Song, Q.; Shen, C.; Shen, B.; Lian, W.; Liu, X.; Dai, B.; Yuan, H. Development of a fast dissolving sublingual film containing meloxicam nanocrystals for enhanced dissolution and earlier absorption. J. Drug Deliv. Sci. Technol., 2018, 43, 243-252.
[http://dx.doi.org/10.1016/j.jddst.2017.10.020]
[85]
Caro, V.; De; Ajovalasit, A.; Sutera, F. M.; Murgia, D.; Sabatino, M. A.; Dispenza, C. Development and characterization of an amorphous solid dispersion of furosemide in the form of a sublingual bioadhesive film to enhance bioavailability. Pharm, 2017, 9(3), 22.
[http://dx.doi.org/10.3390/pharmaceutics9030022]
[86]
Chen, G.; Bunt, C.; Wen, J. Mucoadhesive polymers-based film as a carrier system for sublingual delivery of glutathione. J. Pharm. Pharmacol., 2015, 67(1), 26-34.
[http://dx.doi.org/10.1111/jphp.12313] [PMID: 25303221]
[87]
Yehia, S.A.; El-Gazayerly, O.N.; Basalious, E.B. Fluconazole mucoadhesive buccal films: In vitro/in vivo performance. Curr. Drug Deliv., 2009, 6(1), 17-27.
[http://dx.doi.org/10.2174/156720109787048195] [PMID: 19418952]
[88]
Trastullo, R.; Abruzzo, A.; Saladini, B.; Gallucci, M.C.; Cerchiara, T.; Luppi, B.; Bigucci, F. Design and evaluation of buccal films as paediatric dosage form for transmucosal delivery of ondansetron. Eur. J. Pharm. Biopharm., 2016, 105, 115-121.
[http://dx.doi.org/10.1016/j.ejpb.2016.05.026] [PMID: 27267732]
[89]
Abruzzo, A.; Nicoletta, F.P.; Dalena, F.; Cerchiara, T.; Luppi, B.; Bigucci, F. Bilayered buccal films as child-appropriate dosage form for systemic administration of propranolol. Int. J. Pharm., 2017, 531(1), 257-265.
[http://dx.doi.org/10.1016/j.ijpharm.2017.08.070] [PMID: 28811117]
[90]
Salehi, S.; Boddohi, S. Design and optimization of kollicoat ® IR based mucoadhesive buccal film for co-delivery of rizatriptan benzoate and propranolol hydrochloride. Mater. Sci. Eng. C, 2019, 97, 230-244.
[http://dx.doi.org/10.1016/j.msec.2018.12.036] [PMID: 30678908]
[91]
Salama, A.H.; Elmotasem, H.; Salama, A.A.A. Nanotechnology based blended chitosan-pectin hybrid for safe and efficient consolidative antiemetic and neuro-protective effect of meclizine hydrochloride in chemotherapy induced emesis. Int. J. Pharm., 2020, 584, 119411.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119411] [PMID: 32423876]
[92]
Abd El Azim, H.; Nafee, N.; Ramadan, A.; Khalafallah, N. Liposomal buccal mucoadhesive film for improved delivery and permeation of water-soluble vitamins. Int. J. Pharm., 2015, 488(1-2), 78-85.
[http://dx.doi.org/10.1016/j.ijpharm.2015.04.052] [PMID: 25899288]
[93]
BELBUCA® (buprenorphine buccal film) | Get Back to Life Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/207932Orig1s000TOC.cfm (Accessed on Feb 4, 2021).
[94]
Cassipa® Buprenorphine + Naloxone Sublingual Film Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/208042Orig1s000TOC.cfm (Accessed on Sep 8, 2021).
[95]
Exservan® Riluzole Oral Film Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/212640Orig1s000TOC.cfm (Accessed on Sep 8, 2021).
[96]
Kynmobi, T.M. Apomorphine HCl Sublingual Film, Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2020/210875Orig1s000TOC.cfm (Accessed on Sep 8, 2021).
[97]
Nexcede® Ketoprofen Oral Soluble Film Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2009/022470_nexcede_toc.cfm (Accessed on Sep 8, 2021)
[98]
Onsolis (fentanyl buccal soluble film) Information | FDA Available from: https://www.fda.gov/drugs/postmarket-drug-safety-information-patients-and-providers/onsolis-fentanyl-buccal-soluble-film-information [Accessed Sep 8, 2021].
[99]
[100]
Sympazan® Clobazam Oral Film Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/210833Orig1s000TOC.cfm (Accessed on Sep 8, 2021).
[101]
Zuplenz® Ondansetron Oral Soluble Film Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2010/022524_zuplenz_toc.cfm (Accessed on Sep 8, 2021).
[102]
Sharadha, M.; Gowda, D.V.; Vishal Gupta, N.; Akhila, A.R. An overview on topical drug delivery system – updated review. Int. J. Res. Pharm. Sci., 2020, 368-385.
[http://dx.doi.org/10.26452/ijrps.v11i1.1831]
[103]
Brown, M.B.; Martin, G.P.; Jones, S.A.; Akomeah, F.K. Dermal and transdermal drug delivery systems: current and future prospects. Drug Deliv., 2006, 13(3), 175-187.
[http://dx.doi.org/10.1080/10717540500455975] [PMID: 16556569]
[104]
Cascone, S.; Lamberti, G. Hydrogel-based commercial products for biomedical applications: A review. Int. J. Pharm., 2020, 573, 118803.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118803] [PMID: 31682963]
[105]
Cañedo-Dorantes, L.; Cañedo-Ayala, M. Skin acute wound healing: A comprehensive review. Int. J. Inflam., 2019, 2019, 3706315.
[http://dx.doi.org/10.1155/2019/3706315]
[106]
Tan, W.S.; Arulselvan, P.; Ng, S.F.; Mat Taib, C.N.; Sarian, M.N.; Fakurazi, S. Improvement of diabetic wound healing by topical application of vicenin-2 hydrocolloid film on sprague dawley rats 11 medical and health sciences 1103 clinical sciences. BMC Complement. Altern. Med., 2019, 19(1), 1-16.
[http://dx.doi.org/10.1186/s12906-018-2427-y] [PMID: 30606178]
[107]
Dhivya, S.; Padma, V. V.; Santhini, E. Wound dressings - a review. BioMedicine (Taipei), 2015, 5(4), 22.
[http://dx.doi.org/10.7603/s40681-015-0022-9] [PMID: 26615539]
[108]
Güldiken, Ç.G.; Karaosmanoğlu, O.; Sivas, H.; Gerçel, H.F. ZnO microparticle-loaded chitosan/poly(vinyl alcohol)/acacia gum nanosphere-based nanocomposite thin film wound dressings for accelerated wound healing. J. Appl. Polym. Sci., 2020, 137(10), 48445.
[http://dx.doi.org/10.1002/app.48445]
[109]
Lanza, R.; Langer, R.; Vacanti, J.P. Principles of Tissue Engineering, 4th ed.; Elsevier Inc., 2013.
[http://dx.doi.org/10.1016/C2011-0-07193-4]
[110]
Lundquist, R. Autologous Cell-Rich Biomaterial (LeucoPatch) in the Treatment of Diabetic Foot Ulcers. In: Wound Healing Biomaterials; Elsevier Inc., 2016; Vol. 1, pp. 277-287.
[http://dx.doi.org/10.1016/B978-1-78242-455-0.00011-2]
[111]
Frykberg, R.G.; Banks, J. Challenges in the treatment of chronic wounds. Adv. Wound Care (New Rochelle), 2015, 4(9), 560-582.
[http://dx.doi.org/10.1089/wound.2015.0635] [PMID: 26339534]
[112]
Chin, C.Y.; Ng, P.Y.; Ng, S.F. Moringa oleifera standardised aqueous leaf extract-loaded hydrocolloid film dressing: In vivo dermal safety and wound healing evaluation in STZ/HFD diabetic rat model. Drug Deliv. Transl. Res., 2019, 9(2), 453-468.
[http://dx.doi.org/10.1007/s13346-018-0510-z] [PMID: 29560587]
[113]
Greenhalgh, D.G. Wound healing and diabetes mellitus. Clin. Plast. Surg., 2003, 30(1), 37-45.
[http://dx.doi.org/10.1016/S0094-1298(02)00066-4] [PMID: 12636214]
[114]
Kavitha, K.V.; Tiwari, S.; Purandare, V.B.; Khedkar, S.; Bhosale, S.S.; Unnikrishnan, A.G. Choice of wound care in diabetic foot ulcer: A practical approach. World J. Diabetes, 2014, 5(4), 546-556.
[http://dx.doi.org/10.4239/wjd.v5.i4.546] [PMID: 25126400]
[115]
Lee, P.Y.; Li, Z.; Huang, L. Thermosensitive hydrogel as a Tgf-beta1 gene delivery vehicle enhances diabetic wound healing. Pharm. Res., 2003, 20(12), 1995-2000.
[http://dx.doi.org/10.1023/B:PHAM.0000008048.58777.da] [PMID: 14725365]
[116]
Pansara, C.; Mishra, R.; Mehta, T.; Parikh, A.; Garg, S. Formulation of chitosan stabilized silver nanoparticle-containing wound healing film: In vitro and in vivo characterization. J. Pharm. Sci., 2020, 109(7), 2196-2205.
[http://dx.doi.org/10.1016/j.xphs.2020.03.028] [PMID: 32240689]
[117]
Pereira, R.; Carvalho, A.; Vaz, D.C.; Gil, M.H.; Mendes, A.; Bártolo, P. Development of novel alginate based hydrogel films for wound healing applications. Int. J. Biol. Macromol., 2013, 52(1), 221-230.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.09.031] [PMID: 23059189]
[118]
Nachiappan, S.; Amanuel, L.; Agazie, T.; Bihonegn, S. Development and characterization of silk films for burn wound healing. Res. J. Text. Appar., 2020, 24(2), 131-146.
[http://dx.doi.org/10.1108/RJTA-11-2019-0056]
[119]
Shah, A.; Ali Buabeid, M.; Arafa, E.A.; Hussain, I.; Li, L.; Murtaza, G. The wound healing and antibacterial potential of triple-component nanocomposite (chitosan-silver-sericin) films loaded with moxifloxacin. Int. J. Pharm., 2019, 564, 22-38.
[http://dx.doi.org/10.1016/j.ijpharm.2019.04.046] [PMID: 31002933]
[120]
Manoj, C.K. Formulation, evaluation and optimization of novel silver sulfadiazine loaded film forming hydrogel for burns. Hygeia.J.D. Med, 2016, 8(2), 1-10.
[http://dx.doi.org/10.15254/H.J.D.Med.8.2016.156]
[121]
Kim, J.Y.; Jun, J.H.; Kim, S.J.; Hwang, K.M.; Choi, S.R.; Han, S.D.; Son, M.W.; Park, E.S. Wound healing efficacy of a chitosan-based film-forming gel containing tyrothricin in various rat wound models. Arch. Pharm. Res., 2015, 38(2), 229-238.
[http://dx.doi.org/10.1007/s12272-014-0368-7] [PMID: 24715576]
[122]
Arantes, V.T.; Faraco, A.A.G.; Ferreira, F.B.; Oliveira, C.A.; Martins-Santos, E.; Cassini-Vieira, P.; Barcelos, L.S.; Ferreira, L.A.M.; Goulart, G.A.C. Retinoic acid-loaded solid lipid nanoparticles surrounded by chitosan film support diabetic wound healing in in vivo study. Colloids Surf. B Biointerfaces, 2020, 188, 110749.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110749] [PMID: 31927466]
[123]
Voss, G.T.; Gularte, M.S.; Vogt, A.G.; Giongo, J.L.; Vaucher, R.A.; Echenique, J.V.Z.; Soares, M.P.; Luchese, C.; Wilhelm, E.A.; Fajardo, A.R. Polysaccharide-based film loaded with vitamin C and propolis: A promising device to accelerate diabetic wound healing. Int. J. Pharm., 2018, 552(1-2), 340-351.
[http://dx.doi.org/10.1016/j.ijpharm.2018.10.009] [PMID: 30300708]
[124]
Abraham, S.; Harsha, G.G.S.; Desai, K.; Furtado, S.; Srinivasan, B. Nano calcium oxide incorporated hydrocolloid dressings for wound care. J. Pharm. Innov., 2020, 1-12.
[http://dx.doi.org/10.1007/s12247-020-09521-6]
[125]
Rosseto, H.C.; de Toledo, L. de A.S.; Said dos Santos, R.; de Francisco, L.M.B.; Vecchi, C.F.; Esposito, E.; Cortesi, R.; Bruschi, M.L. Design of propolis-loaded film forming systems for topical administration: the effect of acrylic acid derivative polymers. J. Mol. Liq., 2021, 322(15), 114514.
[http://dx.doi.org/10.1016/j.molliq.2020.114514]
[126]
Sharma, A.; Puri, V.; Kumar, P.; Singh, I. Rifampicin-loaded alginate-gelatin fibers incorporated within transdermal films as a fiber-in-film system for wound healing applications. Membr, 2021, 11(1), 7.
[http://dx.doi.org/10.3390/membranes11010007]
[127]
Wound Film | Medical & Health Care Expert With Excellent Services - Hannox Available from: https://www.hannox.com.tw/en/product/wound_film.html (Accessed on Sep 8, 2021).
[128]
Sting Free Liquid Bandage(Non-sterile) | Medical & Health Care Expert With Excellent Services - Hannox Available from: https://www.hannox.com.tw/en/product/sting_free_liquid_bandage.html (Accessed on Sep 8, 2021).
[129]
Stratamed an innovative medical solution for dealing with scars Available from: https://stratamed.com/stratamed/ (Accessed on Sep 8, 2021).
[130]
Stratacel is advanced wound dressing for fractional rejuvenation procedures Available from: https://stratacel.com/ (Accessed on Sep 8, 2021).
[131]
All-in-One New-Skin® Liquid Bandage Available from: https://newskinproducts.com/products/new-skin-liquid-bandage (Accessed on Sep 8, 2021).
[132]
All-in-One New-Skin® Liquid Spray Available from: https://newskinproducts.com/products/new-skin-liquid-spray-bandage (Accessed on Sep 8, 2021).
[133]
Cock, I.E.; Van Vuuren, S.F. A review of the traditional use of southern African medicinal plants for the treatment of fungal skin infections. J. Ethnopharmacol., 2020, 251, 112539.
[http://dx.doi.org/10.1016/j.jep.2019.112539] [PMID: 31899200]
[134]
Gupta, A. K.; Cooper, E. A.; Ryder, J. E.; Nicol, K. A.; Chow, M.; Chaudhry, M. M. Optimal management of fungal infections of the skin, hair, and nails. Am. J. Clin. Dermatology, 2012, 5(4), 225-237.
[http://dx.doi.org/10.2165/00128071-200405040-00003]
[135]
Kyle, A. A.; Dahl, M. V. Topical therapy for fungal infections. Am. J. Clin. Dermatology, 2004, 5(6), 443-51.
[http://dx.doi.org/10.2165/00128071-200405060-00009]
[136]
Tivoli, Y.A.; Rubenstein, R.M. Pruritus: an updated look at an old problem. J. Clin. Aesthet. Dermatol., 2009, 2(7), 30-36.
[PMID: 20729968]
[137]
Bouthillette, M.; Beccati, D.; Akthakul, A.; Ramadurai, N.; Nashat, A.; Langer, R.; Anderson, R.R.; Sakamoto, F.H. A crosslinked polymer skin barrier film for moderate to severe atopic dermatitis: A pilot study in adults. J. Am. Acad. Dermatol., 2020, 82(4), 895-901.
[http://dx.doi.org/10.1016/j.jaad.2019.09.073] [PMID: 31589946]
[138]
Yu, B.; Kang, S.-Y.; Akthakul, A.; Ramadurai, N.; Pilkenton, M.; Patel, A.; Nashat, A.; Anderson, D. G.; Sakamoto, F. H.; Gilchrest, B. A. An elastic second skin. Nat. Mater., 2016, 15(8), 911-918.
[http://dx.doi.org/10.1038/nmat4635]
[139]
Mady, O.Y.; Al-Madboly, L.A.; Donia, A.A. Preparation, and assessment of antidermatophyte activity of miconazole-urea water-soluble film. Front. Microbiol., 2020, 11, 385.
[http://dx.doi.org/10.3389/fmicb.2020.00385] [PMID: 32308646]
[140]
Tanrıverdi, S.T.; Polat, S.H.; Metin, D.Y.; Kandiloğlu, G.; Özer, Ö. Terbinafine hydrochloride loaded liposome film formulation for treatment of onychomycosis: In vitro and in vivo evaluation. J. Lip. Res., 2015, 26(2), 163-173.
[http://dx.doi.org/10.3109/08982104.2015.1067892]
[141]
Yang, F.; Yu, X.; Shao, W.; Guo, P.; Cao, S.; Wang, M.; Wang, Y.; Wu, C.; Xu, Y. Co-delivery of terbinafine hydrochloride and urea with an in situ film-forming system for nail targeting treatment. Int. J. Pharm., 2020, 585, 119497.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119497] [PMID: 32504773]
[142]
Na, Y.G.; Huh, H.W.; Kim, M.K.; Byeon, J.J.; Han, M.G.; Lee, H.K.; Cho, C.W. Development and evaluation of a film-forming system hybridized with econazole-loaded nanostructured lipid carriers for enhanced antifungal activity against dermatophytes. Acta Biomater., 2020, 101, 507-518.
[http://dx.doi.org/10.1016/j.actbio.2019.10.024] [PMID: 31629894]
[143]
Mori, N.M.; Patel, P.; Sheth, N.R.; Rathod, L.V.; Ashara, K.C. Fabrication and characterization of film-forming voriconazole transdermal spray for the treatment of fungal infection. Bull. Fac. Pharm. Cairo Univ., 2017, 55(1), 41-51.
[http://dx.doi.org/10.1016/j.bfopcu.2017.01.001]
[144]
Jay, B.; Patel, A.; Sinha, P. Formulation and evaluation of film forming gel of bifonazole for local drug delivery. 2017, 8(3), 173-189.
[145]
Patel, H.M.; Gangat, A.; Patel, U.B.; Akbari, B. Fabrication and characterization of luliconazole film-forming topical spray for the treatment of fungal infections. Manipal J. Pharm. Sci, 2020, 6(2), 52-64.
[146]
Ngo, A. L.; Urits, I.; Yilmaz, M.; Fortier, L.; Anya, A.; Oh, J. H.; Berger, A. A.; Kassem, H.; Sanchez, M. G.; Kaye, A. D. Postherpetic neuralgia: current evidence on the topical film-forming spray with bupivacaine hydrochloride and a review of available treatment strategies. Adv. Ther., 2020, 37(5), 2003-2016.
[http://dx.doi.org/10.1007/s12325-020-01335-9]
[147]
Ranade, S.; Bajaj, A.; Londhe, V.; Babul, N.; Kao, D. Fabrication of topical metered dose film forming sprays for pain management. Eur. J. Pharm. Sci., 2017, 100, 132-141.
[http://dx.doi.org/10.1016/j.ejps.2017.01.004] [PMID: 28069427]
[148]
Kovács, A.; Kis, N.; Budai-Szűcs, M.; Gácsi, A.; Csányi, E.; Csóka, I.; Berkó, S. QbD-based investigation of dermal semisolid in situ film-forming systems for local anaesthesia. Drug Des. Devel. Ther., 2020, 14, 5059-5076.
[http://dx.doi.org/10.2147/DDDT.S279727] [PMID: 33239865]
[149]
Jaslina, N.F.; Faujan, N.H.; Mohamad, R.; Ashari, S.E. Effect of addition of PVA/PG to oil-in-water nanoemulsion kojic monooleate formulation on droplet size: three-factors response surface optimization and characterization. Cosmet, 2020, 7(4), 73.
[http://dx.doi.org/10.3390/cosmetics7040073]
[150]
Products-Lamisil Once® Available from: https://www.medicines.org.uk/emc/product/179/smpc#gref (Accessed on Jun 22, 2020)
[151]
Drug Approval Package: Axiron (testosterone) NDA #022504 Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2010/022504_axiron_toc.cfm (Accessed on Sep 7, 2021).
[152]
Anti-Chafing Sport Spray | Medical & Health Care Expert With Excellent Services - Hannox Available from: https://www.hannox.com.tw/en/product/anti_chafing_sport_spray_S99.htm (Accessed on Sep 7, 2021).
[153]
Elorac Inc 42783031210 - McKesson Medical-Surgical Available from: https://mms.mckesson.com/product/1086750/Elorac-Inc-42783031210 (Accessed on Sep 7, 2021).
[154]
Bayer 11017025220 - McKesson Medical-Surgical Available from: https://mms.mckesson.com/product/572917/Bayer-11017025220 (Accessed on Sep 7, 2021).
[155]
Loceryl Nail Lacquer | GALDERMA Available from: https://www.galderma.com/ru/en/loceryl-nail-lacquer

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy