Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Perspective

Electrochemical Cell-based Biosensors for Biomedical Applications

Author(s): Dua Özsoylu, Torsten Wagner and Michael Josef Schöning*

Volume 22, Issue 9, 2022

Published on: 06 April, 2022

Page: [713 - 733] Pages: 21

DOI: 10.2174/1568026622666220304213617

Abstract

Electrochemical cell-based biosensors have attracted increasing interest within the last 15 years, with a large number of reports generally dealing with the sensors’ sensitivity, selectivity, stability, signal-to-noise ratio, spatiotemporal resolution, etc. However, only a few of them are now available as commercial products. In this review, technological advances, current challenges, and opportunities of electrochemical cell-based biosensors are presented. The article encompasses emerging studies on cell-based biological field-effect devices, cell-based impedimetric sensors, and cell-based microelectrode arrays, mainly focusing on the last five years (from 2016 to mid-2021). In addition, special attention lies in recent progress at the single-cellular level, including intracellular monitoring with high spatiotemporal resolution as well as integration into microfluidics for lab-ona- chip applications. Moreover, a comprehensive discussion on challenges and future perspectives will address the future potential of electrochemical cell-based biosensors.

Keywords: Cell-based biosensor, BioFED, LAPS, Impedimetric sensor, MEA, Graphene, Silicon nanowire, Single-cell analysis.

Next »
Graphical Abstract
[1]
Morales-Narváez, E.; Dincer, C. The impact of biosensing in a pandemic outbreak: COVID-19. Biosens. Bioelectron., 2020, 163, 112274.
[http://dx.doi.org/10.1016/j.bios.2020.112274] [PMID: 32421627]
[2]
Bhalla, N.; Pan, Y.; Yang, Z.; Payam, A.F. Opportunities and challenges for biosensors and nanoscale analytical tools for pandemics: COVID-19. ACS Nano, 2020, 14(7), 7783-7807.
[http://dx.doi.org/10.1021/acsnano.0c04421] [PMID: 32551559]
[3]
Poghossian, A.; Jablonski, M.; Molinnus, D.; Wege, C.; Schöning, M.J. Field-effect sensors for virus detection: From Ebola to SARS-CoV-2 and plant viral enhancers. Front. Plant Sci., 2020, 11, 598103.
[http://dx.doi.org/10.3389/fpls.2020.598103] [PMID: 33329662]
[4]
Gupta, N.; Renugopalakrishnan, V.; Liepmann, D.; Paulmurugan, R.; Malhotra, B.D. Cell-based biosensors: Recent trends, challenges and future perspectives. Biosens. Bioelectron., 2019, 141, 111435.
[http://dx.doi.org/10.1016/j.bios.2019.111435] [PMID: 31238280]
[5]
Poghossian, A.; Weil, M.; Cherstvy, A.G.; Schöning, M.J. Electrical monitoring of polyelectrolyte multilayer formation by means of capacitive field-effect devices. Anal. Bioanal. Chem., 2013, 405(20), 6425-6436.
[http://dx.doi.org/10.1007/s00216-013-6951-9] [PMID: 23579472]
[6]
Poghossian, A.; Schöning, M.J. Label-free sensing of biomolecules with field-effect devices for clinical applications. Electroanalysis, 2014, 26(6), 1197-1213.
[http://dx.doi.org/10.1002/elan.201400073]
[7]
Poghossian, A.; Bäcker, M.; Mayer, D.; Schöning, M.J. Gating capacitive field-effect sensors by the charge of nanoparticle/molecule hybrids. Nanoscale, 2015, 7(3), 1023-1031.
[http://dx.doi.org/10.1039/C4NR05987E] [PMID: 25470772]
[8]
Poghossian, A.; Schöning, M.J. Capacitive field-effect EIS chemical sensors and biosensors: A status report. Sensors (Basel), 2020, 20(19), 5639.
[http://dx.doi.org/10.3390/s20195639] [PMID: 33023133]
[9]
Poghossian, A.; Schöning, M.J. Recent progress in silicon-based biologically sensitive field-effect devices. Curr. Opin. Electrochem., 2021, 29, 100811.
[http://dx.doi.org/10.1016/j.coelec.2021.100811]
[10]
Bergveld, P. Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans. Biomed. Eng., 1970, 17(1), 70-71.
[http://dx.doi.org/10.1109/TBME.1970.4502688] [PMID: 5441220]
[11]
Sakata, T. Biologically coupled gate field-effect transistors meet in vitro diagnostics. ACS Omega, 2019, 4(7), 11852-11862.
[http://dx.doi.org/10.1021/acsomega.9b01629] [PMID: 31460295]
[12]
Yang, H.; Honda, M.; Saito, A.; Kajisa, T.; Yanase, Y.; Sakata, T. Nonoptical detection of allergic response with a cell-coupled gate field-effect transistor. Anal. Chem., 2017, 89(23), 12918-12923.
[http://dx.doi.org/10.1021/acs.analchem.7b03688] [PMID: 29116752]
[13]
Sakata, T.; Sugimoto, H.; Saito, A. Live monitoring of microenvironmental pH based on extracellular acidosis around cancer cells with cell-coupled gate ion-sensitive field-effect transistor. Anal. Chem., 2018, 90(21), 12731-12736.
[http://dx.doi.org/10.1021/acs.analchem.8b03070] [PMID: 30277057]
[14]
Satake, H.; Saito, A.; Sakata, T. Elucidation of interfacial pH behaviour at the cell/substrate nanogap for in situ monitoring of cellular respiration. Nanoscale, 2018, 10(21), 10130-10136.
[http://dx.doi.org/10.1039/C8NR02950D] [PMID: 29781490]
[15]
Sakata, T.; Saito, A.; Sugimoto, H. In situ measurement of autophagy under nutrient starvation based on interfacial pH sensing. Sci. Rep., 2018, 8(1), 8282.
[http://dx.doi.org/10.1038/s41598-018-26719-4] [PMID: 29844482]
[16]
Satake, H.; Sakata, T. Estimation of extracellular matrix production using a cultured-chondrocyte-based gate ion-sensitive field-effect transistor. Anal. Chem., 2019, 91(24), 16017-16022.
[http://dx.doi.org/10.1021/acs.analchem.9b04789] [PMID: 31749361]
[17]
Saito, A.; Sakata, T. Sperm-cultured gate ion-sensitive field-effect transistor for non-optical and live monitoring of sperm capacitation. Sensors (Basel), 2019, 19(8), 1784.
[http://dx.doi.org/10.3390/s19081784] [PMID: 31013976]
[18]
Sakata, T.; Nishimura, K.; Miyazawa, Y.; Saito, A.; Abe, H.; Kajisa, T. Ion sensitive transparent-gate transistor for visible cell sensing. Anal. Chem., 2017, 89(7), 3901-3908.
[http://dx.doi.org/10.1021/acs.analchem.6b02246] [PMID: 28298088]
[19]
Sharma, B.K.; Ahn, J-H. Graphene based field effect transistors: Efforts made towards flexible electronics. Solid-State Electron., 2013, 89, 177-188.
[http://dx.doi.org/10.1016/j.sse.2013.08.007]
[20]
Hess, L.H.; Seifert, M.; Garrido, J.A. Graphene transistors for bioelectronics. Proc. IEEE, 2013, 101(7), 1780-1792.
[http://dx.doi.org/10.1109/JPROC.2013.2261031]
[21]
Kuzum, D.; Takano, H.; Shim, E.; Reed, J.C.; Juul, H.; Richardson, A.G.; de Vries, J.; Bink, H.; Dichter, M.A.; Lucas, T.H.; Coulter, D.A.; Cubukcu, E.; Litt, B. Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging. Nat. Commun., 2014, 5(1), 5259.
[http://dx.doi.org/10.1038/ncomms6259] [PMID: 25327632]
[22]
Hess, L.H.; Hauf, M.V.; Seifert, M.; Speck, F.; Seyller, T.; Stutzmann, M.; Sharp, I.D.; Garrido, J.A. High-transconductance graphene solution-gated field effect transistors. Appl. Phys. Lett., 2011, 99(3), 033503.
[http://dx.doi.org/10.1063/1.3614445]
[23]
Veliev, F.; Han, Z.; Kalita, D.; Briançon-Marjollet, A.; Bouchiat, V.; Delacour, C. Recording spikes activity in cultured hippocampal neurons using flexible or transparent graphene transistors. Front. Neurosci., 2017, 11, 466.
[http://dx.doi.org/10.3389/fnins.2017.00466] [PMID: 28894412]
[24]
Kireev, D.; Brambach, M.; Seyock, S.; Maybeck, V.; Fu, W.; Wolfrum, B.; Offenhäusser, A. Graphene transistors for interfacing with cells: Towards a deeper understanding of liquid gating and sensitivity. Sci. Rep., 2017, 7(1), 6658.
[http://dx.doi.org/10.1038/s41598-017-06906-5] [PMID: 28751775]
[25]
Veliev, F.; Cresti, A.; Kalita, D.; Bourrier, A.; Belloir, T.; Briançon-Marjollet, A.; Albrieux, M.; Roche, S.; Bouchiat, V.; Delacour, C. Sensing ion channel in neuron networks with graphene field effect transistors. 2D Mater., 2018, 5, 045020.
[26]
Delacour, C.; Veliev, F.; Crozes, T.; Bres, G.; Minet, J.; Ionica, I.; Ernst, T.; Briançon-Marjollet, A.; Albrieux, M.; Villard, C. Neuron-gated silicon nanowire field effect transistors to follow single spike propagation within neuronal network. Adv. Eng. Mater., 2021, 23(4), 2001226.
[http://dx.doi.org/10.1002/adem.202001226]
[27]
Li, H.; Walsh, K.B.; Bayram, F.; Koley, G. Direct measurement of K+ ion efflux from neuronal cells using a graphene-based ion sensitive field effect transistor. RSC Advances, 2020, 10(62), 37728-37734.
[http://dx.doi.org/10.1039/D0RA05222A]
[28]
Zheng, C.; Jin, X.; Li, Y.; Mei, J.; Sun, Y.; Xiao, M.; Zhang, H.; Zhang, Z.; Zhang, G-J. Sensitive molybdenum disulfide based field effect transistor sensor for real-time monitoring of hydrogen peroxide. Sci. Rep., 2019, 9(1), 759.
[http://dx.doi.org/10.1038/s41598-018-36752-y] [PMID: 30679538]
[29]
Donnelly, M.; Mao, D.; Park, J.; Xu, G. Graphene field-effect transistors: The road to bioelectronics. J. Phys. D Appl. Phys., 2018, 51(49), 493001.
[http://dx.doi.org/10.1088/1361-6463/aadcca]
[30]
Spanu, A.; Martines, L.; Bonfiglio, A. Interfacing cells with organic transistors: A review of in vitro and in vivo applications. Lab Chip, 2021, 21(5), 795-820.
[http://dx.doi.org/10.1039/D0LC01007C] [PMID: 33565540]
[31]
Cramer, T.; Chelli, B.; Murgia, M.; Barbalinardo, M.; Bystrenova, E.; de Leeuw, D.M.; Biscarini, F. Organic ultra-thin film transistors with a liquid gate for extracellular stimulation and recording of electric activity of stem cell-derived neuronal networks. Phys. Chem. Chem. Phys., 2013, 15(11), 3897-3905.
[http://dx.doi.org/10.1039/c3cp44251a] [PMID: 23400105]
[32]
Zhang, Y.; Li, J.; Li, R.; Sbircea, D-T.; Giovannitti, A.; Xu, J.; Xu, H.; Zhou, G.; Bian, L.; McCulloch, I.; Zhao, N. Liquid-solid dual-gate organic transistors with tunable threshold voltage for cell sensing. ACS Appl. Mater. Interfaces, 2017, 9(44), 38687-38694.
[http://dx.doi.org/10.1021/acsami.7b09384] [PMID: 29039186]
[33]
Yang, F.; Riedel, R.; Del Pino, P.; Pelaz, B.; Said, A.H.; Soliman, M.; Pinnapireddy, S.R.; Feliu, N.; Parak, W.J.; Bakowsky, U.; Hampp, N. Real-time, label-free monitoring of cell viability based on cell adhesion measurements with an atomic force microscope. J. Nanobiotechnology, 2017, 15(1), 23.
[http://dx.doi.org/10.1186/s12951-017-0256-7] [PMID: 28330480]
[34]
Kyndiah, A.; Leonardi, F.; Tarantino, C.; Cramer, T.; Millan-Solsona, R.; Garreta, E.; Montserrat, N.; Mas-Torrent, M.; Gomila, G. Bioelectronic recordings of cardiomyocytes with accumulation mode electrolyte gated organic field effect transistors. Biosens. Bioelectron., 2020, 150, 111844.
[http://dx.doi.org/10.1016/j.bios.2019.111844] [PMID: 31740253]
[35]
Spanu, A.; Lai, S.; Cosseddu, P.; Tedesco, M.; Martinoia, S.; Bonfiglio, A. An organic transistor-based system for reference-less electrophysiological monitoring of excitable cells. Sci. Rep., 2015, 5(1), 8807.
[http://dx.doi.org/10.1038/srep08807] [PMID: 25744085]
[36]
Spanu, A.; Tedesco, M.T.; Martines, L.; Martinoia, S.; Bonfiglio, A. An organic neurophysiological tool for neuronal metabolic activity monitoring. APL Bioeng., 2018, 2(4), 046105.
[http://dx.doi.org/10.1063/1.5050170] [PMID: 31069327]
[37]
Chen, K-I.; Li, B-R.; Chen, Y-T. Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today, 2011, 6(2), 131-154.
[http://dx.doi.org/10.1016/j.nantod.2011.02.001]
[38]
Kim, S.; Keisham, B.; Berry, V. Cellular nano-transistor: An electronic-interface between nanoscale semiconductors and biological cells. Mater. Today Nano, 2020, 9, 100063.
[http://dx.doi.org/10.1016/j.mtnano.2019.100063]
[39]
Gao, J.; Liao, C.; Liu, S.; Xia, T.; Jiang, G. Nanotechnology: New opportunities for the development of patch-clamps. J. Nanobiotechnology, 2021, 19(1), 97.
[http://dx.doi.org/10.1186/s12951-021-00841-4] [PMID: 33794903]
[40]
Anand, A.; Liu, C.R.; Chou, A.C.; Hsu, W.H.; Ulaganathan, R.K.; Lin, Y.C.; Dai, C.A.; Tseng, F.G.; Pan, C.Y.; Chen, Y.T. Detection of K+ efflux from stimulated cortical neurons by an aptamer-modified silicon nanowire field-effect transistor. ACS Sens., 2017, 2(1), 69-79.
[http://dx.doi.org/10.1021/acssensors.6b00505] [PMID: 28722429]
[41]
Klinghammer, S.; Rauch, S.; Pregl, S.; Uhlmann, P.; Baraban, L.; Cuniberti, G. Surface modification of silicon nanowire based field effect transistors with stimuli responsive polymer brushes for biosensing applications. Micromachines (Basel), 2020, 11(3), 274.
[http://dx.doi.org/10.3390/mi11030274] [PMID: 32155794]
[42]
Kang, H.; Kim, J-Y.; Choi, Y-K.; Nam, Y. Feasibility study of extended-gate-type silicon nanowire field-effect transistors for neural recording. Sensors (Basel), 2017, 17(4), 705.
[http://dx.doi.org/10.3390/s17040705] [PMID: 28350370]
[43]
Dai, X.; Zhou, W.; Gao, T.; Liu, J.; Lieber, C.M. Three-dimensional mapping and regulation of action potential propagation in nanoelectronics-innervated tissues. Nat. Nanotechnol., 2016, 11(9), 776-782.
[http://dx.doi.org/10.1038/nnano.2016.96] [PMID: 27347837]
[44]
Chang, L.; Wang, Y-C.; Ershad, F.; Yang, R.; Yu, C.; Fan, Y. Wearable devices for single-cell sensing and transfection. Trends Biotechnol., 2019, 37(11), 1175-1188.
[http://dx.doi.org/10.1016/j.tibtech.2019.04.001] [PMID: 31072609]
[45]
Fu, T.M.; Hong, G.; Zhou, T.; Schuhmann, T.G.; Viveros, R.D.; Lieber, C.M. Stable long-term chronic brain mapping at the single-neuron level. Nat. Methods, 2016, 13(10), 875-882.
[http://dx.doi.org/10.1038/nmeth.3969] [PMID: 27571550]
[46]
Xie, H.; Li, Y-T.; Lei, Y-M.; Liu, Y-L.; Xiao, M-M.; Gao, C.; Pang, D-W.; Huang, W-H.; Zhang, Z-Y.; Zhang, G-J. Real-time monitoring of nitric oxide at single-cell level with porphyrin-functionalized graphene field-effect transistor biosensor. Anal. Chem., 2016, 88(22), 11115-11122.
[http://dx.doi.org/10.1021/acs.analchem.6b03208] [PMID: 27779853]
[47]
Xu, D.; Mo, J.; Xie, X.; Hu, N. In-cell nanoelectronics: Opening the door to intracellular electrophysiology. Nano-Micro Lett., 2021, 13(1), 127.
[http://dx.doi.org/10.1007/s40820-021-00655-x] [PMID: 34138366]
[48]
Zhang, Y.; Clausmeyer, J.; Babakinejad, B.; Córdoba, A.L.; Ali, T.; Shevchuk, A.; Takahashi, Y.; Novak, P.; Edwards, C.; Lab, M.; Gopal, S.; Chiappini, C.; Anand, U.; Magnani, L.; Coombes, R.C.; Gorelik, J.; Matsue, T.; Schuhmann, W.; Klenerman, D.; Sviderskaya, E.V.; Korchev, Y. Spearhead nanometric field-effect transistor sensors for single-cell analysis. ACS Nano, 2016, 10(3), 3214-3221.
[http://dx.doi.org/10.1021/acsnano.5b05211] [PMID: 26816294]
[49]
Tian, B.; Cohen-Karni, T.; Qing, Q.; Duan, X.; Xie, P.; Lieber, C.M. Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science, 2010, 329(5993), 830-834.
[http://dx.doi.org/10.1126/science.1192033] [PMID: 20705858]
[50]
Qing, Q.; Jiang, Z.; Xu, L.; Gao, R.; Mai, L.; Lieber, C.M. Free-standing kinked nanowire transistor probes for targeted intracellular recording in three dimensions. Nat. Nanotechnol., 2014, 9(2), 142-147.
[http://dx.doi.org/10.1038/nnano.2013.273] [PMID: 24336402]
[51]
Wu, Y.; Xiang, J.; Yang, C.; Lu, W.; Lieber, C.M. Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature, 2004, 430(6995), 61-65.
[http://dx.doi.org/10.1038/nature02674] [PMID: 15229596]
[52]
Zhao, Y.; Yao, J.; Xu, L.; Mankin, M.N.; Zhu, Y.; Wu, H.; Mai, L.; Zhang, Q.; Lieber, C.M. Shape-controlled deterministic assembly of nanowires. Nano Lett., 2016, 16(4), 2644-2650.
[http://dx.doi.org/10.1021/acs.nanolett.6b00292] [PMID: 26999059]
[53]
Zhao, Y.; You, S.S.; Zhang, A.; Lee, J-H.; Huang, J.; Lieber, C.M. Scalable ultrasmall three-dimensional nanowire transistor probes for intracellular recording. Nat. Nanotechnol., 2019, 14(8), 783-790.
[http://dx.doi.org/10.1038/s41565-019-0478-y] [PMID: 31263191]
[54]
Yoshinobu, T.; Schöning, M.J. Light-addressable potentiometric sensors for cell monitoring and biosensing. Curr. Opin. Electrochem., 2021, 28, 100727.
[http://dx.doi.org/10.1016/j.coelec.2021.100727]
[55]
Yoshinobu, T.; Miyamoto, K.I.; Werner, C.F.; Poghossian, A.; Wagner, T.; Schöning, M.J. Light-addressable potentiometric sensors for quantitative spatial imaging of chemical species. Annu. Rev. Anal. Chem. (Palo Alto, Calif.), 2017, 10(1), 225-246.
[http://dx.doi.org/10.1146/annurev-anchem-061516-045158] [PMID: 28375701]
[56]
Özsoylu, D.; Kizildag, S.; Schöning, M.J.; Wagner, T. Effect of plasma treatment on the sensor properties of a light-addressable potentiometric sensor (LAPS). Phys. Status Solidi., A Appl. Mater. Sci., 2019, 216(20), 1900259.
[http://dx.doi.org/10.1002/pssa.201900259]
[57]
Gu, Y.; Ju, C.; Li, Y.; Shang, Z.; Wu, Y.; Jia, Y.; Niu, Y. Detection of circulating tumor cells in prostate cancer based on carboxylated graphene oxide modified light addressable potentiometric sensor. Biosens. Bioelectron., 2015, 66, 24-31.
[http://dx.doi.org/10.1016/j.bios.2014.10.070] [PMID: 25460877]
[58]
Li, F.; Hu, S.; Zhang, R.; Gu, Y.; Li, Y.; Jia, Y. Porous graphene oxide enhanced aptamer specific circulating-tumor-cell sensing interface on light addressable potentiometric sensor: Clinical application and simulation. ACS Appl. Mater. Interfaces, 2019, 11(9), 8704-8709.
[http://dx.doi.org/10.1021/acsami.8b21101] [PMID: 30762335]
[59]
Du, L.; Wu, C.; Peng, H.; Zhao, L.; Huang, L.; Wang, P. Bioengineered olfactory sensory neuron-based biosensor for specific odorant detection. Biosens. Bioelectron., 2013, 40(1), 401-406.
[http://dx.doi.org/10.1016/j.bios.2012.08.035] [PMID: 23036770]
[60]
Wagner, T.; Vornholt, W.; Werner, C.F.; Yoshinobu, T.; Miyamoto, K.; Keusgen, M.; Schöning, M.J. Light-addressable potentiometric sensor (LAPS) combined with magnetic beads for pharmaceutical screening. Phys. Med., 2016, 1, 2-7.
[http://dx.doi.org/10.1016/j.phmed.2016.03.001]
[61]
Shaibani, P.M.; Etayash, H.; Naicker, S.; Kaur, K.; Thundat, T. Metabolic study of cancer cells using a pH sensitive hydrogel nanofiber light addressable potentiometric sensor. ACS Sens., 2017, 2(1), 151-156.
[http://dx.doi.org/10.1021/acssensors.6b00632] [PMID: 28722424]
[62]
Du, L.; Wang, J.; Chen, W.; Zhao, L.; Wu, C.; Wang, P. Dual functional extracellular recording using a light-addressable potentiometric sensor for bitter signal transduction. Anal. Chim. Acta, 2018, 1022, 106-112.
[http://dx.doi.org/10.1016/j.aca.2018.03.012] [PMID: 29729730]
[63]
Du, L.; Chen, W.; Tian, Y.; Zhu, P.; Wang, J.; Cai, W.; Wu, C. A light-addressable microfluidic device for label-free functional assays of bioengineered taste receptor cells via extracellular recording. Biophys. Rep., 2019, 5(2), 73-79.
[http://dx.doi.org/10.1007/s41048-019-0085-3]
[64]
Liang, T.; Wu, Q.; Gu, C.; Gan, Y.; Tu, J.; Hu, Q.; Wan, H.; Wang, P. Light addressable potentiometric sensor (LAPS) integrated microfluidic system for real-time cell acidification detection Proceedings of the 2019 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN),, 2019, pp. 1-4.
[http://dx.doi.org/10.1109/ISOEN.2019.8823216]
[65]
Liang, T.; Gu, C.; Gan, Y.; Wu, Q.; He, C.; Tu, J.; Pan, Y.; Qiu, Y.; Kong, L.; Wan, H.; Wang, P. Microfluidic chip system integrated with light addressable potentiometric sensor (LAPS) for real-time extracellular acidification detection. Sens. Actuators B Chem., 2019, 301, 127004.
[http://dx.doi.org/10.1016/j.snb.2019.127004]
[66]
Özsoylu, D.; Kizildag, S.; Schöning, M.J.; Wagner, T. Differential chemical imaging of extracellular acidification within microfluidic channels using a plasma-functionalized light-addressable potentiometric sensor (LAPS). Phys. Med., 2020, 10, 100030.
[http://dx.doi.org/10.1016/j.phmed.2020.100030]
[67]
Yang, C-M.; Yen, T.; Liu, H-L.; Lin, Y-J.; Lin, P-Y.; Tsui, L.S.; Chen, C-H.; Chen, Y-P.; Hsu, Y-C.; Lo, C-H.; Wu, T-R.; Lai, H-C.; Chin, W-C.; Pijanowska, D.G.; Hwang, T-L.; Lai, C-S. A real-time mirror-LAPS mini system for dynamic chemical imaging and cell acidification monitoring. Sens. Actuators B Chem., 2021, 341, 130003.
[http://dx.doi.org/10.1016/j.snb.2021.130003]
[68]
Özsoylu, D. Is&k, T.; Demir, M.M.; Schöning, M.J.; Wagner, T. Cryopreservation of a cell-based biosensor chip modified with elastic polymer fibers enabling ready-to-use on-site applications. Biosens. Bioelectron., 2021, 177, 112983.
[http://dx.doi.org/10.1016/j.bios.2021.112983] [PMID: 33535119]
[69]
Guo, Y.; Werner, C.F.; Canales, A.; Yu, L.; Jia, X.; Anikeeva, P.; Yoshinobu, T. Polymer-fiber-coupled field-effect sensors for label-free deep brain recordings. PLoS One, 2020, 15(1), e0228076.
[http://dx.doi.org/10.1371/journal.pone.0228076] [PMID: 31978197]
[70]
Wang, J.; Tian, Y.; Chen, F.; Chen, W.; Du, L.; He, Z.; Wu, C.; Zhang, D-W. Scanning electrochemical photometric sensors for label-free single-cell imaging and quantitative absorption analysis. Anal. Chem., 2020, 92(14), 9739-9744.
[http://dx.doi.org/10.1021/acs.analchem.0c01118] [PMID: 32437169]
[71]
Zhou, B.; Das, A.; Zhong, M.; Guo, Q.; Zhang, D-W.; Hing, K.A.; Sobrido, A.J.; Titirici, M-M.; Krause, S. Photoelectrochemical imaging system with high spatiotemporal resolution for visualizing dynamic cellular responses. Biosens. Bioelectron., 2021, 180, 113121.
[http://dx.doi.org/10.1016/j.bios.2021.113121] [PMID: 33706156]
[72]
Wu, F.; Zhou, B.; Wang, J.; Zhong, M.; Das, A.; Watkinson, M.; Hing, K.; Zhang, D-W.; Krause, S. Photoelectrochemical imaging system for the mapping of cell surface charges. Anal. Chem., 2019, 91(9), 5896-5903.
[http://dx.doi.org/10.1021/acs.analchem.9b00304] [PMID: 30986350]
[73]
Zhou, B.; Das, A.; Kappers, M.J.; Oliver, R.A.; Humphreys, C.J.; Krause, S. InGaN as a substrate for AC photoelectrochemical imaging. Sensors (Basel), 2019, 19(20), 4386.
[http://dx.doi.org/10.3390/s19204386] [PMID: 31614420]
[74]
Xu, Y.; Xie, X.; Duan, Y.; Wang, L.; Cheng, Z.; Cheng, J. A review of impedance measurements of whole cells. Biosens. Bioelectron., 2016, 77, 824-836.
[http://dx.doi.org/10.1016/j.bios.2015.10.027] [PMID: 26513290]
[75]
Kaushik, A.; Vabbina, P.K.; Atluri, V.; Shah, P.; Vashist, A.; Jayant, R.D.; Yandart, A.; Nair, M. Electrochemical monitoring-on-chip (E-MoC) of HIV-infection in presence of cocaine and therapeutics. Biosens. Bioelectron., 2016, 86, 426-431.
[http://dx.doi.org/10.1016/j.bios.2016.06.086] [PMID: 27419908]
[76]
Wei, M.; Zhang, Y.; Li, G.; Ni, Y.; Wang, S.; Zhang, F.; Zhang, R.; Yang, N.; Shao, S.; Wang, P. A cell viability assessment approach based on electrical wound-healing impedance characteristics. Biosens. Bioelectron., 2019, 124-125, 25-32.
[http://dx.doi.org/10.1016/j.bios.2018.09.080] [PMID: 30339975]
[77]
Ganganboina, A.B.; Dega, N.K.; Tran, H.L.; Darmonto, W.; Doong, R-A. Application of sulfur-doped graphene quantum dots@gold-carbon nanosphere for electrical pulse-induced impedimetric detection of glioma cells. Biosens. Bioelectron., 2021, 181, 113151.
[http://dx.doi.org/10.1016/j.bios.2021.113151] [PMID: 33740543]
[78]
Purtscher, M.; Rothbauer, M.; Kratz, S.R.A.; Bailey, A.; Lieberzeit, P.; Ertl, P. A microfluidic impedance-based extended infectivity assay: Combining retroviral amplification and cytopathic effect monitoring on a single lab-on-a-chip platform. Lab Chip, 2021, 21(7), 1364-1372.
[http://dx.doi.org/10.1039/D0LC01056A] [PMID: 33566877]
[79]
Egunov, A.I.; Dou, Z.; Karnaushenko, D.D.; Hebenstreit, F.; Kretschmann, N.; Akgün, K.; Ziemssen, T.; Karnaushenko, D.; Medina-Sánchez, M.; Schmidt, O.G. Impedimetric microfluidic sensor-in-a-tube for label-free immune cell analysis. Small, 2021, 17(5), e2002549.
[http://dx.doi.org/10.1002/smll.202002549] [PMID: 33448115]
[80]
Bischoff, I.; Hornburger, M.C.; Mayer, B.A.; Beyerle, A.; Wegener, J.; Fürst, R. Pitfalls in assessing microvascular endothelial barrier function: Impedance-based devices versus the classic macromolecular tracer assay. Sci. Rep., 2016, 6(1), 23671.
[http://dx.doi.org/10.1038/srep23671] [PMID: 27025965]
[81]
Wang, X.; Liu, A.; Xing, Y.; Duan, H.; Xu, W.; Zhou, Q.; Wu, H.; Chen, C.; Chen, B. Three-dimensional graphene biointerface with extremely high sensitivity to single cancer cell monitoring. Biosens. Bioelectron., 2018, 105, 22-28.
[http://dx.doi.org/10.1016/j.bios.2018.01.012] [PMID: 29346077]
[82]
Zou, L.; Wang, Q.; Tong, M.; Li, H.; Wang, J.; Hu, N.; Wang, P. Detection of diarrhetic shellfish poisoning toxins using high-sensitivity human cancer cell-based impedance biosensor. Sens. Actuators B Chem., 2016, 222, 205-212.
[http://dx.doi.org/10.1016/j.snb.2015.08.061]
[83]
Zhou, C.; Bette, S.; Babendreyer, A.; Hoffmann, C.; Gerlach, S.; Kremers, T.; Ludwig, A.; Hoffmann, B.; Merkel, R.; Uhlig, S.; Schnakenberg, U. Stretchable electrical cell-substrate impedance sensor platform for monitoring cell monolayers under strain. Sens. Actuators B Chem., 2021, 336, 129656.
[http://dx.doi.org/10.1016/j.snb.2021.129656]
[84]
Hempel, F.; Law, J.K.Y.; Nguyen, T.C.; Lanche, R.; Susloparova, A.; Vu, X.T.; Ingebrandt, S. PEDOT:PSS organic electrochemical transistors for electrical cell-substrate impedance sensing down to single cells. Biosens. Bioelectron., 2021, 180, 113101.
[http://dx.doi.org/10.1016/j.bios.2021.113101] [PMID: 33691239]
[85]
Demircan Yalcin, Y.; Luttge, R. Electrical monitoring approaches in 3-dimensional cell culture systems: Toward label-free, high spatiotemporal resolution, and high-content data collection in vitro. Organs-on-a-Chip, 2021, 3, 100006.
[http://dx.doi.org/10.1016/j.ooc.2021.100006]
[86]
Pan, Y.; Hu, N.; Wei, X.; Gong, L.; Zhang, B.; Wan, H.; Wang, P. 3D cell-based biosensor for cell viability and drug assessment by 3D electric cell/matrigel-substrate impedance sensing. Biosens. Bioelectron., 2019, 130, 344-351.
[http://dx.doi.org/10.1016/j.bios.2018.09.046] [PMID: 30266425]
[87]
Pan, Y.; Jiang, D.; Gu, C.; Qiu, Y.; Wan, H.; Wang, P. 3D microgroove electrical impedance sensing to examine 3D cell cultures for antineoplastic drug assessment. Microsyst. Nanoeng., 2020, 6(1), 23.
[http://dx.doi.org/10.1038/s41378-020-0130-x] [PMID: 34567638]
[88]
Thomas, C.A., Jr; Springer, P.A.; Loeb, G.E.; Berwald-Netter, Y.; Okun, L.M. A miniature microelectrode array to monitor the bioelectric activity of cultured cells. Exp. Cell Res., 1972, 74(1), 61-66.
[http://dx.doi.org/10.1016/0014-4827(72)90481-8] [PMID: 4672477]
[89]
Obien, M.E.J.; Deligkaris, K.; Bullmann, T.; Bakkum, D.J.; Frey, U. Revealing neuronal function through microelectrode array recordings. Front. Neurosci., 2015, 8, 423.
[http://dx.doi.org/10.3389/fnins.2014.00423] [PMID: 25610364]
[90]
Zhang, F.; Zhang, Q.; Zhang, D.; Lu, Y.; Liu, Q.; Wang, P. Biosensor analysis of natural and artificial sweeteners in intact taste epithelium. Biosens. Bioelectron., 2014, 54, 385-392.
[http://dx.doi.org/10.1016/j.bios.2013.11.020] [PMID: 24292144]
[91]
Wang, Q.; Fang, J.; Cao, D.; Li, H.; Su, K.; Hu, N.; Wang, P. An improved functional assay for rapid detection of marine toxins, saxitoxin and brevetoxin using a portable cardiomyocyte-based potential biosensor. Biosens. Bioelectron., 2015, 72, 10-17.
[http://dx.doi.org/10.1016/j.bios.2015.04.028] [PMID: 25951085]
[92]
Pedraza, E. Karaji& A.; Raoux, M.; Perrier, R.; Pirog, A.; Lebreton, F.; Arbault, S.; Gaitan, J.; Renaud, S.; Kuhn, A.; Lang, J. Guiding pancreatic beta cells to target electrodes in a whole-cell biosensor for diabetes. Lab Chip, 2015, 15(19), 3880-3890.
[http://dx.doi.org/10.1039/C5LC00616C] [PMID: 26282013]
[93]
Zhang, W.; Chen, P.; Zhou, L.; Qin, Z.; Gao, K.; Yao, J.; Li, C.; Wang, P. A biomimetic bioelectronic tongue: A switch for on- and off- response of acid sensations. Biosens. Bioelectron., 2017, 92, 523-528.
[http://dx.doi.org/10.1016/j.bios.2016.10.069] [PMID: 27836602]
[94]
Gao, K.; Gao, F.; Du, L.; He, C.; Wan, H.; Wang, P. Integrated olfaction, gustation and toxicity detection by a versatile bioengineered cell-based biomimetic sensor. Bioelectrochemistry, 2019, 128, 1-8.
[http://dx.doi.org/10.1016/j.bioelechem.2019.02.009] [PMID: 30861388]
[95]
Trantidou, T.; Terracciano, C.M.; Kontziampasis, D.; Humphrey, E.J.; Prodromakis, T. Biorealistic cardiac cell culture platforms with integrated monitoring of extracellular action potentials. Sci. Rep., 2015, 5(1), 11067.
[http://dx.doi.org/10.1038/srep11067] [PMID: 26053434]
[96]
Gilchrist, K.H.; Lewis, G.F.; Gay, E.A.; Sellgren, K.L.; Grego, S. High-throughput cardiac safety evaluation and multi-parameter arrhythmia profiling of cardiomyocytes using microelectrode arrays. Toxicol. Appl. Pharmacol., 2015, 288(2), 249-257.
[http://dx.doi.org/10.1016/j.taap.2015.07.024] [PMID: 26232523]
[97]
Anh-Nguyen, T.; Tiberius, B.; Pliquett, U.; Urban, G.A. An impedance biosensor for monitoring cancer cell attachment, spreading and drug-induced apoptosis. Sens. Actuators A Phys., 2016, 241, 231-237.
[http://dx.doi.org/10.1016/j.sna.2016.02.035]
[98]
Jans, D.; Callewaert, G.; Krylychkina, O.; Hoffman, L.; Gullo, F.; Prodanov, D.; Braeken, D. Action potential-based MEA platform for in vitro screening of drug-induced cardiotoxicity using human iPSCs and rat neonatal myocytes. J. Pharmacol. Toxicol. Methods, 2017, 87, 48-52.
[http://dx.doi.org/10.1016/j.vascn.2017.05.003] [PMID: 28549786]
[99]
Blinova, K.; Dang, Q.; Millard, D.; Smith, G.; Pierson, J.; Guo, L.; Brock, M.; Lu, H.R.; Kraushaar, U.; Zeng, H.; Shi, H.; Zhang, X.; Sawada, K.; Osada, T.; Kanda, Y.; Sekino, Y.; Pang, L.; Feaster, T.K.; Kettenhofen, R.; Stockbridge, N.; Strauss, D.G.; Gintant, G. International multisite study of human-induced pluripotent stem cell-derived cardiomyocytes for drug proarrhythmic potential assessment. Cell Rep., 2018, 24(13), 3582-3592.
[http://dx.doi.org/10.1016/j.celrep.2018.08.079] [PMID: 30257217]
[100]
Izumi-Nakaseko, H.; Hagiwara-Nagasawa, M.; Naito, A.T.; Goto, A.; Chiba, K.; Sekino, Y.; Kanda, Y.; Sugiyama, A. Application of human induced pluripotent stem cell-derived cardiomyocytes sheets with microelectrode array system to estimate antiarrhythmic properties of multi-ion channel blockers. J. Pharmacol. Sci., 2018, 137(4), 372-378.
[http://dx.doi.org/10.1016/j.jphs.2018.07.011] [PMID: 30126708]
[101]
Caluori, G.; Pribyl, J.; Pesl, M.; Jelinkova, S.; Rotrekl, V.; Skladal, P.; Raiteri, R. Non-invasive electromechanical cell-based biosensors for improved investigation of 3D cardiac models. Biosens. Bioelectron., 2019, 124-125, 129-135.
[http://dx.doi.org/10.1016/j.bios.2018.10.021] [PMID: 30366257]
[102]
Garma, L.D.; Ferrari, L.M.; Scognamiglio, P.; Greco, F.; Santoro, F. Inkjet-printed PEDOT:PSS multi-electrode arrays for low-cost in vitro electrophysiology. Lab Chip, 2019, 19(22), 3776-3786.
[http://dx.doi.org/10.1039/C9LC00636B] [PMID: 31616896]
[103]
Fleischer, S.; Jahnke, H-G.; Fritsche, E.; Girard, M.; Robitzki, A.A. Comprehensive human stem cell differentiation in a 2D and 3D mode to cardiomyocytes for long-term cultivation and multiparametric monitoring on a multimodal microelectrode array setup. Biosens. Bioelectron., 2019, 126, 624-631.
[http://dx.doi.org/10.1016/j.bios.2018.10.061] [PMID: 30508787]
[104]
Soscia, D.A.; Lam, D.; Tooker, A.C.; Enright, H.A.; Triplett, M.; Karande, P.; Peters, S.K.G.; Sales, A.P.; Wheeler, E.K.; Fischer, N.O. A flexible 3-dimensional microelectrode array for in vitro brain models. Lab Chip, 2020, 20(5), 901-911.
[http://dx.doi.org/10.1039/C9LC01148J] [PMID: 31976505]
[105]
Abbott, J.; Ye, T.; Krenek, K.; Gertner, R.S.; Wu, W.; Jung, H.S.; Ham, D.; Park, H. Extracellular recording of direct synaptic signals with a CMOS-nanoelectrode array. Lab Chip, 2020, 20(17), 3239-3248.
[http://dx.doi.org/10.1039/D0LC00553C] [PMID: 32756639]
[106]
Susloparova, A.; Halliez, S.; Begard, S.; Colin, M.; Buée, L.; Pecqueur, S.; Alibart, F.; Thomy, V.; Arscott, S.; Pallecchi, E.; Coffinier, Y. Low impedance and highly transparent microelectrode arrays (MEA) for in vitro neuron electrical activity probing. Sens. Actuators B Chem., 2021, 327, 128895.
[http://dx.doi.org/10.1016/j.snb.2020.128895]
[107]
Middya, S.; Curto, V.F. Fernández-Villegas, A.; Robbins, M.; Gurke, J.; Moonen, E.J.M.; Kaminski Schierle, G.S.; Malliaras, G.G. Microelectrode arrays for simultaneous electrophysiology and advanced optical microscopy. Adv. Sci. (Weinh.), 2021, 8(13), 2004434.
[http://dx.doi.org/10.1002/advs.202004434]
[108]
Cui, H.F.; Ye, J.S.; Chen, Y.; Chong, S.C.; Sheu, F.S. Microelectrode array biochip: Tool for in vitro drug screening based on the detection of a drug effect on dopamine release from PC12 cells. Anal. Chem., 2006, 78(18), 6347-6355.
[http://dx.doi.org/10.1021/ac060018d] [PMID: 16970308]
[109]
Song, Y.; Lin, N.; Liu, C.; Jiang, H.; Xing, G.; Cai, X. A novel dual mode microelectrode array for neuroelectrical and neurochemical recording in vitro. Biosens. Bioelectron., 2012, 38(1), 416-420.
[http://dx.doi.org/10.1016/j.bios.2012.05.011] [PMID: 22672764]
[110]
Chuang, M-C.; Lai, H-Y.; Annie Ho, J.A.; Chen, Y-Y. Multifunctional microelectrode array (mMEA) chip for neural-electrical and neural-chemical interfaces: Characterization of comb interdigitated electrode towards dopamine detection. Biosens. Bioelectron., 2013, 41, 602-607.
[http://dx.doi.org/10.1016/j.bios.2012.09.030] [PMID: 23083904]
[111]
Wang, L.; Xu, S-W.; Xu, H-R.; Song, Y-L.; Liu, J-T.; Luo, J-P.; Cai, X-X. Spatio-temporally resolved measurement of quantal exocytosis from single cells using microelectrode array modified with Poly l-lysine and poly dopamine. Chin. Chem. Lett., 2016, 27(5), 738-744.
[http://dx.doi.org/10.1016/j.cclet.2016.01.018]
[112]
Miccoli, B.; Lopez, C.M.; Goikoetxea, E.; Putzeys, J.; Sekeri, M.; Krylychkina, O.; Chang, S-W.; Firrincieli, A.; Andrei, A.; Reumers, V.; Braeken, D. High-density electrical recording and impedance imaging with a multi-modal CMOS multi-electrode array chip. Front. Neurosci., 2019, 13, 641.
[http://dx.doi.org/10.3389/fnins.2019.00641] [PMID: 31293372]
[113]
Müller, J.; Ballini, M.; Livi, P.; Chen, Y.; Radivojevic, M.; Shadmani, A.; Viswam, V.; Jones, I.L.; Fiscella, M.; Diggelmann, R.; Stettler, A.; Frey, U.; Bakkum, D.J.; Hierlemann, A. High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels. Lab Chip, 2015, 15(13), 2767-2780.
[http://dx.doi.org/10.1039/C5LC00133A] [PMID: 25973786]
[114]
Ronchi, S.; Buccino, A.P.; Prack, G.; Kumar, S.S.; Schröter, M.; Fiscella, M.; Hierlemann, A. Electrophysiological phenotype characterization of human iPSC-derived neuronal cell lines by means of high-density microelectrode arrays. Adv. Biol., 2021, 5(3), e2000223.
[http://dx.doi.org/10.1002/adbi.202000223] [PMID: 33729694]
[115]
Kim, S-M.; Kim, N.; Kim, Y.; Baik, M-S.; Yoo, M.; Kim, D.; Lee, W-J.; Kang, D-H.; Kim, S.; Lee, K.; Yoon, M-H. High-performance, polymer-based direct cellular interfaces for electrical stimulation and recording. NPG Asia Mater., 2018, 10(4), 255-265.
[http://dx.doi.org/10.1038/s41427-018-0014-9]
[116]
Frey, U.; Sedivy, J.; Heer, F.; Pedron, R.; Ballini, M.; Mueller, J.; Bakkum, D.; Hafizovic, S.; Faraci, F.D.; Greve, F.; Kirstein, K-U.; Hierlemann, A. Switch-matrix-based high-density microelectrode array in CMOS technology. IEEE J. Solid-State Circuits, 2010, 45(2), 467-482.
[http://dx.doi.org/10.1109/JSSC.2009.2035196]
[117]
Abbott, J.; Ye, T.; Qin, L.; Jorgolli, M.; Gertner, R.S.; Ham, D.; Park, H. CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging. Nat. Nanotechnol., 2017, 12(5), 460-466.
[http://dx.doi.org/10.1038/nnano.2017.3] [PMID: 28192391]
[118]
Abbott, J.; Ye, T.; Krenek, K.; Gertner, R.S.; Ban, S.; Kim, Y.; Qin, L.; Wu, W.; Park, H.; Ham, D. A nanoelectrode array for obtaining intracellular recordings from thousands of connected neurons. Nat. Biomed. Eng., 2020, 4(2), 232-241.
[http://dx.doi.org/10.1038/s41551-019-0455-7] [PMID: 31548592]
[119]
Yoo, J.; Kwak, H.; Kwon, J.; Ha, G.E.; Lee, E.H.; Song, S.; Na, J.; Lee, H-J.; Lee, J.; Hwangbo, A.; Cha, E.; Chae, Y.; Cheong, E.; Choi, H-J. Long-term intracellular recording of optogenetically-induced electrical activities using vertical nanowire multi electrode array. Sci. Rep., 2020, 10(1), 4279.
[http://dx.doi.org/10.1038/s41598-020-61325-3] [PMID: 32152369]
[120]
Rabieh, N.; Ojovan, S.M.; Shmoel, N.; Erez, H.; Maydan, E.; Spira, M.E. On-chip, multisite extracellular and intracellular recordings from primary cultured skeletal myotubes. Sci. Rep., 2016, 6(1), 36498.
[http://dx.doi.org/10.1038/srep36498] [PMID: 27812002]
[121]
Desbiolles, B.X.E.; de Coulon, E.; Bertsch, A.; Rohr, S.; Renaud, P. Intracellular recording of cardiomyocyte action potentials with nanopatterned volcano-shaped microelectrode arrays. Nano Lett., 2019, 19(9), 6173-6181.
[http://dx.doi.org/10.1021/acs.nanolett.9b02209] [PMID: 31424942]
[122]
Teixeira, H.; Dias, C.; Aguiar, P.; Ventura, J. Gold-mushroom microelectrode arrays and the quest for intracellular-like recordings: Perspectives and outlooks. Adv. Mater. Technol., 2021, 6(2), 2000770.
[http://dx.doi.org/10.1002/admt.202000770]
[123]
Liu, R.; Chen, R.; Elthakeb, A.T.; Lee, S.H.; Hinckley, S.; Khraiche, M.L.; Scott, J.; Pre, D.; Hwang, Y.; Tanaka, A.; Ro, Y.G.; Matsushita, A.K.; Dai, X.; Soci, C.; Biesmans, S.; James, A.; Nogan, J.; Jungjohann, K.L.; Pete, D.V.; Webb, D.B.; Zou, Y.; Bang, A.G.; Dayeh, S.A. High density individually addressable nanowire arrays record intracellular activity from primary rodent and human stem cell derived neurons. Nano Lett., 2017, 17(5), 2757-2764.
[http://dx.doi.org/10.1021/acs.nanolett.6b04752] [PMID: 28384403]
[124]
Mavrikou, S.; Moschopoulou, G.; Tsekouras, V.; Kintzios, S. Development of a portable, ultra-rapid and ultra-sensitive cell-based biosensor for the direct detection of the SARS-CoV-2 S1 spike protein antigen. Sensors (Basel), 2020, 20(11), 3121.
[http://dx.doi.org/10.3390/s20113121] [PMID: 32486477]
[125]
Mavrikou, S.; Tsekouras, V.; Hatziagapiou, K.; Paradeisi, F.; Bakakos, P.; Michos, A.; Koutsoukou, A.; Konstantellou, E.; Lambrou, G.I.; Koniari, E.; Tatsi, E-B.; Papaparaskevas, J.; Iliopoulos, D.; Chrousos, G.P.; Kintzios, S. Clinical application of the novel cell-based biosensor for the ultra-rapid detection of the SARS-CoV-2 S1 spike protein antigen: A practical approach. Biosensors (Basel), 2021, 11(7), 224.
[http://dx.doi.org/10.3390/bios11070224] [PMID: 34356695]
[126]
Kumar, A.; Goyal, A.K.; Gupta, N. Review—thin-film transistors (TFTs) for highly sensitive biosensing applications: A review. ECS J. Solid State Sci. Technol., 2020, 9(11), 115022.
[http://dx.doi.org/10.1149/2162-8777/abb2b3]
[127]
Chen, L.; Yan, C.; Zheng, Z. Functional polymer surfaces for controlling cell behaviors. Mater. Today, 2018, 21(1), 38-59.
[http://dx.doi.org/10.1016/j.mattod.2017.07.002]
[128]
Ahn, H.T.; Jang, I.S.; Dang, T.V.; Kim, Y.H.; Lee, D.H.; Choi, H.S.; Yu, B.J.; Kim, M.I. Effective cryopreservation of a bioluminescent auxotrophic Escherichia coli-based amino acid array to enable long-term ready-to-use applications. Biosensors (Basel), 2021, 11(8), 252.
[http://dx.doi.org/10.3390/bios11080252] [PMID: 34436054]

© 2024 Bentham Science Publishers | Privacy Policy