Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Advancement in Nanoformulations for the Management of Diabetic Wound Healing

Author(s): Shailendra Singh Bhadauria and Rishabha Malviya*

Volume 22, Issue 9, 2022

Published on: 02 June, 2022

Page: [911 - 926] Pages: 16

DOI: 10.2174/1871530322666220304214106

Price: $65

Abstract

People with diabetes have a very slow tendency for wound healing. Wound healing is a vast process where several factors inhibit the sequence of healing. Nano-formulations play a major role in acute and chronic wound healing. The present manuscript aims to discuss the role of nanoformulations for diabetic wound healing treatment. Diabetes is a common disease that has harmful consequences which over the time lead to serious damage to many of the body's systems, especially the nerves and blood vessels. During the literature survey, it was observed that nanotechnology has significant advantages in the treatment of diabetic wound healing. The present manuscript summarized the role of nanomaterials in wound healing, challenges in diabetic wound healing, physiology of wound healing, limitations that come during wound repair, and treatments available for wound healing. After a comprehensive literature survey, it can be concluded that health worker needs more focus on the area of wound healing in diabetic patients. Medical practitioners, pharmaceutical, and biomedical researchers need more attention towards the utilization of nano-formulations for the treatment of wound healing, specifically in the case of diabetes.

Keywords: Nano-formulation, diabetic wound healing, nanomaterial, diabetes, patient care, drug delivery.

Graphical Abstract
[1]
Smith, R.A. Nanotechnology in the future treatment of diabetic wounds. Rev. Diabet. Stud., 2020, 16(1), 1-12.
[http://dx.doi.org/10.1900/RDS.2020.16.1] [PMID: 32876648]
[2]
Turabelidze, A.; Dipietro, L.A. Inflammation and Wound Healing.Oral wound heal; Larjava, H., Ed.; John Wiley and Sons, 2013, pp. 39-56.
[http://dx.doi.org/10.1002/9781118704509.ch3]
[3]
Rowley, W.R.; Bezold, C.; Arikan, Y.; Byrne, E.; Krohe, S. Diabetes 2030: Insights from yesterday, today, and future trends. Popul. Health Manag., 2017, 20(1), 6-12.
[http://dx.doi.org/10.1089/pop.2015.0181] [PMID: 27124621]
[4]
International diabetic federation. 2021. Available from: https://www.idf.org/aboutdiabetes/what-is-diabetes/facts-figures.html
[5]
Snyder, R.J.; Hanft, J.R. Diabetic foot ulcers - Effects on quality of life, costs, and mortality and the role of standard wound care and advanced-care therapies in healing: A review. Ostomy Wound Manage., 2009, 55, 28-38.
[PMID: 19934461]
[6]
Bhatnagar, S.; Bharara, M.; Armstrong, D.G. Innovations in diabetic foot care: Prevention, education and treatment. Am. Fam. Physician, 1998, 1-4.
[7]
Brem, H.; Tomic-Canic, M. Cellular and molecular basis of wound healing in diabetes. J. Clin. Invest., 2007, 117(5), 1219-1222.
[http://dx.doi.org/10.1172/JCI32169] [PMID: 17476353]
[8]
Khanna, S.; Biswas, S.; Shang, Y.; Collard, E.; Azad, A.; Kauh, C.; Bhasker, V.; Gordillo, G.M.; Sen, C.K.; Roy, S. Macrophage dysfunction impairs resolution of inflammation in the wounds of diabetic mice. PLoS One, 2010, 5(3), e9539.
[http://dx.doi.org/10.1371/journal.pone.0009539] [PMID: 20209061]
[9]
Barroso, A.; Mestre, H.; Ascenso, H.; Simoes, S.; Reis, C. Nanomaterials in wound healing: From material sciences to wound healing applications. Nano Select, 2020, 1(5), 443-460.
[http://dx.doi.org/10.1002/nano.202000055]
[10]
Vijayakumar, V.; Samal, S.K.; Mohanty, S.; Nayak, S.K. Recent advancements in biopolymer and metal nanoparticle-based materials in diabetic wound healing management. Int. J. Biol. Macromol., 2019, 122, 137-148.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.120] [PMID: 30342131]
[11]
Lu, S.; Xia, D.; Huang, G.; Jing, H.; Wang, Y.; Gu, H. Concentration effect of gold nanoparticles on proliferation of keratinocytes. Colloids Surf. B Biointerfaces, 2010, 81(2), 406-411.
[http://dx.doi.org/10.1016/j.colsurfb.2010.06.019] [PMID: 20801623]
[12]
Hamdan, S.; Pastar, I.; Drakulich, S.; Dikici, E.; Tomic-Canic, M.; Deo, S.; Daunert, S. Nanotechnology-driven therapeutic interventions in wound healing: Potential uses and applications. ACS Cent. Sci., 2017, 3(3), 163-175.
[http://dx.doi.org/10.1021/acscentsci.6b00371] [PMID: 28386594]
[13]
Mogoşanu, G.D.; Grumezescu, A.M. Natural and synthetic polymers for wounds and burns dressing. Int. J. Pharm., 2014, 463(2), 127-136.
[http://dx.doi.org/10.1016/j.ijpharm.2013.12.015] [PMID: 24368109]
[14]
Voigt, J.; Driver, V.R. Hyaluronic acid derivatives and their healing effect on burns, epithelial surgical wounds, and chronic wounds: A systematic review and meta-analysis of randomized controlled trials. Wound Repair Regen., 2012, 20(3), 317-331.
[http://dx.doi.org/10.1111/j.1524-475X.2012.00777.x] [PMID: 22564227]
[15]
Wang, T.; Zheng, Y.; Shi, Y.; Zhao, L. pH-responsive calcium alginate hydrogel laden with protamine nanoparticles and hyaluronan oligosaccharide promotes diabetic wound healing by enhancing angiogenesis and antibacterial activity. Drug Deliv. Transl. Res., 2019, 9(1), 227-239.
[http://dx.doi.org/10.1007/s13346-018-00609-8] [PMID: 30519937]
[16]
Alberti, T.; Coelho, D.S.; Voytena, A.; Pitz, H.; de Pra, M.; Mazzarino, L.; Kuhnen, S.; Ribeiro-do-Valle, R.M.; Maraschin, M.; Veleirinho, B. Nanotechnology: A promising tool towards wound healing. Curr. Pharm. Des., 2017, 23(24), 3515-3528.
[http://dx.doi.org/10.2174/1381612823666170503152550] [PMID: 28472915]
[17]
Gong, C.; Wu, Q.; Wang, Y.; Zhang, D.; Luo, F.; Zhao, X.; Wei, Y.; Qian, Z. A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing. Biomaterials, 2013, 34(27), 6377-6387.
[http://dx.doi.org/10.1016/j.biomaterials.2013.05.005] [PMID: 23726229]
[18]
Dellera, E.; Bonferoni, M.C.; Sandri, G.; Rossi, S.; Ferrari, F.; Del Fante, C.; Perotti, C.; Grisoli, P.; Caramella, C. Development of chitosan oleate ionic micelles loaded with silver sulfadiazine to be associated with platelet lysate for application in wound healing. Eur. J. Pharm. Biopharm., 2014, 88(3), 643-650.
[http://dx.doi.org/10.1016/j.ejpb.2014.07.015] [PMID: 25128852]
[19]
Akbar, M.U.; Zia, K.M.; Akash, M.S.H.; Nazir, A.; Zuber, M.; Ibrahim, M. In-vivo anti-diabetic and wound healing potential of chitosan/ alginate/maltodextrin/pluronic-based mixed polymeric micelles: Curcumin therapeutic potential. Int. J. Biol. Macromol., 2018, 120(Pt B), 2418-2430.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.010] [PMID: 30195611]
[20]
Chereddy, K.K.; Her, C.H.; Comune, M.; Moia, C.; Lopes, A.; Porporato, P.E.; Vanacker, J.; Lam, M.C.; Steinstraesser, L.; Sonveaux, P.; Zhu, H.; Ferreira, L.S.; Vandermeulen, G.; Préat, V. PLGA nanoparticles loaded with host defense peptide LL37 promote wound healing. J. Control. Release, 2014, 194, 138-147.
[http://dx.doi.org/10.1016/j.jconrel.2014.08.016] [PMID: 25173841]
[21]
Sanchez, D.A.; Schairer, D.; Tuckman-Vernon, C.; Chouake, J.; Kutner, A.; Makdisi, J.; Friedman, J.M.; Nosanchuk, J.D.; Friedman, A.J. Amphotericin B releasing nanoparticle topical treatment of Candida spp. in the setting of a burn wound. Nanomedicine, 2014, 10(1), 269-277.
[http://dx.doi.org/10.1016/j.nano.2013.06.002] [PMID: 23770066]
[22]
Abbasi, E.; Aval, S.F.; Akbarzadeh, A.; Milani, M.; Nasrabadi, H.T.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; Pashaei-Asl, R. Dendrimers: synthesis, applications, and properties. Nanoscale Res. Lett., 2014, 9(1), 247.
[http://dx.doi.org/10.1186/1556-276X-9-247] [PMID: 24994950]
[23]
Kwon, M.J.; An, S.; Choi, S.; Nam, K.; Jung, H.S.; Yoon, C.S.; Ko, J.H.; Jun, H.J.; Kim, T.K.; Jung, S.J.; Park, J.H.; Lee, Y.; Park, J.S. Effective healing of diabetic skin wounds by using nonviral gene therapy based on minicircle vascular endothelial growth factor DNA and a cationic dendrimer. J. Gene Med., 2012, 14(4), 272-278.
[http://dx.doi.org/10.1002/jgm.2618] [PMID: 22407991]
[24]
Maji, S.; Agarwal, T.; Maiti, T.K. PAMAM (generation 4) incorporated gelatin 3D matrix as an improved dermal substitute for skin tissue engineering. Colloids Surf. B Biointerfaces, 2017, 155, 128-134.
[http://dx.doi.org/10.1016/j.colsurfb.2017.04.003] [PMID: 28419941]
[25]
Teo, S.Y.; Yew, M.Y.; Lee, S.Y.; Rathbone, M.J.; Gan, S.N.; Coombes, A.G.A. In vitro evaluation of novel phenytoin-loaded alkyd nanoemulsions designed for application in topical wound healing. J. Pharm. Sci., 2017, 106(1), 377-384.
[http://dx.doi.org/10.1016/j.xphs.2016.06.028] [PMID: 27522920]
[26]
Alam, P.; Shakeel, F.; Anwer, M.K.; Foudah, A.I.; Alqarni, M.H. Wound healing study of Eucalyptus essential oil containing nanoemulsion in rat model. J. Oleo Sci., 2018, 67(8), 957-968.
[http://dx.doi.org/10.5650/jos.ess18005] [PMID: 30012898]
[27]
Applications in the prevention and treatment of skin disorders. In: Ascenso, A; Simoes, S; Ribeiro, H; Ascenso., , Eds.; Carrier-Mediated Dermal Delivery, 1st ed; Jenny Stanford Publishing. 2017, 586.
[http://dx.doi.org/10.4324/9781315364476]
[28]
Xu, H.L.; Chen, P.P. ZhuGe, D.L.; Zhu, Q.Y.; Jin, B.H.; Shen, B.X.; Xiao, J.; Zhao, Y.Z. Liposomes with silk fibroin hydrogel core to stabilize bFGF and promote the wound healing of mice with deep second-degree scald. Adv. Healthc. Mater., 2017, 6(19), 1700344.
[http://dx.doi.org/10.1002/adhm.201700344] [PMID: 28661050]
[29]
Choudhary, V.; Shivakumar, H.; Ojha, H. Curcumin-loaded liposomes for wound healing: Preparation, optimization, in-vivo skin permeation and bioevaluation. J. Drug Deliv. Sci. Technol., 2019, 49, 683-691.
[http://dx.doi.org/10.1016/j.jddst.2018.12.008]
[30]
Lu, K.J.; Wang, W.; Xu, X.L.; Jin, F.Y.; Qi, J.; Wang, X.J.; Kang, X.Q.; Zhu, M.L.; Huang, Q.L.; Yu, C.H.; You, J.; Du, Y.Z. A dual deformable liposomal ointment functionalized with retinoic acid and epidermal growth factor for enhanced burn wound healing therapy. Biomater. Sci., 2019, 7(6), 2372-2382.
[http://dx.doi.org/10.1039/C8BM01569D] [PMID: 30916681]
[31]
Cheng, R.; Liu, L.; Xiang, Y.; Lu, Y.; Deng, L.; Zhang, H.; Santos, H.A.; Cui, W. Advanced liposome-loaded scaffolds for therapeutic and tissue engineering applications. Biomaterials, 2020, 232, 119706.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119706] [PMID: 31918220]
[32]
Wang, W.; Lu, K.J.; Yu, C.H.; Huang, Q.L.; Du, Y.Z. Nano-drug delivery systems in wound treatment and skin regeneration. J. Nanobiotechnology, 2019, 17(1), 82.
[http://dx.doi.org/10.1186/s12951-019-0514-y] [PMID: 31291960]
[33]
Motawea, A.; Abd El-Gawad, A.E.H.; Borg, T.; Motawea, M.; Tarshoby, M. The impact of topical phenytoin loaded nanostructured lipid carriers in diabetic foot ulceration. Foot, 2019, 40, 14-21.
[http://dx.doi.org/10.1016/j.foot.2019.03.007] [PMID: 30999080]
[34]
Khezri, K.; Farahpour, M.R.; Mounesi Rad, S. Accelerated infected wound healing by topical application of encapsulated Rosemary essential oil into nanostructured lipid carriers. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 980-988.
[http://dx.doi.org/10.1080/21691401.2019.1582539] [PMID: 30857435]
[35]
Ghaffari, S.; Alihosseini, F.; Rezayat Sorkhabadi, S.M.; Arbabi Bidgoli, S.; Mousavi, S.E.; Haghighat, S.; Afshar Nasab, A.; Kianvash, N. Nanotechnology in wound healing; semisolid dosage forms containing curcumin-ampicillin solid lipid nanoparticles, in-vitro, ex-vivo and in-vivo characteristics. Adv. Pharm. Bull., 2018, 8(3), 395-400.
[http://dx.doi.org/10.15171/apb.2018.046] [PMID: 30276135]
[36]
Kasiewicz, L.N.; Whitehead, K.A. Lipid nanoparticles silence tumor necrosis factor α to improve wound healing in diabetic mice. Bioeng. Transl. Med., 2018, 4(1), 75-82.
[http://dx.doi.org/10.1002/btm2.10123] [PMID: 30680320]
[37]
Mihai, M.M.; Preda, M.; Lungu, I.; Gestal, M.C.; Popa, M.I.; Holban, A.M. Nanocoatings for chronic wound repair-modulation of microbial colonization and biofilm formation. Int. J. Mol. Sci., 2018, 19(4), 1-20.
[http://dx.doi.org/10.3390/ijms19041179] [PMID: 29649179]
[38]
Natarajan, S.; Harini, K.; Gajula, G.P.; Sarmento, B.; Neves-Petersen, M.T.; Thiagarajan, V. Multifunctional magnetic iron oxide nanoparticles: Diverse synthetic approaches, surface modifications, cytotoxicity towards biomedical and industrial applications. BMC Mat., 2019, 1(1), 1-22.
[http://dx.doi.org/10.1186/s42833-019-0002-6]
[39]
Anghel, I.; Grumezescu, A.M.; Holban, A.M.; Ficai, A.; Anghel, A.G.; Chifiriuc, M.C. Biohybrid nanostructured iron oxide nanoparticles and Satureja hortensis to prevent fungal biofilm development. Int. J. Mol. Sci., 2013, 14(9), 18110-18123.
[http://dx.doi.org/10.3390/ijms140918110] [PMID: 24009022]
[40]
Rădulescu, M.; Andronescu, E.; Holban, A.; Vasile, B.; Iordache, F.; Mogoantă, L.; Mogoșanu, G.; Grumezescu, A.; Georgescu, M.; Chifiriuc, M. Antimicrobial nanostructured bioactive coating based on fe3o4 and Patchouli oil for wound dressing. Metals (Basel), 2016, 6(5), 1-10.
[http://dx.doi.org/10.3390/met6050103]
[41]
Hetrick, E.M.; Shin, J.H.; Paul, H.S.; Schoenfisch, M.H.; Hetrick, E.M.; Shin, J.H.; Paul, H.S.; Schoenfisch, M.H. Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles. Biomaterials, 2009, 30(14), 2782-2789.
[http://dx.doi.org/10.1016/j.biomaterials.2009.01.052] [PMID: 19233464]
[42]
Quignard, S.; Coradin, T.; Powell, J.J.; Jugdaohsingh, R. Silica nanoparticles as sources of silicic acid favoring wound healing in vitro. Colloids Surf. B Biointerfaces, 2017, 155, 530-537.
[http://dx.doi.org/10.1016/j.colsurfb.2017.04.049] [PMID: 28494431]
[43]
Park, J.U.; Jeong, S.H.; Song, E.H.; Song, J.; Kim, H.E.; Kim, S. Acceleration of the healing process of full-thickness wounds using hydrophilic chitosan-silica hybrid sponge in a porcine model. J. Biomater. Appl., 2018, 32(8), 1011-1023.
[http://dx.doi.org/10.1177/0885328217751246] [PMID: 29357774]
[44]
Whitney, J.D. Overview: Acute and chronic wounds. Nurs. Clin. North Am., 2005, 40(2), 191-205. v.
[http://dx.doi.org/10.1016/j.cnur.2004.09.002] [PMID: 15924889]
[45]
Upton, D.; Solowiej, K.; Hender, C.; Woodyatt, K.Y. Stress and pain associated with dressing change in patients with chronic wounds. J. Wound Care, 2012, 21(2), 53-54, 56, 58 passim.
[http://dx.doi.org/10.12968/jowc.2012.21.2.53] [PMID: 22584524]
[46]
Calo, E.; Khutoryanskiy, V.V. Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J., 2015, 65, 252-267.
[http://dx.doi.org/10.1016/j.eurpolymj.2014.11.024]
[47]
Han, G.; Ceilley, R. Chronic wound healing: A review of current management and treatments. Adv. Ther., 2017, 34(3), 599-610.
[http://dx.doi.org/10.1007/s12325-017-0478-y] [PMID: 28108895]
[48]
Madhumathi, K.; Sudheesh Kumar, P.T.; Abhilash, S.; Sreeja, V.; Tamura, H.; Manzoor, K.; Nair, S.V.; Jayakumar, R. Development of novel chitin/nanosilver composite scaffolds for wound dressing applications. J. Mater. Sci. Mater. Med., 2010, 21(2), 807-813.
[http://dx.doi.org/10.1007/s10856-009-3877-z] [PMID: 19802687]
[49]
Moura, L.I.F.; Dias, A.M.A.; Carvalho, E.; de Sousa, H.C. Recent advances on the development of wound dressings for diabetic foot ulcer treatment--a review. Acta Biomater., 2013, 9(7), 7093-7114.
[http://dx.doi.org/10.1016/j.actbio.2013.03.033] [PMID: 23542233]
[50]
Martin, P. Wound healing--aiming for perfect skin regeneration. Science, 1997, 276(5309), 75-81.
[http://dx.doi.org/10.1126/science.276.5309.75] [PMID: 9082989]
[51]
Braund, R.; Hook, S.; Medlicott, N.J. The role of topical growth factors in chronic wounds. Curr. Drug Deliv., 2007, 4(3), 195-204.
[http://dx.doi.org/10.2174/156720107781023857] [PMID: 17627493]
[52]
Gainza, G.; Villullas, S.; Pedraz, J.L.; Hernandez, R.M.; Igartua, M. Advances in drug delivery systems (DDSs) to release growth factors for wound healing and skin regeneration. Nanomedicine, 2015, 11(6), 1551-1573.
[http://dx.doi.org/10.1016/j.nano.2015.03.002] [PMID: 25804415]
[53]
Kiritsy, C.P.; Lynch, A.B.; Lynch, S.E. Role of growth factors in cutaneous wound healing: A review. Crit. Rev. Oral Biol. Med., 1993, 4(5), 729-760.
[http://dx.doi.org/10.1177/10454411930040050401] [PMID: 8292715]
[54]
Eming, S.A.; Krieg, T.; Davidson, J.M. Inflammation in wound repair: Molecular and cellular mechanisms. J. Invest. Dermatol., 2007, 127(3), 514-525.
[http://dx.doi.org/10.1038/sj.jid.5700701] [PMID: 17299434]
[55]
Singer, A.J.; Clark, R.A. Cutaneous wound healing. N. Engl. J. Med., 1999, 341(10), 738-746.
[http://dx.doi.org/10.1056/NEJM199909023411006] [PMID: 10471461]
[56]
Velnar, T.; Bailey, T.; Smrkolj, V. The wound healing process: An overview of the cellular and molecular mechanisms. J. Int. Med. Res., 2009, 37(5), 1528-1542.
[http://dx.doi.org/10.1177/147323000903700531] [PMID: 19930861]
[57]
Malinda, K.M.; Sidhu, G.S.; Banaudha, K.K.; Gaddipati, J.P.; Maheshwari, R.K.; Goldstein, A.L.; Kleinman, H.K. Thymosin alpha 1 stimulates endothelial cell migration, angiogenesis, and wound healing. J. Immunol., 1998, 160(2), 1001-1006.
[PMID: 9551940]
[58]
Tettamanti, G.; Grimaldi, A.; Rinaldi, L.; Arnaboldi, F.; Congiu, T.; Valvassori, R.; de Eguileor, M. The multifunctional role of fibroblasts during wound healing in Hirudo medicinalis (Annelida, Hirudinea). Biol. Cell, 2004, 96(6), 443-455.
[http://dx.doi.org/10.1016/j.biolcel.2004.04.008] [PMID: 15325073]
[59]
Li, B.; Wang, J.H. Fibroblasts and myofibroblasts in wound healing: Force generation and measurement. J. Tissue Viability, 2011, 20(4), 108-120.
[http://dx.doi.org/10.1016/j.jtv.2009.11.004] [PMID: 19995679]
[60]
Ehrlich, H.P.; Keefer, K.A.; Myers, R.L.; Passaniti, A. Vanadate and the absence of myofibroblasts in wound contraction. Arch. Surg., 1999, 134(5), 494-501.
[http://dx.doi.org/10.1001/archsurg.134.5.494] [PMID: 10323421]
[61]
Stadelmann, W.K.; Digenis, A.G.; Tobin, G.R. Physiology and healing dynamics of chronic cutaneous wounds. Am. J. Surg., 1998, 176(2A)(Suppl.), 26S-38S.
[http://dx.doi.org/10.1016/S0002-9610(98)00183-4] [PMID: 9777970]
[62]
Armstrong, D.G.; Lavery, L.A.; Harkless, L.B. Validation of a diabetic wound classification system. The contribution of depth, infection, and ischemia to risk of amputation. Diabetes Care, 1998, 21(5), 855-859.
[http://dx.doi.org/10.2337/diacare.21.5.855] [PMID: 9589255]
[63]
Morbach, S.; Furchert, H.; Gröblinghoff, U.; Hoffmeier, H.; Kersten, K.; Klauke, G.T.; Klemp, U.; Roden, T.; Icks, A.; Haastert, B.; Rümenapf, G.; Abbas, Z.G.; Bharara, M.; Armstrong, D.G. Long-term prognosis of diabetic foot patients and their limbs: Amputation and death over the course of a decade. Diabetes Care, 2012, 35(10), 2021-2027.
[http://dx.doi.org/10.2337/dc12-0200] [PMID: 22815299]
[64]
Armstrong, D.G.; Wrobel, J.; Robbins, J.M. Guest Editorial: Are diabetes-related wounds and amputations worse than cancer? Int. Wound J., 2007, 4(4), 286-287.
[http://dx.doi.org/10.1111/j.1742-481X.2007.00392.x] [PMID: 18154621]
[65]
Young, M.J.; McCardle, J.E.; Randall, L.E.; Barclay, J.I. Improved survival of diabetic foot ulcer patients 1995-2008: Possible impact of aggressive cardiovascular risk management. Diabetes Care, 2008, 31(11), 2143-2147.
[http://dx.doi.org/10.2337/dc08-1242] [PMID: 18697900]
[66]
Brennan, M.B.; Hess, T.M.; Bartle, B.; Cooper, J.M.; Kang, J.; Huang, E.S.; Smith, M.; Sohn, M.W.; Crnich, C. Diabetic foot ulcer severity predicts mortality among veterans with type 2 diabetes. J. Diabetes Complications, 2017, 31(3), 556-561.
[http://dx.doi.org/10.1016/j.jdiacomp.2016.11.020] [PMID: 27993523]
[67]
Iversen, M.M.; Tell, G.S.; Riise, T.; Hanestad, B.R.; Østbye, T.; Graue, M.; Midthjell, K. History of foot ulcer increases mortality among individuals with diabetes: Ten-year follow-up of the Nord-Trøndelag Health Study, Norway. Diabetes Care, 2009, 32(12), 2193-2199.
[http://dx.doi.org/10.2337/dc09-0651] [PMID: 19729524]
[68]
Bommer, C.; Heesemann, E.; Sagalova, V.; Manne-Goehler, J.; Atun, R.; Bärnighausen, T.; Vollmer, S. The global economic burden of diabetes in adults aged 20-79 years: A cost-of-illness study. Lancet Diabetes Endocrinol., 2017, 5(6), 423-430.
[http://dx.doi.org/10.1016/S2213-8587(17)30097-9] [PMID: 28456416]
[69]
Armstrong, D.G.; Boulton, A.J.M.; Bus, S.A. Diabetic foot ulcers and their recurrence. N. Engl. J. Med., 2017, 376(24), 2367-2375.
[http://dx.doi.org/10.1056/NEJMra1615439] [PMID: 28614678]
[70]
Diabetes, U.K. Putting feet first: Diabetes UK position on preventing amputations and improving foot care for people with diabetes. 2015. Available from: https://www.diabetes.org.uk/Upload/Shared%20practice/Diabetic%20footcare (Accessed 23 March 2021).
[71]
Ramsey, S.D.; Newton, K.; Blough, D.; McCulloch, D.K.; Sandhu, N.; Reiber, G.E.; Wagner, E.H. Incidence, outcomes, and cost of foot ulcers in patients with diabetes. Diabetes Care, 1999, 22(3), 382-387.
[http://dx.doi.org/10.2337/diacare.22.3.382] [PMID: 10097914]
[72]
Rice, J.B.; Desai, U.; Cummings, A.K.G.; Birnbaum, H.G.; Skornicki, M.; Parsons, N.B. Burden of diabetic foot ulcers for medicare and private insurers. Diabetes Care, 2014, 37(3), 651-658.
[http://dx.doi.org/10.2337/dc13-2176] [PMID: 24186882]
[73]
Margolis, D.J.; Malay, S.; Hoffstad, O.; Leonard, C.E. MaCurdy, T; de Nava, KL; Tan, Y; Molina, T; Siegel, KL Incidence of diabetic foot ulcer and lower extremity amputation among Medicare beneficiaries. 2006. Available from: https://www.ncbi.nlm.nih.gov/books/NBK65149/ (Accessed 23 March, 2021).
[74]
Abbott, C.A.; Carrington, A.L.; Ashe, H.; Bath, S.; Every, L.C.; Griffiths, J.; Hann, A.W.; Hussein, A.; Jackson, N.; Johnson, K.E.; Ryder, C.H.; Torkington, R.; Van Ross, E.R.E.; Whalley, A.M.; Widdows, P.; Williamson, S.; Boulton, A.J.M. The North-West diabetes foot care study: Incidence of, and risk factors for, new diabetic foot ulceration in a community-based patient cohort. Diabet. Med., 2002, 19(5), 377-384.
[http://dx.doi.org/10.1046/j.1464-5491.2002.00698.x] [PMID: 12027925]
[75]
Muller, I.S.; de Grauw, W.J.; van Gerwen, W.H.E.M.; Bartelink, M.L.; van Den Hoogen, H.J.M.; Rutten, G.E.H.M. Foot ulceration and lower limb amputation in type 2 diabetic patients in dutch primary health care. Diabetes Care, 2002, 25(3), 570-574.
[http://dx.doi.org/10.2337/diacare.25.3.570] [PMID: 11874949]
[76]
Crawford, F.; Cezard, G.; Chappell, F.M.; Murray, G.D.; Price, J.F.; Sheikh, A.; Simpson, C.R.; Stansby, G.P.; Young, M.J. A systematic review and individual patient data meta-analysis of prognostic factors for foot ulceration in people with diabetes: The international research collaboration for the prediction of diabetic foot ulcerations (PODUS). Health Technol. Assess., 2015, 19(57), 1-210.
[http://dx.doi.org/10.3310/hta19570] [PMID: 26211920]
[77]
Monteiro-Soares, M.; Ribas, R.; Pereira da Silva, C.; Bral, T.; Mota, A.; Pinheiro Torres, S.; Morgado, A.; Couceiro, R.; Ribeiro, R.; Dias, V.; Moreira, M.; Mourão, P.; Oliveira, M.J.; Madureira, M.; Paixão-Dias, V.; Dinis-Ribeiro, M. Diabetic foot ulcer development risk classifications’ validation: A multicentre prospective cohort study. Diabetes Res. Clin. Pract., 2017, 127, 105-114.
[http://dx.doi.org/10.1016/j.diabres.2017.02.034] [PMID: 28340359]
[78]
Hoogeveen, R.C.; Dorresteijn, J.A.; Kriegsman, D.M.; Valk, G.D. Complex interventions for preventing diabetic foot ulceration. Cochrane Database Syst. Rev., 2015, 8(8), CD007610.
[http://dx.doi.org/10.1002/14651858.CD007610.pub3] [PMID: 26299991]
[79]
van Netten, J.J.; Price, P.E.; Lavery, L.A.; Monteiro-Soares, M.; Rasmussen, A.; Jubiz, Y.; Bus, S.A. International Working Group on the Diabetic Foot. Prevention of foot ulcers in the at-risk patient with diabetes: A systematic review. Diabetes Metab. Res. Rev., 2016, 32(Suppl. 1), 84-98.
[http://dx.doi.org/10.1002/dmrr.2701] [PMID: 26340966]
[80]
Ince, P.; Abbas, Z.G.; Lutale, J.K.; Basit, A.; Ali, S.M.; Chohan, F.; Morbach, S.; Möllenberg, J.; Game, F.L.; Jeffcoate, W.J. Use of the SINBAD classification system and score in comparing outcome of foot ulcer management on three continents. Diabetes Care, 2008, 31(5), 964-967.
[http://dx.doi.org/10.2337/dc07-2367] [PMID: 18299441]
[81]
Mills, J.L., Sr; Conte, M.S.; Armstrong, D.G.; Pomposelli, F.B.; Schanzer, A.; Sidawy, A.N.; Andros, G. Society for vascular surgery lower extremity guidelines committee. The Society for Vascular Surgery Lower Extremity Threatened Limb Classification System: Risk stratification based on wound, ischemia, and foot infection (WIfI). J. Vasc. Surg., 2014, 59(1) 220-34.e1, 2.
[http://dx.doi.org/10.1016/j.jvs.2013.08.003] [PMID: 24126108]
[82]
NHS Digital. National Diabetes Foot Care Audit Available from: http://content.digital.nhs.uk/catalogue/PUB23525/natidiab-foot-care-audit-14-16-rep.pdf (Accessed March 23, 2021).
[83]
Smith-Strøm, H.; Iversen, M.M.; Igland, J.; Østbye, T.; Graue, M.; Skeie, S.; Wu, B.; Rokne, B. Severity and duration of diabetic foot ulcer (DFU) before seeking care as predictors of healing time: A retrospective cohort study. PLoS One, 2017, 12(5), e0177176.
[http://dx.doi.org/10.1371/journal.pone.0177176] [PMID: 28498862]
[84]
Game, F.L.; Chipchase, S.Y.; Hubbard, R.; Burden, R.P.; Jeffcoate, W.J. Temporal association between the incidence of foot ulceration and the start of dialysis in diabetes mellitus. Nephrol. Dial. Transplant., 2006, 21(11), 3207-3210.
[http://dx.doi.org/10.1093/ndt/gfl427] [PMID: 16877485]
[85]
Ndip, A.; Rutter, M.K.; Vileikyte, L.; Vardhan, A.; Asari, A.; Jameel, M.; Tahir, H.A.; Lavery, L.A.; Boulton, A.J.M. Dialysis treatment is an independent risk factor for foot ulceration in patients with diabetes and stage 4 or 5 chronic kidney disease. Diabetes Care, 2010, 33(8), 1811-1816.
[http://dx.doi.org/10.2337/dc10-0255] [PMID: 20484126]
[86]
Game, F.L.; Selby, N.M.; McIntyre, C.W. Chronic kidney disease and the foot in diabetes--is inflammation the missing link? Nephron Clin. Pract., 2013, 123(1-2), 36-40.
[http://dx.doi.org/10.1159/000351813] [PMID: 23752138]
[87]
Lavery, L.A.; Hunt, N.A.; Ndip, A.; Lavery, D.C.; Van Houtum, W.; Boulton, A.J.M. Impact of chronic kidney disease on survival after amputation in individuals with diabetes. Diabetes Care, 2010, 33(11), 2365-2369.
[http://dx.doi.org/10.2337/dc10-1213] [PMID: 20739688]
[88]
Dorresteijn, J.A.N.; Kriegsman, D.M.W.; Assendelft, W.J.J.; Valk, G.D. Patient education for preventing diabetic foot ulceration. Cochrane Database Syst. Rev., 2014, 12(12), CD001488.
[http://dx.doi.org/10.1002/14651858.CD001488.pub5] [PMID: 25514250]
[89]
Lavery, L.A.; Armstrong, D.G. Temperature monitoring to assess, predict, and prevent diabetic foot complications. Curr. Diab. Rep., 2007, 7(6), 416-419.
[http://dx.doi.org/10.1007/s11892-007-0069-4] [PMID: 18255002]
[90]
Greenhalgh, D.G. Wound healing and diabetes mellitus. Clin. Plast. Surg., 2003, 30(1), 37-45.
[http://dx.doi.org/10.1016/S0094-1298(02)00066-4] [PMID: 12636214]
[91]
Dinh, T.; Elder, S.; Veves, A. Delayed wound healing in diabetes: Considering future treatments. Diabetes Manag. (Lond.), 2011, 1(5), 509-519.
[http://dx.doi.org/10.2217/dmt.11.44]
[92]
Geraghty, T.; LaPorta, G. Current health and economic burden of chronic diabetic osteomyelitis. Expert Rev. Pharmacoecon. Outcomes Res., 2019, 19(3), 279-286.
[http://dx.doi.org/10.1080/14737167.2019.1567337] [PMID: 30625012]
[93]
Zhang, P.; Lu, J.; Jing, Y.; Tang, S.; Zhu, D.; Bi, Y. Global epidemiology of diabetic foot ulceration: A systematic review and meta-analysis . Ann. Med., 2017, 49(2), 106-116.
[http://dx.doi.org/10.1080/07853890.2016.1231932] [PMID: 27585063]
[94]
Boulton, A.J.M.; Vileikyte, L.; Ragnarson-Tennvall, G.; Apelqvist, J. The global burden of diabetic foot disease. Lancet, 2005, 366(9498), 1719-1724.
[http://dx.doi.org/10.1016/S0140-6736(05)67698-2] [PMID: 16291066]
[95]
Raghav, A.; Khan, Z.A.; Labala, R.K.; Ahmad, J.; Noor, S.; Mishra, B.K. Financial burden of diabetic foot ulcers to world: A progressive topic to discuss always. Ther. Adv. Endocrinol. Metab., 2018, 9(1), 29-31.
[http://dx.doi.org/10.1177/2042018817744513] [PMID: 29344337]
[96]
Ragnarson Tennvall, G.; Apelqvist, J. Health-economic consequences of diabetic foot lesions. Clin. Infect. Dis., 2004, 39(2)(Suppl. 2), S132-S139.
[http://dx.doi.org/10.1086/383275] [PMID: 15306992]
[97]
Eming, S.A.; Martin, P.; Tomic-Canic, M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci. Transl. Med., 2014, 6(265), 265sr6.
[http://dx.doi.org/10.1126/scitranslmed.3009337] [PMID: 25473038]
[98]
Falanga, V. Wound healing and its impairment in the diabetic foot. Lancet, 2005, 366(9498), 1736-1743.
[http://dx.doi.org/10.1016/S0140-6736(05)67700-8] [PMID: 16291068]
[99]
Falanga, V. The chronic wound: Impaired healing and solutions in the context of wound bed preparation. Blood Cells Mol. Dis., 2004, 32(1), 88-94.
[http://dx.doi.org/10.1016/j.bcmd.2003.09.020] [PMID: 14757419]
[100]
Liu, L.; Marti, G.P.; Wei, X.; Zhang, X.; Zhang, H.; Liu, Y.V.; Nastai, M.; Semenza, G.L.; Harmon, J.W. Age-dependent impairment of HIF-1alpha expression in diabetic mice: Correction with electroporation-facilitated gene therapy increases wound healing, angiogenesis, and circulating angiogenic cells. J. Cell. Physiol., 2008, 217(2), 319-327.
[http://dx.doi.org/10.1002/jcp.21503] [PMID: 18506785]
[101]
Okonkwo, U.A.; DiPietro, L.A. Diabetes and wound angiogenesis. Int. J. Mol. Sci., 2017, 18(7), 1-15.
[http://dx.doi.org/10.3390/ijms18071419] [PMID: 28671607]
[102]
Hirschi, K.K.; D’Amore, P.A. Pericytes in the microvasculature. Cardiovasc. Res., 1996, 32(4), 687-698.
[http://dx.doi.org/10.1016/S0008-6363(96)00063-6] [PMID: 8915187]
[103]
Haukipuro, K.; Melkko, J.; Risteli, L.; Kairaluoma, M.; Risteli, J. Synthesis of type I collagen in healing wounds in humans. Ann. Surg., 1991, 213(1), 75-80.
[http://dx.doi.org/10.1097/00000658-199101000-00013] [PMID: 1985542]
[104]
Gurtner, G.C.; Werner, S.; Barrandon, Y.; Longaker, M.T. Wound repair and regeneration. Nature, 2008, 453(7193), 314-321.
[http://dx.doi.org/10.1038/nature07039] [PMID: 18480812]
[105]
Wetzler, C.; Kämpfer, H.; Stallmeyer, B.; Pfeilschifter, J.; Frank, S. Large and sustained induction of chemokines during impaired wound healing in the genetically diabetic mouse: Prolonged persistence of neutrophils and macrophages during the late phase of repair. J. Invest. Dermatol., 2000, 115(2), 245-253.
[http://dx.doi.org/10.1046/j.1523-1747.2000.00029.x] [PMID: 10951242]
[106]
Brown, D.L.; Kane, C.D.; Chernausek, S.D.; Greenhalgh, D.G. Differential expression and localization of insulin-like growth factors I and II in cutaneous wounds of diabetic and nondiabetic mice. Am. J. Pathol., 1997, 151(3), 715-724.
[PMID: 9284820]
[107]
Roberts, A.B. Transforming growth factor-beta: Activity and efficacy in animal models of wound healing. Wound Repair Regen., 1995, 3(4), 408-418.
[http://dx.doi.org/10.1046/j.1524-475X.1995.30405.x] [PMID: 17147652]
[108]
Semenza, G.L. HIF-1: Mediator of physiological and pathophysiological responses to hypoxia. J. Appl. Physiol., 2000, 88(4), 1474-1480.
[http://dx.doi.org/10.1152/jappl.2000.88.4.1474] [PMID: 10749844]
[109]
Seitz, O.; Schürmann, C.; Hermes, N.; Müller, E.; Pfeilschifter, J.; Frank, S.; Goren, I. Wound healing in mice with high-fat diet- or ob gene-induced diabetes-obesity syndromes: A comparative study. Exp. Diabetes Res., 2010, 2010, 476969.
[http://dx.doi.org/10.1155/2010/476969] [PMID: 21318183]
[110]
Galiano, R.D.; Tepper, O.M.; Pelo, C.R.; Bhatt, K.A.; Callaghan, M.; Bastidas, N.; Bunting, S.; Steinmetz, H.G.; Gurtner, G.C. Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. Am. J. Pathol., 2004, 164(6), 1935-1947.
[http://dx.doi.org/10.1016/S0002-9440(10)63754-6] [PMID: 15161630]
[111]
Drela, E.; Stankowska, K.; Kulwas, A.; Rość, D. Endothelial progenitor cells in diabetic foot syndrome. Adv. Clin. Exp. Med., 2012, 21(2), 249-254.
[PMID: 23214290]
[112]
Sangiorgi, S.; Manelli, A.; Reguzzoni, M.; Ronga, M.; Protasoni, M.; Dell’Orbo, C. The cutaneous microvascular architecture of human diabetic toe studied by corrosion casting and scanning electron microscopy analysis. Anat. Rec. (Hoboken), 2010, 293(10), 1639-1645.
[http://dx.doi.org/10.1002/ar.21168] [PMID: 20687174]
[113]
Beer, H.D.; Longaker, M.T.; Werner, S. Reduced expression of PDGF and PDGF receptors during impaired wound healing. J. Invest. Dermatol., 1997, 109(2), 132-138.
[http://dx.doi.org/10.1111/1523-1747.ep12319188] [PMID: 9242497]
[114]
Balaji, S.; Han, N.; Moles, C.; Shaaban, A.F.; Bollyky, P.L.; Crombleholme, T.M.; Keswani, S.G.; Kesariwani, S.G. Angiopoietin-1 improves endothelial progenitor cell-dependent neovascularization in diabetic wounds. Surgery, 2015, 158(3), 846-856.
[http://dx.doi.org/10.1016/j.surg.2015.06.034] [PMID: 26266763]
[115]
Lobmann, R.; Zemlin, C.; Motzkau, M.; Reschke, K.; Lehnert, H. Expression of matrix metalloproteinases and growth factors in diabetic foot wounds treated with a protease absorbent dressing. J. Diabetes Complications, 2006, 20(5), 329-335.
[http://dx.doi.org/10.1016/j.jdiacomp.2005.08.007] [PMID: 16949521]
[116]
Liu, Y.; Min, D.; Bolton, T.; Nubé, V.; Twigg, S.M.; Yue, D.K.; McLennan, S.V. Increased matrix metalloproteinase-9 predicts poor wound healing in diabetic foot ulcers. Diabetes Care, 2009, 32(1), 117-119.
[http://dx.doi.org/10.2337/dc08-0763] [PMID: 18835949]
[117]
Spampinato, S.F.; Caruso, G.I.; De Pasquale, R.; Sortino, M.A.; Merlo, S. The treatment of impaired wound healing in diabetes: Looking among old drugs. Pharmaceuticals (Basel), 2020, 13(4), 1-17.
[http://dx.doi.org/10.3390/ph13040060] [PMID: 32244718]
[118]
Long, M.; Cai, L.; Li, W.; Zhang, L.; Guo, S.; Zhang, R.; Zheng, Y.; Liu, X.; Wang, M.; Zhou, X.; Wang, H.; Li, X.; Li, L.; Zhu, Z.; Yang, G.; Zheng, H. DPP-4 Inhibitors improve diabetic wound healing via direct and indirect promotion of epithelial-mesenchymal transition and reduction of scarring. Diabetes, 2018, 67(3), 518-531.
[http://dx.doi.org/10.2337/db17-0934] [PMID: 29254987]
[119]
Marfella, R.; Sasso, F.C.; Rizzo, M.R.; Paolisso, P.; Barbieri, M.; Padovano, V.; Carbonara, O.; Gualdiero, P.; Petronella, P.; Ferraraccio, F. Dipeptidyl peptidase 4 inhibition may facilitate healing of chronic foot ulcers in patients with type 2 diabetes. Exp. Diabetes Res., 2012, 2012, 892706.
[http://dx.doi.org/10.1155/2012/892706]
[120]
Zhao, P.; Sui, B.D.; Liu, N.; Lv, Y.J.; Zheng, C.X.; Lu, Y.B.; Huang, W.T.; Zhou, C.H.; Chen, J.; Pang, D.L.; Fei, D.D.; Xuan, K.; Hu, C.H.; Jin, Y. Anti-aging pharmacology in cutaneous wound healing: Effects of metformin, resveratrol, and rapamycin by local application. Aging Cell, 2017, 16(5), 1083-1093.
[http://dx.doi.org/10.1111/acel.12635] [PMID: 28677234]
[121]
Keppel Hesselink, J.M. Phenytoin repositioned in wound healing: Clinical experience spanning 60 years. Drug Discov. Today, 2018, 23(2), 402-408.
[http://dx.doi.org/10.1016/j.drudis.2017.09.020] [PMID: 28993152]
[122]
Sawaya, A.P.; Jozic, I.; Stone, R.C.; Pastar, I.; Egger, A.N.; Stojadinovic, O.; Glinos, G.D.; Kirsner, R.S.; Tomic-Canic, M. Mevastatin promotes healing by targeting caveolin-1 to restore EGFR signaling. JCI Insight, 2019, 4(23), 129320.
[http://dx.doi.org/10.1172/jci.insight.129320] [PMID: 31661463]
[123]
Sawaya, A.P.; Pastar, I.; Stojadinovic, O.; Lazovic, S.; Davis, S.C.; Gil, J.; Kirsner, R.S.; Tomic-Canic, M. Topical mevastatin promotes wound healing by inhibiting the transcription factor c-Myc via the glucocorticoid receptor and the long non-coding RNA Gas5. J. Biol. Chem., 2018, 293(4), 1439-1449.
[http://dx.doi.org/10.1074/jbc.M117.811240] [PMID: 29158265]
[124]
Gu, Z.; Aimetti, A.A.; Wang, Q.; Dang, T.T.; Zhang, Y.; Veiseh, O.; Cheng, H.; Langer, R.S.; Anderson, D.G. Injectable nano-network for glucose-mediated insulin delivery. ACS Nano, 2013, 7(5), 4194-4201.
[http://dx.doi.org/10.1021/nn400630x] [PMID: 23638642]
[125]
Wang, Y.; Liu, L.; Li, M.; Xu, S.; Gao, F. Multifunctional carbon nanotubes for direct electrochemistry of glucose oxidase and glucose bioassay. Biosens. Bioelectron., 2011, 30(1), 107-111.
[http://dx.doi.org/10.1016/j.bios.2011.08.038] [PMID: 21959226]
[126]
Chen, C.; Wang, L.; Tan, Y.; Qin, C.; Xie, F.; Fu, Y.; Xie, Q.; Chen, J.; Yao, S. High-performance amperometric biosensors and biofuel cell based on chitosan-strengthened cast thin films of chemically synthesized catecholamine polymers with glucose oxidase effectively entrapped. Biosens. Bioelectron., 2011, 26(5), 2311-2316.
[http://dx.doi.org/10.1016/j.bios.2010.09.058] [PMID: 21035322]
[127]
Wang, Z.; Liu, S.; Wu, P.; Cai, C. Detection of glucose based on direct electron transfer reaction of glucose oxidase immobilized on highly ordered polyaniline nanotubes. Anal. Chem., 2009, 81(4), 1638-1645.
[http://dx.doi.org/10.1021/ac802421h] [PMID: 19170516]
[128]
Ghatak, S.; Li, J.; Chan, Y.C.; Gnyawali, S.C.; Steen, E.; Yung, B.C.; Khanna, S.; Roy, S.; Lee, R.J.; Sen, C.K. AntihypoxamiR functionalized gramicidin lipid nanoparticles rescue against ischemic memory improving cutaneous wound healing. Nanomedicine, 2016, 12(7), 1827-1831.
[http://dx.doi.org/10.1016/j.nano.2016.03.004] [PMID: 27033464]
[129]
Li, J.; Ghatak, S.; El Masry, M.S.; Das, A.; Liu, Y.; Roy, S.; Lee, R.J.; Sen, C.K. Topical lyophilized targeted lipid nanoparticles in the restoration of skin barrier function following burn wound. Mol. Ther., 2018, 26(9), 2178-2188.
[http://dx.doi.org/10.1016/j.ymthe.2018.04.021] [PMID: 29802017]
[130]
Chen, S.A.; Chen, H.M.; Yao, Y.D.; Hung, C.F.; Tu, C.S.; Liang, Y.J. Topical treatment with anti-oxidants and Au nanoparticles promote healing of diabetic wound through receptor for advance glycation end-products. Eur. J. Pharm. Sci., 2012, 47(5), 875-883.
[http://dx.doi.org/10.1016/j.ejps.2012.08.018] [PMID: 22985875]
[131]
Chereddy, K.K.; Lopes, A.; Koussoroplis, S.; Payen, V.; Moia, C.; Zhu, H.; Sonveaux, P.; Carmeliet, P.; des Rieux, A.; Vandermeulen, G.; Préat, V. Combined effects of PLGA and vascular endothelial growth factor promote the healing of non-diabetic and diabetic wounds. Nanomedicine, 2015, 11(8), 1975-1984.
[http://dx.doi.org/10.1016/j.nano.2015.07.006] [PMID: 26238081]
[132]
Chereddy, K.K.; Coco, R.; Memvanga, P.B.; Ucakar, B.; des Rieux, A.; Vandermeulen, G.; Préat, V. Combined effect of PLGA and curcumin on wound healing activity. J. Control. Release, 2013, 171(2), 208-215.
[http://dx.doi.org/10.1016/j.jconrel.2013.07.015] [PMID: 23891622]
[133]
Hill, M.; Cunningham, R.N.; Hathout, R.M.; Johnston, C.; Hardy, J.G.; Migaud, M.E. Formulation of antimicrobial tobramycin loaded PLGA nanoparticles via complexation with AOT. J. Funct. Biomater., 2019, 10(2), 1-14.
[http://dx.doi.org/10.3390/jfb10020026] [PMID: 31200522]
[134]
Xie, Z.; Paras, C.B.; Weng, H.; Punnakitikashem, P.; Su, L.C.; Vu, K.; Tang, L.; Yang, J.; Nguyen, K.T. Dual growth factor releasing multi-functional nanofibers for wound healing. Acta Biomater., 2013, 9(12), 9351-9359.
[http://dx.doi.org/10.1016/j.actbio.2013.07.030] [PMID: 23917148]
[135]
Mohandas, A.; Anisha, B.S.; Chennazhi, K.P.; Jayakumar, R. Chitosan-hyaluronic acid/VEGF loaded fibrin nanoparticles composite sponges for enhancing angiogenesis in wounds. Colloids Surf. B Biointerfaces, 2015, 127, 105-113.
[http://dx.doi.org/10.1016/j.colsurfb.2015.01.024] [PMID: 25660093]
[136]
Lai, H.J.; Kuan, C.H.; Wu, H.C.; Tsai, J.C.; Chen, T.M.; Hsieh, D.J.; Wang, T.W. Tailored design of electrospun composite nanofibers with staged release of multiple angiogenic growth factors for chronic wound healing. Acta Biomater., 2014, 10(10), 4156-4166.
[http://dx.doi.org/10.1016/j.actbio.2014.05.001] [PMID: 24814882]
[137]
Zavan, B.; Vindigni, V.; Vezzù, K.; Zorzato, G.; Luni, C.; Abatangelo, G.; Elvassore, N.; Cortivo, R. Hyaluronan based porous nano-particles enriched with growth factors for the treatment of ulcers: A placebo-controlled study. J. Mater. Sci. Mater. Med., 2009, 20(1), 235-247.
[http://dx.doi.org/10.1007/s10856-008-3566-3] [PMID: 18758917]
[138]
McCall, R.L.; Sirianni, R.W. PLGA nanoparticles formed by single- or double-emulsion with vitamin E-TPGS. J. Vis. Exp., 2013, 82(82), 51015.
[http://dx.doi.org/10.3791/51015] [PMID: 24429733]
[139]
Thatipamula, R.; Palem, C.; Gannu, R.; Mudragada, S.; Yamsani, M. Formulation and in vitro characterization of domperidone loaded solid lipid nanoparticles and nanostructured lipid carriers. Daru, 2011, 19(1), 23-32.
[PMID: 22615636]
[140]
Trivedi, R.; Kompella, U.B. Nanomicellar formulations for sustained drug delivery: Strategies and underlying principles. Nanomedicine (Lond.), 2010, 5(3), 485-505.
[http://dx.doi.org/10.2217/nnm.10.10] [PMID: 20394539]
[141]
Xu, J.; Liu, Y.; Li, Y.; Wang, H.; Stewart, S.; Van der Jeught, K.; Agarwal, P.; Zhang, Y.; Liu, S.; Zhao, G.; Wan, J.; Lu, X.; He, X. Precise targeting of POLR2A as a therapeutic strategy for human triple negative breast cancer. Nat. Nanotechnol., 2019, 14(4), 388-397.
[http://dx.doi.org/10.1038/s41565-019-0381-6] [PMID: 30804480]
[142]
Hangge, P.; Stone, J.; Albadawi, H.; Zhang, Y.S.; Khademhosseini, A.; Oklu, R. Hemostasis and nanotechnology. Cardiovasc. Diagn. Ther., 2017, 7(3)(Suppl. 3), S267-S275.
[http://dx.doi.org/10.21037/cdt.2017.08.07] [PMID: 29399530]
[143]
Wang, T.; Nie, J.; Yang, D. Dextran and gelatin based photocrosslinkable tissue adhesive. Carbohydr. Polym., 2012, 90(4), 1428-1436.
[http://dx.doi.org/10.1016/j.carbpol.2012.07.011] [PMID: 22944399]
[144]
Tchemtchoua, V.T.; Atanasova, G.; Aqil, A.; Filée, P.; Garbacki, N.; Vanhooteghem, O.; Deroanne, C.; Noël, A.; Jérome, C.; Nusgens, B.; Poumay, Y.; Colige, A. Development of a chitosan nanofibrillar scaffold for skin repair and regeneration. Biomacromolecules, 2011, 12(9), 3194-3204.
[http://dx.doi.org/10.1021/bm200680q] [PMID: 21761871]
[145]
Kanmaz, D.; Toprakci, H.A.K.; Olmez, H.; Toprakci, O. Electrospun polylactic acid based nanofibers for biomedical applications. Mater Sci Res India., 2018, 15(3), 224-240.
[http://dx.doi.org/10.13005/msri/150304]
[146]
Aldayel, A.M.; Naguib, Y.W.; O’Mary, H.L.; Li, X.; Niu, M.; Ruwona, T.B.; Cui, Z. Acid-sensitive sheddable PEGylated PLGA nanoparticles increase the delivery of TNF-α siRNA in chronic inflammation sites. Mol. Ther. Nucleic Acids, 2016, 5(7), e340.
[http://dx.doi.org/10.1038/mtna.2016.39] [PMID: 27434685]
[147]
Choi, J.S.; Leong, K.W.; Yoo, H.S. In vivo wound healing of diabetic ulcers using electrospun nanofibers immobilized with human epidermal growth factor (EGF). Biomaterials, 2008, 29(5), 587-596.
[http://dx.doi.org/10.1016/j.biomaterials.2007.10.012] [PMID: 17997153]
[148]
Zamani, M.; Prabhakaran, M.P.; Ramakrishna, S. Advances in drug delivery via electrospun and electrosprayed nanomaterials. Int. J. Nanomedicine, 2013, 8, 2997-3017.
[http://dx.doi.org/10.2147/IJN.S43575] [PMID: 23976851]
[149]
Kim, H.S.; Yoo, H.S. In vitro and in vivo epidermal growth factor gene therapy for diabetic ulcers with electrospun fibrous meshes. Acta Biomater., 2013, 9(7), 7371-7380.
[http://dx.doi.org/10.1016/j.actbio.2013.03.018] [PMID: 23528498]
[150]
Augustine, R.; Zahid, A.A.; Hasan, A.; Wang, M.; Webster, T.J. CTGF loaded electrospun dual porous coreshell membrane for diabetic wound healing. Int. J. Nanomedicine, 2019, 14, 8573-8588.
[http://dx.doi.org/10.2147/IJN.S224047] [PMID: 31802870]
[151]
Miguel, S.P.; Sequeira, R.S.; Moreira, A.F.; Cabral, C.S.D.; Mendonça, A.G.; Ferreira, P.; Correia, I.J. An overview of electrospun membranes loaded with bioactive molecules for improving the wound healing process. Eur. J. Pharm. Biopharm., 2019, 139, 1-22.
[http://dx.doi.org/10.1016/j.ejpb.2019.03.010] [PMID: 30853442]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy