Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Antidiabetic and Renoprotective Effects of Ethyl Acetate Fraction of Mimosa pudica Linn. Leaves Extract in Streptozotocin-Induced Diabetic Mice

Author(s): Pham Thi Lan, Tran Thi Huyen Trang, Vu Thi Thom, Phan Hong Minh, Dao Thi Vui, Pham Thi Nguyet Hang and Bui Thanh Tung*

Volume 18, Issue 10, 2022

Published on: 02 June, 2022

Article ID: e070322201801 Pages: 10

DOI: 10.2174/1573407218666220307103828

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Traditional medicine has used Mimosa pudica Linn. for diabetes treatment. This study evaluates the antidiabetic and renoprotective effects of the ethyl acetate fraction of M. pudica leaves on streptozotocin-induced diabetes in mice.

Methods: The cold maceration method was used to extract M. pudica leaves with 80% ethanol at room temperature. Ethyl acetate (EtOAc) fraction was obtained from the M. pudica leaves extract by successively partitioning with different solvents. Mice were induced diabetes type 2 by streptozotocin (STZ) at a low dose and treated with EtOAc fraction of M. pudica leaves at 50 mg/kg and 100 mg/kg b.w for 60 days. After 24 hours of the final dose of therapy, the mice were sacrificed to extract blood and kidney tissues for biochemical and histopathological analysis.

Results: The EtOAc fraction of M. pudica leaves showed strong activity in improving glucose concentration in the oral glucose tolerance test. Our results showed that EtOAc fraction significantly decreased levels of glucose, total cholesterol (TC), low-density lipoprotein (LDL), and triglyceride (TG) and increased the level of high-density lipoprotein (HDL), and protected kidneys against damage in mice. EtOAc fraction also increased the levels of antioxidant enzymes, including catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD), and decreased malondialdehyde (MDA) formation and pro-inflammatory cytokines (IL-1β and TNF-α) in kidney tissues. Moreover, the renoprotective effect was also observed in the histopathological analysis.

Conclusion: Our findings support the fact that the EtOAc fraction of M. pudica leaves has potent anti-diabetic nephropathy activity by decreasing pro-inflammatory cytokines and improving antioxidant levels.

Keywords: Mimosa pudica Linn, diabetes, phytochemicals, antioxidant enzymes, lipid peroxidation, nephropathy.

Graphical Abstract
[1]
Association, A.D. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care, 2010, 33(Suppl. 1), S62-S69.
[http://dx.doi.org/10.2337/dc10-S062] [PMID: 20042775]
[2]
Wang, W.Z.H. Pathology of Renal Biopsy, 2nd ed; Peking University Medical Press, 2009.
[3]
Tervaert, T.W.C.; Mooyaart, A.L.; Amann, K.; Cohen, A.H.; Cook, H.T.; Drachenberg, C.B.; Ferrario, F.; Fogo, A.B.; Haas, M.; de Heer, E.; Joh, K.; Noël, L.H.; Radhakrishnan, J.; Seshan, S.V.; Bajema, I.M.; Bruijn, J.A. Renal Pathology Society. Pathologic classification of diabetic nephropathy. J. Am. Soc. Nephrol., 2010, 21(4), 556-563.
[http://dx.doi.org/10.1681/ASN.2010010010] [PMID: 20167701]
[4]
Elmarakby, A.A.; Sullivan, J.C. Relationship between oxidative stress and inflammatory cytokines in diabetic nephropathy. Cardiovasc. Ther., 2012, 30(1), 49-59.
[http://dx.doi.org/10.1111/j.1755-5922.2010.00218.x] [PMID: 20718759]
[5]
Duran-Salgado, M.B.; Rubio-Guerra, A.F. Diabetic nephropathy and inflammation. World J. Diabetes, 2014, 5(3), 393-398.
[http://dx.doi.org/10.4239/wjd.v5.i3.393] [PMID: 24936261]
[6]
Gross, J.L.; de Azevedo, M.J.; Silveiro, S.P.; Canani, L.H.; Caramori, M.L.; Zelmanovitz, T. Diabetic nephropathy: Diagnosis, prevention, and treatment. Diabetes Care, 2005, 28(1), 164-176.
[http://dx.doi.org/10.2337/diacare.28.1.164] [PMID: 15616252]
[7]
Shikata, K.; Makino, H. Microinflammation in the pathogenesis of diabetic nephropathy. J. Diabetes Investig., 2013, 4(2), 142-149.
[http://dx.doi.org/10.1111/jdi.12050] [PMID: 24843643]
[8]
Yamagishi, S.; Fukami, K.; Ueda, S.; Okuda, S. Molecular mechanisms of diabetic nephropathy and its therapeutic intervention. Curr. Drug Targets, 2007, 8(8), 952-959.
[http://dx.doi.org/10.2174/138945007781386884] [PMID: 17691932]
[9]
Amalraj, T.; Ignacimuthu, S. Hyperglycemic effect of leaves of Mimosa pudica Linn. Fitoterapia, 2002, 73(4), 351-352.
[http://dx.doi.org/10.1016/S0367-326X(02)00079-5] [PMID: 12234583]
[10]
Tunna, T.S.; Ahmed, Q.U.; Uddin, A.; Sarker, M.; Islam, Z. Weeds as alternative useful medicinal source: Mimosa pudica Linn. on diabetes mellitus and its complications. Adv. Mat. Res., 2014, 49-59.
[11]
Lan, P. T.; Huyen, N. T. N.; Kim, S. Y.; Hang, P. T. N.; Tung, B. T. T. Phytochemical analysis and protective effect of ethanolic extract of Mimosa pudica Linn. on methylglyoxal-induced glucotoxicity. J App Pharm Sci, 2021, 11(09), 093-101.
[12]
Ahmad, H.; Sehgal, S.; Mishra, A.; Gupta, R. Mimosa pudica L. (Laajvanti): An overview. Pharmacogn. Rev., 2012, 6(12), 115-124.
[http://dx.doi.org/10.4103/0973-7847.99945] [PMID: 23055637]
[13]
Kaur, P.; Kumar, N.; Shivan, T. Phytochemical screening and antimicrobial activity of the plant extracts of Mimosa pudica L. against selected microbes. J. Med. Plants Res., 2011, 5(22), 5356-5359.
[14]
Muhammad, G.; Hussain, M.A.; Jantan, I.; Bukhari, S.N.A. Mimosa pudica L., a high‐value medicinal plant as a source of bioactives for pharmaceuticals. Compr. Rev. Food Sci. Food Saf., 2016, 15(2), 303-315.
[http://dx.doi.org/10.1111/1541-4337.12184] [PMID: 33371596]
[15]
Gasparovic, A.C.; Jaganjac, M.; Mihaljevic, B.; Sunjic, S.B.; Zarkovic, N. Assays for the measurement of lipid peroxidation. Methods Mol. Biol., 2013, 965, 283-296.
[http://dx.doi.org/10.1007/978-1-62703-239-1_19] [PMID: 23296666]
[16]
Thanh, T.B.; Thanh, H.N.; Minh, H.P.T.; Le-Thi-Thu, H.; Ly, H.D.T.; Duc, L.V. Protective effect of Tetracera scandens L. leaf extract against CCl4-induced acute liver injury in rats. Asian Pac. J. Trop. Biomed., 2015, 5(3), 221-227.
[http://dx.doi.org/10.1016/S2221-1691(15)30009-5]
[17]
Marklund, S.; Marklund, G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem., 1974, 47(3), 469-474.
[http://dx.doi.org/10.1111/j.1432-1033.1974.tb03714.x] [PMID: 4215654]
[18]
Flohé, L.; Günzler, W.A. Assays of glutathione peroxidase. In: Methods in Enzymology; Lester, P., Ed.; Academic Press, 1984; 105, pp. 114-120.
[http://dx.doi.org/10.1016/S0076-6879(84)05015-1]
[19]
Eleazu, C.O.; Eleazu, K.C.; Chukwuma, S.; Essien, U.N. Review of the mechanism of cell death resulting from streptozotocin challenge in experimental animals, its practical use and potential risk to humans. J. Diabetes Metab. Disord., 2013, 12(1), 60.
[http://dx.doi.org/10.1186/2251-6581-12-60] [PMID: 24364898]
[20]
Piyapong Yupparach, A.K. Hypoglycemic and Hypolipidemic Activities of Ethanolic Extract from Mimosa pudica L. in Normal and Streptozotocin-Induced Diabetic Rats. Pharmacogn. J., 2017, 9(6), 834-837.
[http://dx.doi.org/10.5530/pj.2017.6.130]
[21]
Subramani Parasuraman, T.H.C. Chong hao leong & urmila banik, antidiabetic and antihyperlipidemic effects of a methanolic extract of mimosa pudica (fabaceae) in diabetic rats. Egyptian J. Basic App Sci., 2019, 6(5), 1-12.
[22]
Qian, Y.; Feldman, E.; Pennathur, S.; Kretzler, M.; Brosius, F.C., III From fibrosis to sclerosis: Mechanisms of glomerulosclerosis in diabetic nephropathy. Diabetes, 2008, 57(6), 1439-1445.
[http://dx.doi.org/10.2337/db08-0061] [PMID: 18511444]
[23]
Gowda, S.; Desai, P.B.; Kulkarni, S.S.; Hull, V.V.; Math, A.A.; Vernekar, S.N. Markers of renal function tests. N. Am. J. Med. Sci., 2010, 2(4), 170-173.
[PMID: 22624135]
[24]
Antony, P.J.; Gandhi, G.R.; Stalin, A.; Balakrishna, K.; Toppo, E.; Sivasankaran, K.; Ignacimuthu, S.; Al-Dhabi, N.A. Myoinositol ameliorates high-fat diet and streptozotocin-induced diabetes in rats through promoting insulin receptor signaling. Biomed. Pharmacother., 2017, 88, 1098-1113.
[http://dx.doi.org/10.1016/j.biopha.2017.01.170] [PMID: 28192884]
[25]
Miranda-Díaz, A. G.; Pazarín-Villaseñor, L.; Yanowsky-Escatell, F. G.; Andrade-Sierra, J. Oxidative stress in diabetic nephropathy with early chronic kidney disease. J. App. Pharm. Sci., 2016, 2016
[http://dx.doi.org/10.1155/2016/7047238]
[26]
Kashihara, N.; Haruna, Y.; Kondeti, V.K.; Kanwar, Y.S. Oxidative stress in diabetic nephropathy. Curr. Med. Chem., 2010, 17(34), 4256-4269.
[http://dx.doi.org/10.2174/092986710793348581] [PMID: 20939814]
[27]
Sagoo, M.K.; Gnudi, L. Diabetic nephropathy: Is there a role for oxidative stress? Free Radic. Biol. Med., 2018, 116, 50-63.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.12.040] [PMID: 29305106]
[28]
Park, Y.; Kim, H.; Park, L.; Min, D.; Park, J.; Choi, S.; Park, M.H. Effective delivery of endogenous antioxidants ameliorates diabetic nephropathy. PLoS One, 2015, 10(6), e0130815.
[http://dx.doi.org/10.1371/journal.pone.0130815] [PMID: 26114547]
[29]
Afshari, A.T.; Shirpoor, A.; Farshid, A.; Saadatian, R.; Rasmi, Y.; Saboory, E.; Ilkhanizadeh, B.; Allameh, A. The effect of ginger on diabetic nephropathy, plasma antioxidant capacity and lipid peroxidation in rats. Food Chem., 2007, 101(1), 148-153.
[http://dx.doi.org/10.1016/j.foodchem.2006.01.013]
[30]
Hasegawa, G.; Nakano, K.; Sawada, M.; Uno, K.; Shibayama, Y.; Ienaga, K.; Kondo, M. Possible role of tumor necrosis factor and interleukin-1 in the development of diabetic nephropathy. Kidney Int., 1991, 40(6), 1007-1012.
[http://dx.doi.org/10.1038/ki.1991.308] [PMID: 1762301]
[31]
Tesch, G.H. In Macrophages and diabetic nephropathy, Semin. Nephrol; Elsevier, 2010, pp. 290-301.
[32]
Sun, L.; Kanwar, Y.S. Relevance of TNF-α in the context of other inflammatory cytokines in the progression of diabetic nephropathy. Kidney Int., 2015, 88(4), 662-665.
[http://dx.doi.org/10.1038/ki.2015.250] [PMID: 26422621]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy