Generic placeholder image

Current Drug Discovery Technologies

Editor-in-Chief

ISSN (Print): 1570-1638
ISSN (Online): 1875-6220

Review Article

Genus Zanthoxylum as Sources of Drugs for Treatment of Tropical Parasitic Diseases

Author(s): Kunal Patil and Rashmi Mallya*

Volume 19, Issue 3, 2022

Published on: 11 April, 2022

Article ID: e040322201773 Pages: 13

DOI: 10.2174/1570163819666220304203504

Price: $65

Abstract

The tropical parasitic infections account for more than 2 billion infections and cause substantial morbidity and mortality, and account for several million deaths every year. Majorly parasitic infections in humans and animals are caused by protozoa and helminths. Chronic infections in the host can cause retardation, impairment of cognitive skills, development in young children and weaken the immune system. The burden is felt to a greater extent in developing countries due to poverty, inaccessibility to medicines and resistance observed to drugs. Thus, human health continues to be severely harmed by parasitic infections. Medicinal plants have received much attention as alternative sources of drugs. Zanthoxylum genus has been used ethnobotanically as an antiparasitic agent and the phytoconstituents in Zanthoxylum, show a wide variety of chemical substances with proven pharmacological actions such as alkaloids (isoquinolines and quinolines responsible for antitumor activity, antimalarial, antioxidant and antimicrobial actions), lignans, coumarins (antibacterial, antitumour, vasodilatory and anticoagulant activities), alkamide (strong insecticidal properties, anthelminthic, antitussive and analgesic anti antimalarial property). Therefore, this article is an attempt to review the existing literature that emphasizes on potential of genus Zanthoxylum as a source of lead compounds for the treatment of parasitic diseases.

Keywords: Zanthoxylum, anti-parasitic, anti-malarial, alkaloids, tropical parasitic diseases, helminthiasis.

Graphical Abstract
[1]
Watts C. Neglected tropical diseases: A DFID perspective. PLoS Negl Trop Dis 2017; 11(4): e0005492.
[http://dx.doi.org/10.1371/journal.pntd.0005492 ] [PMID: 28426666]
[2]
Kappagoda S, Singh U, Blackburn BG. Antiparasitic therapy. Mayo Clin Proc 2011; 86(6): 561-83.
[http://dx.doi.org/10.4065/mcp.2011.0203 ] [PMID: 21628620]
[3]
Andrews KT, Fisher G, Skinner-Adams TS. Drug repurposing and human parasitic protozoan diseases. Int J Parasitol Drugs Drug Resist 2014; 4(2): 95-111.
[http://dx.doi.org/10.1016/j.ijpddr.2014.02.002 ] [PMID: 25057459]
[4]
Ackers JP. Intestinal parasites in Indian children: A continuing burden. Trop Parasitol 2011; 1(2): 50-1.
[http://dx.doi.org/10.4103/2229-5070.86921 ] [PMID: 23509674]
[5]
de Koning HP. Drug resistance in protozoan parasites. Emerg Top Life Sci 2017; 1(6): 627-32.
[http://dx.doi.org/10.1042/ETLS20170113 ] [PMID: 33525852]
[6]
Pink R, Hudson A, Mouriès MA, Bendig M. Opportunities and challenges in antiparasitic drug discovery. Nat Rev Drug Discov 2005; 4(9): 727-40.
[http://dx.doi.org/10.1038/nrd1824 ] [PMID: 16138106]
[7]
Wink M. Medicinal plants: A source of anti-parasitic secondary metabolites. Molecules 2012; 17(11): 12771-91.
[http://dx.doi.org/10.3390/molecules171112771 ] [PMID: 23114614]
[8]
Medhi K, Deka M, Bhau BS. The genus Zanthoxylum-A stockpile of biological and ethnomedicinal properties. Open Access Sci Rep 2013; 2(3): 1-8.
[9]
Tiuman TS, Santos AO, Ueda-Nakamura T, Filho BP, Nakamura CV. Recent advances in leishmaniasis treatment. Int J Infect Dis 2011; 15(8): e525-32.
[http://dx.doi.org/10.1016/j.ijid.2011.03.021 ] [PMID: 21605997]
[10]
Pereira SS, Lopes LS, Marques RB, et al. Antinociceptive effect of Zanthoxylum rhoifolium Lam. (Rutaceae) in models of acute pain in rodents. J Ethnopharmacol 2010; 129(2): 227-31.
[http://dx.doi.org/10.1016/j.jep.2010.03.009 ] [PMID: 20304040]
[11]
Castillo D, Sauvain M, Rivaud M, Jullian V. In vitro and in vivo activity of benzo[c]phenanthridines against Leishmania amazonensis. Planta Med 2014; 80(11): 902-6.
[http://dx.doi.org/10.1055/s-0034-1382826 ] [PMID: 25029171]
[12]
Melo B, Leitao JM, Oliveira LG, et al. Inhibitory effects of Zanthoxylum rhoifolium Lam.(Rutaceae) against the infection and infectivity of macrophages by Leishmania amazonensis. An Acad Bras Cienc 2016; 15(88): 1851-61.
[http://dx.doi.org/10.1590/0001-3765201620150131]
[13]
Ferreira ME, Rojas de Arias A, Torres de Ortiz S, et al. Leishmanicidal activity of two canthin-6-one alkaloids, two major constituents of Zanthoxylum chiloperone var. angustifolium. J Ethnopharmacol 2002; 80(2-3): 199-202.
[http://dx.doi.org/10.1016/S0378-8741(02)00025-9 ] [PMID: 12007711]
[14]
Costa RS, Souza Filho OP, Júnior OCSD, et al. In vitro antileishmanial and antitrypanosomal activity of compounds isolated from the roots of Zanthoxylum tingoassuiba. Rev Bras Farmacogn 2018; 28: 551-8.
[http://dx.doi.org/10.1016/j.bjp.2018.04.013]
[15]
Alam F, Us Saqib QN. Evaluation of Zanthoxylum armatum Roxb for in vitro biological activities. J Tradit Complement Med 2017; 7(4): 515-8.
[http://dx.doi.org/10.1016/j.jtcme.2017.01.006 ] [PMID: 29034201]
[16]
Kennedy PGE. Clinical features, diagnosis, and treatment of human African trypanosomiasis (sleeping sickness). Lancet Neurol 2013; 12(2): 186-94.
[http://dx.doi.org/10.1016/S1474-4422(12)70296-X ] [PMID: 23260189]
[17]
Büscher P, Cecchi G, Jamonneau V, Priotto G. Human African trypanosomiasis. Lancet 2017; 390(10110): 2397-409.
[http://dx.doi.org/10.1016/S0140-6736(17)31510-6 ] [PMID: 28673422]
[18]
Ferreira ME, Nakayama H, de Arias AR, et al. Effects of canthin-6-one alkaloids from Zanthoxylum chiloperone on Trypanosoma cruzi-infected mice. J Ethnopharmacol 2007; 109(2): 258-63.
[http://dx.doi.org/10.1016/j.jep.2006.07.028 ] [PMID: 16949231]
[19]
Eze FI, Siwe-Noundou X, Isaacs M, Patnala S, Osadebe PO, Krause RW. Anti-cancer and anti-trypanosomal properties of alkaloids from the root bark of Zanthoxylum leprieurii Guill and Perr. Trop J Pharm Res 2020; 19: 2377-83.
[20]
Yamile HD, Julio CEARGF, Pacheco AO, Jesus GDLMF, Batista D da GJ. Trypanocidal potentialities of skimmianine an alkaloid isolated from Zanthoxylum pistaciifolium griseb leaves. Pharmacognosy Res 2018; 10: 24-30.
[21]
Dofuor AK, Ayertey F, Bolah P, et al. Isolation and antitrypanosomal characterization of furoquinoline and oxylipin from Zanthoxylum zanthoxyloides. Biomolecules 2020; 10: 1-15.
[http://dx.doi.org/10.3390/biom10121670]
[22]
Mann A, Ifarajimi OR, Adewoye AT, et al. In vivo antitrypanosomal effects of some ethnomedicinal plants from Nupeland of north central Nigeria. Afr J of Trad. Comple and Alter Med 2011; 8(1): 15-21.
[23]
Manke MB, Dhawale SC, Jamkhande PG. Helminthiasis and medicinal plants: a review. Asian Pac J Trop Dis 2015; 5(3): 175-80.
[http://dx.doi.org/10.1016/S2222-1808(14)60648-4]
[24]
Qi H, Wang WX, Dai JL, Zhu L. In vitro anthelmintic activity of Zanthoxylum simulans essential oil against Haemonchus contortus. Vet Parasitol 2015; 211(3-4): 223-7.
[http://dx.doi.org/10.1016/j.vetpar.2015.05.029 ] [PMID: 26073109]
[25]
Yadav AK, Tangpu V. Therapeutic efficacy of Zanthoxylum rhetsa DC extract against experimental Hymenolepis diminuta (Cestoda) infections in rats. J Parasit Dis 2009; 33(1-2): 42-7.
[http://dx.doi.org/10.1007/s12639-009-0007-2 ] [PMID: 23129887]
[26]
Olounladé PA, Azando EVB, Hounzangbé-Adoté MS, et al. In vitro anthelmintic activity of the essential oils of Zanthoxylum zanthoxyloides and Newbouldia laevis against Strongyloides ratti. Parasitol Res 2012; 110(4): 1427-33.
[http://dx.doi.org/10.1007/s00436-011-2645-4 ] [PMID: 21960378]
[27]
Luna EC, Luna IS, Scotti L, et al. Active essential oils and their components in use against neglected diseases and arboviruses. Oxid Med Cell Longev 2019; 2019: 6587150.
[http://dx.doi.org/10.1155/2019/6587150]
[28]
Olounladé PA, Azando EVB, Attakpa EY, et al. In vitro study on the role of the tannins of Newbouldia laevis and Zanthoxylum zanthoxyloides on infective larvae of Trichostrongyus colubriformis. Afr J Agric Res 2017; 12: 3513-9.
[29]
Thuo BM, Thoithi GN, Maingi N, et al. In vitro anthelmintic activity of Albizia gummifera, Crotalaria axillaris, Manilkara discolor, Teclea trichocarpa and Zanthoxylum usambarense using sheep nematodes. African J Pharmacol Ther 2017; 6: 38-42.
[30]
Mehta D, Das R, Bhandari A. In-vitro anthelmintic activity of seeds of Zanthoxylum armatum DC. against Pheretima Posthuma. Int J Green Pharm 2012; 6: 26-8.
[http://dx.doi.org/10.4103/0973-8258.97116]
[31]
Acheampong DO, Owusu-Adzorah N, Armah FA, et al. Ethnopharmacological evaluation of schistosomicidal and cercaricidal activities of some selected medicinal plants from Ghana. Trop Med Health 2020; 48(1): 19.
[http://dx.doi.org/10.1186/s41182-020-00205-y ] [PMID: 32308530]
[32]
Zondegoumba ENT, Dibahteu WL, Mouafo E, et al. Cytotoxic and schistosomidal activities of extract, fractions and isolated compounds from Zanthoxylum leprieurii (Rutaceae). Int J Sci Basic Appl Res 2019; 44: 209-22.
[33]
Braguine CG, Costa ES, Magalhães LG, et al. Schistosomicidal evaluation of Zanthoxylum naranjillo and its isolated compounds against Schistosoma mansoni adult worms. Z Naturforsch C J Biosci 2009; 64(11-12): 793-7.
[http://dx.doi.org/10.1515/znc-2009-11-1207 ] [PMID: 20158148]
[34]
da Silva TA, Henrique CY, Braguine CG, et al. Flavonoids and an alkaloid from Zanthoxylum naranjillo and their in vitro evaluation on the reproductive fitness of Schistosoma mansoni. J Med Plants Res 2012; 6: 5099-102.
[http://dx.doi.org/10.5897/JMPR12.668]
[35]
White NJ. Antimalarial drug resistance. J Clin Invest 2004; 113: 1084-92.
[36]
Kirira PG, Rukunga GM, Wanyonyi AW, et al. Anti-plasmodial activity and toxicity of extracts of plants used in traditional malaria therapy in Meru and Kilifi Districts of Kenya. J Ethnopharmacol 2006; 106(3): 403-7.
[http://dx.doi.org/10.1016/j.jep.2006.01.017 ] [PMID: 16530996]
[37]
Engwa AG. Malaria and treatment: Herbal antimalarials as alternative to conventional medicine. 2015; 1(1): 4-7.
[38]
Wang C, Wan J, Mei Z, Yang X. Acridone alkaloids with cytotoxic and antimalarial activities from Zanthoxylum simullans Hance. Pharmacogn Mag 2014; 10(37): 73-6.
[http://dx.doi.org/10.4103/0973-1296.126669 ] [PMID: 24696549]
[39]
Rodríguez-Guzmán R, Fulks LC, Radwan MM, Burandt CL, Ross SA. Chemical constituents, antimicrobial and antimalarial activities of Zanthoxylum monophyllum. Planta Med 2011; 77(13): 1542-4.
[http://dx.doi.org/10.1055/s-0030-1270782 ] [PMID: 21341176]
[40]
Cebrian-Torrejon G, Spelman K, Leblanc K, et al. The antiplasmodium effects of a traditional South American remedy: Zanthoxylum chiloperone var. angustifolium against chloroquine resistant and chloroquine sensitive strains of Plasmodium falciparum. Rev Bras Farmacogn 2011; 21: 652-61.
[http://dx.doi.org/10.1590/S0102-695X2011005000104]
[41]
Penali L, Mulholland DA. Low antiplasmodial activity of alkaloids and amides from the stem bark of Zanthoxylum rubescens (Rutaceae). Adv Asian Human-Environmental Res 2015; 47-59.
[42]
Ledoux A, Maraetefau H, Jansen O, et al. Phytochemical profile and biological activity evaluation of Zanthoxylum heterophyllum leaves against malaria. Planta Medica Lett 2015; 2: e10-1.
[http://dx.doi.org/10.1055/s-0035-1545821]
[43]
Jullian V, Bourdy G, Georges S, Maurel S, Sauvain M. Validation of use of a traditional antimalarial remedy from French Guiana, Zanthoxylum rhoifolium Lam. J Ethnopharmacol 2006; 106(3): 348-52.
[http://dx.doi.org/10.1016/j.jep.2006.01.011 ] [PMID: 16504432]
[44]
Bouquet J, Rivaud M, Chevalley S, Deharo E, Jullian V, Valentin A. Biological activities of nitidine, a potential anti-malarial lead compound. Malar J 2012; 11(1): 67.
[http://dx.doi.org/10.1186/1475-2875-11-67 ] [PMID: 22404785]
[45]
Talontsi FM, Matasyoh JC, Ngoumfo RM, Chepkorir R. Mosquito larvicidal activity of alkaloids from Zanthoxylum lemairei against the malaria. Pestic Biochem Physiol 2011; 99(1): 82-5.
[http://dx.doi.org/10.1016/j.pestbp.2010.11.003]
[46]
Ross SA, Al-Azeib MA, Krishnaveni KS, Fronczek FR, Burandt CL. Alkamides from the leaves of Zanthoxylum syncarpum. J Nat Prod 2005; 68(8): 1297-9.
[http://dx.doi.org/10.1021/np0580558 ] [PMID: 16124784]
[47]
Goodman CD, Austarheim I, Mollard V, et al. Natural products from Zanthoxylum heitzii with potent activity against the malaria parasite. Malar J 2016; 15: 1-8.
[http://dx.doi.org/10.1186/s12936-016-1533-x]
[48]
Bbosa G. Antiplasmodial activity of leaf extracts of Zanthoxylum chalybeum. Engl Br J Pharm Res 2014; 4: 705-13.
[http://dx.doi.org/10.9734/BJPR/2014/6528]
[49]
Njenga D, Irungu B, Mbaria J. Antiplasmodial activity, cytotoxicity and acute toxicity of Zanthoxylum chalybeum engl. World J Pharm Pharm Sci 2016; 5: 208-17.
[50]
Adia MM, Emami SN, Byamukama R, Faye I, Borg-Karlson AK. Antiplasmodial activity and phytochemical analysis of extracts from selected Ugandan medicinal plants. J Ethnopharmacol 2016; 186: 14-9.
[http://dx.doi.org/10.1016/j.jep.2016.03.047 ] [PMID: 27019273]
[51]
Wafula R. Phytochemical investigation of Zanthoxylum gilletii (rutaceae) for antiplasmodial biomolecules. Nairobi: University of Nairobi 2014.
[52]
Lima RB, Rocha e Silva LF, Melo MR, et al. In vitro and in vivo anti-malarial activity of plants from the Brazilian Amazon. Malar J 2015; 14: 508.
[http://dx.doi.org/10.1186/s12936-015-0999-2 ] [PMID: 26682750]
[53]
Tchinda AT, Fuendjiep V, Sajjad A, et al. Bioactive compounds from the fruits of Zanthoxylum leprieurii. Pharmacologyonline 2009; 1: 406-15.
[54]
Charoenying P, Laosinwattana C, Phuwiwat W, Lomratsiri J. Biological activities of Zanthoxylum limonella Alston fruit extracts. KMITL Sci J 2008; 8(1): 12-5.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy