Generic placeholder image

Current Drug Research Reviews

Editor-in-Chief

ISSN (Print): 2589-9775
ISSN (Online): 2589-9783

Editorial

JAK Inhibitors as a Barrier to the Destructive Cytokine Storm in COVID-19

Author(s): Ali Saeedi-Boroujeni‬ and Majid Asadi-Samani*

Volume 14, Issue 2, 2022

Published on: 18 April, 2022

Page: [85 - 87] Pages: 3

DOI: 10.2174/2589977514666220304203816

[1]
Yang L, Liu S, Liu J, et al. COVID-19: Immunopathogenesis and immunotherapeutics. Signal Transduct Target Ther 2020; 5(1): 128.
[http://dx.doi.org/10.1038/s41392-020-00243-2] [PMID: 32712629]
[2]
Sabbatino F, Conti V, Franci G, et al. PD-L1 dysregulation in COVID-19 patients. Front Immunol 2021; 12: 695242.
[http://dx.doi.org/10.3389/fimmu.2021.695242] [PMID: 34163490]
[3]
Diao B, Wang C, Tan Y, et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front Immunol 2020; 11: 827.
[PMID: 32425950]
[4]
Vaninov N. In the eye of the COVID-19 cytokine storm. Nat Rev Immunol 2020; 20(5): 277.
[http://dx.doi.org/10.1038/s41577-020-0305-6] [PMID: 32249847]
[5]
Thepmankorn P, Bach J, Lasfar A, et al. Cytokine storm induced by SARS-CoV-2 infection: The spectrum of its neurological manifesta-tions. Cytokine 2021; 138: 155404.
[http://dx.doi.org/10.1016/j.cyto.2020.155404] [PMID: 33360025]
[6]
Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol 2020; 20(6): 363-74.
[http://dx.doi.org/10.1038/s41577-020-0311-8] [PMID: 32346093]
[7]
García LF. Immune response, inflammation, and the clinical spectrum of COVID-19. Front Immunol 2020; 11: 1441.
[http://dx.doi.org/10.3389/fimmu.2020.01441] [PMID: 32612615]
[8]
Shah VK, Firmal P, Alam A, Ganguly D, Chattopadhyay S. Overview of immune response during SARS-CoV-2 infection: Lessons from the past. Front Immunol 2020; 11: 1949.
[http://dx.doi.org/10.3389/fimmu.2020.01949] [PMID: 32849654]
[9]
Hui X, Zhang L, Cao L, et al. SARS-CoV-2 promote autophagy to suppress type I interferon response. Signal Transduct Target Ther 2021; 6(1): 180.
[http://dx.doi.org/10.1038/s41392-021-00574-8] [PMID: 33966045]
[10]
Zhao Z, Wei Y, Tao C. An enlightening role for cytokine storm in coronavirus infection. Clin Immunol 2021; 222: 108615.
[http://dx.doi.org/10.1016/j.clim.2020.108615] [PMID: 33203513]
[11]
Cameron MJ, Bermejo-Martin JF, Danesh A, Muller MP, Kelvin DJ. Human immunopathogenesis of severe acute respiratory syndrome (SARS). Virus Res 2008; 133(1): 13-9.
[http://dx.doi.org/10.1016/j.virusres.2007.02.014] [PMID: 17374415]
[12]
Fajgenbaum DC, June CH. Cytokine storm. N Engl J Med 2020; 383(23): 2255-73.
[http://dx.doi.org/10.1056/NEJMra2026131] [PMID: 33264547]
[13]
Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR, Katze MG. Into the eye of the cytokine storm. Microbiol Mol Biol Rev 2012; 76(1): 16-32.
[http://dx.doi.org/10.1128/MMBR.05015-11] [PMID: 22390970]
[14]
Rizk JG, Kalantar-Zadeh K, Mehra MR, et al. Pharmaco-immunomodulatory therapy in COVID-19. Drugs 2020; 80: 1-26.
[15]
Prescott HC, Rice TW. Corticosteroids in COVID-19 ARDS: evidence and hope during the pandemic. JAMA 2020; 324(13): 1292-5.
[http://dx.doi.org/10.1001/jama.2020.16747] [PMID: 32876693]
[16]
Veronese N, Demurtas J, Yang L, et al. Use of corticosteroids in coronavirus disease 2019 pneumonia: A systematic review of the litera-ture. Front Med (Lausanne) 2020; 7: 170.
[http://dx.doi.org/10.3389/fmed.2020.00170] [PMID: 32391369]
[17]
Nile SH, Nile A, Qiu J, Li L, Jia X, Kai G. COVID-19: Pathogenesis, cytokine storm and therapeutic potential of interferons. Cytokine Growth Factor Rev 2020; 53: 66-70.
[http://dx.doi.org/10.1016/j.cytogfr.2020.05.002] [PMID: 32418715]
[18]
Bronte V, Ugel S, Tinazzi E, et al. Baricitinib restrains the immune dysregulation in patients with severe COVID-19. J Clin Invest 2020; 130(12): 6409-16.
[http://dx.doi.org/10.1172/JCI141772] [PMID: 32809969]
[19]
Rodriguez-Garcia JL, Sanchez-Nievas G, Arevalo-Serrano J, Garcia-Gomez C, Jimenez-Vizuete JM, Martinez-Alfaro E. Baricitinib im-proves respiratory function in patients treated with corticosteroids for SARS-CoV-2 pneumonia: An observational cohort study. Rheumatology (Oxford) 2021; 60(1): 399-407.
[http://dx.doi.org/10.1093/rheumatology/keaa587] [PMID: 33020836]
[20]
La Rosée F, Bremer HC, Gehrke I, et al. The Janus kinase 1/2 inhibitor ruxolitinib in COVID-19 with severe systemic hyperinflammation. Leukemia 2020; 34(7): 1805-15.
[http://dx.doi.org/10.1038/s41375-020-0891-0] [PMID: 32518419]
[21]
Heidel F, Hochhaus A. Holding CoVID in check through JAK? The MPN-approved compound ruxolitinib as a potential strategy to treat SARS-CoV-2 induced systemic hyperinflammation. Leukemia 2020; 34(7): 1723-5.
[http://dx.doi.org/10.1038/s41375-020-0898-6] [PMID: 32528040]
[22]
Gozzetti A, Capochiani E, Bocchia M. The Janus kinase 1/2 inhibitor ruxolitinib in COVID-19. Leukemia 2020; 34(10): 2815-6.
[http://dx.doi.org/10.1038/s41375-020-01038-8] [PMID: 32879427]
[23]
Neubauer A, Wiesmann T, Vogelmeier CF, et al. Ruxolitinib for the treatment of SARS-CoV-2 induced acute respiratory distress syn-drome (ARDS). Leukemia 2020; 34(8): 2276-8.
[http://dx.doi.org/10.1038/s41375-020-0907-9] [PMID: 32555296]
[24]
Chen CX, Wang JJ, Li H, Yuan LT, Gale RP, Liang Y. JAK-inhibitors for coronavirus disease-2019 (COVID-19): A meta-analysis. Leukemia 2021; 35(9): 2616-20.
[http://dx.doi.org/10.1038/s41375-021-01266-6] [PMID: 33990684]

© 2024 Bentham Science Publishers | Privacy Policy