Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Review Article Section: Theoretical and Computational Chemistry

Competition between Spin Excitation and Kondo Correlation in Magnetic Molecular Junctions: Theoretical Insight from First-principles-based Simulations

Author(s): Qingfeng Zhuang, Lyuzhou Ye and Xiao Zheng*

Volume 2, Issue 4, 2022

Published on: 19 March, 2022

Page: [310 - 324] Pages: 15

DOI: 10.2174/2210298102666220302095638

Abstract

In magnetic molecular junctions, the interactions between the local spin state at the transition- metal center and the conduction electrons from the electrodes or substrates can bring about many interesting strong correlation effects. Spin excitation and the Kondo effect are two representative phenomena, where the spin-unpaired d or f electrons plays the key role in forming these manybody states. This paper reviews the recent developments and applications of several first-principles methods in conjunction with the hierarchical equations of motion (HEOM) approach for the accurate simulation of magnetic molecular systems. The large-scale electrodes and substrates are treated by the density functional theory (DFT), while the properties of the magnetic center are studied by using the high-level complete active space self-consistent field method. The competition between the spin excitation and the Kondo effect are scrutinized by the HEOM approach. This combined DFT+HEOM method has proven to be useful for the accurate characterization of strongly-correlated magnetic molecular systems.

Keywords: Magnetic molecular systems, spin excitation, kondo effect, density functional theory, complete active space selfconsistent field method, hierarchical equations of motion, scanning tunneling microscope.

Graphical Abstract
[1]
Yang, K.; Paul, W.; Phark, S-H.; Willke, P.; Bae, Y.; Choi, T.; Esat, T.; Ardavan, A.; Heinrich, A.J.; Lutz, C.P. Coherent spin manipulation of individual atoms on a surface. Science, 2019, 366(6464), 509-512.
[http://dx.doi.org/10.1126/science.aay6779] [PMID: 31649202]
[2]
Atzori, M.; Sessoli, R. The second quantum revolution: Role and challenges of molecular chemistry. J. Am. Chem. Soc., 2019, 141(29), 11339-11352.
[http://dx.doi.org/10.1021/jacs.9b00984] [PMID: 31287678]
[3]
Coronado, E. Molecular magnetism: From chemical design to spin control in molecules, materials and devices. Nat. Rev. Mater., 2020, 5(2), 87-104.
[http://dx.doi.org/10.1038/s41578-019-0146-8]
[4]
Wasielewski, M.R.; Forbes, M.D.; Frank, N.L.; Kowalski, K.; Scholes, G.D.; Yuen-Zhou, J.; Baldo, M.A.; Freedman, D.E.; Goldsmith, R.H.; Goodson, T., III; Kirk, M.L.; McCusker, J.K.; Ogilvie, J.P.; Shultz, D.A.; Stoll, S.; Whaley, K.B. Exploiting chemistry and molecular systems for quantum information science. Nat. Rev. Chem., 2020, 4(9), 490-504.
[http://dx.doi.org/10.1038/s41570-020-0200-5]
[5]
Kasuya, T. A theory of metallic ferro-and antiferromagnetism on Zener’s model. Prog. Theor. Phys., 1956, 16(1), 45-57.
[http://dx.doi.org/10.1143/PTP.16.45]
[6]
Yosida, K. Magnetic properties of Cu-Mn alloys. Phys. Rev., 1957, 106(5), 893-898.
[http://dx.doi.org/10.1103/PhysRev.106.893]
[7]
Ruderman, M.A.; Kittel, C. Indirect exchange coupling of nuclear magnetic moments by conduction electrons. Phys. Rev., 1954, 96(1), 99-102.
[http://dx.doi.org/10.1103/PhysRev.96.99]
[8]
Schwabe, A.; Gütersloh, D.; Potthoff, M. Competition between Kondo screening and indirect magnetic exchange in a quantum box. Phys. Rev. Lett., 2012, 109(25), 257202.
[http://dx.doi.org/10.1103/PhysRevLett.109.257202] [PMID: 23368491]
[9]
Allerdt, A.; Feiguin, A.E.; Das Sarma, S. Competition between Kondo effect and RKKY physics in graphene magnetism. Phys. Rev. B, 2017, 95(10), 95.
[http://dx.doi.org/10.1103/PhysRevB.95.104402]
[10]
Choi, D-J.; Lorente, N.; Wiebe, J.; Von Bergmann, K.; Otte, A.F.; Heinrich, A.J. Colloquium: Atomic spin chains on surfaces. Rev. Mod. Phys., 2019, 91(4), 041001.
[http://dx.doi.org/10.1103/RevModPhys.91.041001]
[11]
Li, X.; Zhu, L.; Li, B.; Li, J.; Gao, P.; Yang, L.; Zhao, A.; Luo, Y.; Hou, J.; Zheng, X.; Wang, B.; Yang, J. Molecular molds for regularizing Kondo states at atom/metal interfaces. Nat. Commun., 2020, 11(1), 2566.
[http://dx.doi.org/10.1038/s41467-020-16402-6] [PMID: 32444665]
[12]
Hewson, A.C. The Kondo problem to heavy fermions; Cambridge university press, 1997.
[13]
Affleck, I.; Ludwig, A.W.; Jones, B.A. Conformal-field-theory approach to the two-impurity Kondo problem: Comparison with numerical renormalization-group results. Phys. Rev. B Condens. Matter, 1995, 52(13), 9528-9546.
[http://dx.doi.org/10.1103/PhysRevB.52.9528] [PMID: 9980002]
[14]
Varma, C.; Nussinov, Z.; Van Saarloos, W. Singular or non-Fermi liquids. Phys. Rep., 2002, 361(5-6), 267-417.
[http://dx.doi.org/10.1016/S0370-1573(01)00060-6]
[15]
Jones, B.A.; Varma, C.M. Critical point in the solution of the two magnetic impurity problem. Phys. Rev. B Condens. Matter, 1989, 40(1), 324-329.
[http://dx.doi.org/10.1103/PhysRevB.40.324] [PMID: 9990918]
[16]
Jones, B.A.; Varma, C.M.; Wilkins, J.W. Low-temperature properties of the two-impurity Kondo Hamiltonian. Phys. Rev. Lett., 1988, 61(1), 125-128.
[http://dx.doi.org/10.1103/PhysRevLett.61.125] [PMID: 10038710]
[17]
Jones, B.A.; Varma, C.M. Study of two magnetic impurities in a Fermi gas. Phys. Rev. Lett., 1987, 58(9), 843-846.
[http://dx.doi.org/10.1103/PhysRevLett.58.843] [PMID: 10035052]
[18]
Neto, A.C.; Jones, B.A. Non-Fermi-liquid behavior in U and Ce alloys: Criticality, disorder, dissipation, and Griffiths-McCoy singularities. Phys. Rev. B Condens. Matter, 2000, 62(22), 14975-15011.
[http://dx.doi.org/10.1103/PhysRevB.62.14975]
[19]
Jones, B.A.; Kotliar, B.G.; Millis, A.J. Mean-field analysis of two antiferromagnetically coupled Anderson impurities. Phys. Rev. B Condens. Matter, 1989, 39(5), 3415-3418.
[http://dx.doi.org/10.1103/PhysRevB.39.3415] [PMID: 9948650]
[20]
Ingersent, K.; Jones, B.A.; Wilkins, J.W. Study of the two-impurity, two-channel Kondo Hamiltonian. Phys. Rev. Lett., 1992, 69(17), 2594-2597.
[http://dx.doi.org/10.1103/PhysRevLett.69.2594] [PMID: 10046534]
[21]
Jacob, D.; Fernández-Rossier, J. Competition between quantum spin tunneling and Kondo effect. Eur. Phys. J. B, 2016, 89(10), 89.
[http://dx.doi.org/10.1140/epjb/e2016-70402-2]
[22]
Hiraoka, R.; Minamitani, E.; Arafune, R.; Tsukahara, N.; Watanabe, S.; Kawai, M.; Takagi, N. Single-molecule quantum dot as a Kondo simulator. Nat. Commun., 2017, 8(1), 16012.
[http://dx.doi.org/10.1038/ncomms16012] [PMID: 28665404]
[23]
Chen, J. Introduction to Scanning Tunneling Microscopy, 3rd ed; Oxford University Press: USA, 2021, Vol. 69, .
[http://dx.doi.org/10.1093/oso/9780198856559.001.0001]
[24]
Parks, J.J.; Champagne, A.R.; Hutchison, G.R.; Flores-Torres, S.; Abruña, H.D.; Ralph, D.C. Tuning the Kondo effect with a mechanically controllable break junction. Phys. Rev. Lett., 2007, 99(2), 026601.
[http://dx.doi.org/10.1103/PhysRevLett.99.026601] [PMID: 17678242]
[25]
Huang, C.; Jevric, M.; Borges, A.; Olsen, S.T.; Hamill, J.M.; Zheng, J-T.; Yang, Y.; Rudnev, A.; Baghernejad, M.; Broekmann, P.; Petersen, A.U.; Wandlowski, T.; Mikkelsen, K.V.; Solomon, G.C.; Brøndsted Nielsen, M.; Hong, W. Single-molecule detection of dihydroazulene photo-thermal reaction using break junction technique. Nat. Commun., 2017, 8(1), 15436.
[http://dx.doi.org/10.1038/ncomms15436] [PMID: 28530248]
[26]
Rakhmilevitch, D.; Korytár, R.; Bagrets, A.; Evers, F.; Tal, O. Electron-vibration interaction in the presence of a switchable Kondo reso-nance realized in a molecular junction. Phys. Rev. Lett., 2014, 113(23), 236603.
[http://dx.doi.org/10.1103/PhysRevLett.113.236603] [PMID: 25526145]
[27]
Otte, A.F.; Ternes, M.; von Bergmann, K.; Loth, S.; Brune, H.; Lutz, C.P.; Hirjibehedin, C.F.; Heinrich, A.J. The role of magnetic anisotro-py in the Kondo effect. Nat. Phys., 2008, 4(11), 847-850.
[http://dx.doi.org/10.1038/nphys1072]
[28]
Perrin, M.L.; Burzurí, E.; van der Zant, H.S. Single-molecule transistors. Chem. Soc. Rev., 2015, 44(4), 902-919.
[http://dx.doi.org/10.1039/C4CS00231H] [PMID: 25310767]
[29]
I, V.B.; Shim, J.; Chen, J.C.H.; Ludwig, A.D.; Tarucha, S.; Sim, H.S.; Yamamoto, M. Observation of the Kondo screening cloud. Nature, 2020, 579, 210-213.
[http://dx.doi.org/10.1038/s41586-020-2058-6]
[30]
Robles, R.; Lorente, N.; Isshiki, H.; Liu, J.; Katoh, K.; Breedlove, B.K.; Yamashita, M.; Komeda, T. Spin doping of individual molecules by using single-atom manipulation. Nano Lett., 2012, 12(7), 3609-3612.
[http://dx.doi.org/10.1021/nl301301e] [PMID: 22642450]
[31]
Ormaza, M.; Robles, R.; Bachellier, N.; Abufager, P.; Lorente, N.; Limot, L. On-surface engineering of a magnetic organometallic nan-owire. Nano Lett., 2016, 16(1), 588-593.
[http://dx.doi.org/10.1021/acs.nanolett.5b04280] [PMID: 26650920]
[32]
Krull, C.; Robles, R.; Mugarza, A.; Gambardella, P. Site- and orbital-dependent charge donation and spin manipulation in electron-doped metal phthalocyanines. Nat. Mater., 2013, 12(4), 337-343.
[http://dx.doi.org/10.1038/nmat3547] [PMID: 23334000]
[33]
Auwärter, W.; Écija, D.; Klappenberger, F.; Barth, J.V. Porphyrins at interfaces. Nat. Chem., 2015, 7(2), 105-120.
[http://dx.doi.org/10.1038/nchem.2159] [PMID: 25615664]
[34]
Wende, H.; Bernien, M.; Luo, J.; Sorg, C.; Ponpandian, N.; Kurde, J.; Miguel, J.; Piantek, M.; Xu, X.; Eckhold, P.; Kuch, W.; Baberschke, K.; Panchmatia, P.M.; Sanyal, B.; Oppeneer, P.M.; Eriksson, O. Substrate-induced magnetic ordering and switching of iron porphyrin mol-ecules. Nat. Mater., 2007, 6(7), 516-520.
[http://dx.doi.org/10.1038/nmat1932] [PMID: 17558431]
[35]
Toader, M.; Shukrynau, P.; Knupfer, M.; Zahn, D.R.; Hietschold, M. Site-dependent donation/backdonation charge transfer at the CoPc/Ag(111) interface. Langmuir, 2012, 28(37), 13325-13330.
[http://dx.doi.org/10.1021/la302792z] [PMID: 22931485]
[36]
Hu, J.; Wu, R. Control of the magnetism and magnetic anisotropy of a single-molecule magnet with an electric field. Phys. Rev. Lett., 2013, 110(9), 097202.
[http://dx.doi.org/10.1103/PhysRevLett.110.097202] [PMID: 23496742]
[37]
Brovko, O.O.; Ruiz-Díaz, P.; Dasa, T.R.; Stepanyuk, V.S. Controlling magnetism on metal surfaces with non-magnetic means: Electric fields and surface charging. J. Phys. Condens. Matter, 2014, 26(9), 093001.
[http://dx.doi.org/10.1088/0953-8984/26/9/093001] [PMID: 24523356]
[38]
Bai, Z.; Shen, L.; Cai, Y.; Wu, Q.; Zeng, M.; Han, G.; Feng, Y.P. Magnetocrystalline anisotropy and its electric-field-assisted switching of Heusler-compound-based perpendicular magnetic tunnel junctions. New J. Phys., 2014, 16(10), 103033.
[http://dx.doi.org/10.1088/1367-2630/16/10/103033]
[39]
Yang, K.; Chen, H.; Pope, T.; Hu, Y.; Liu, L.; Wang, D.; Tao, L.; Xiao, W.; Fei, X.; Zhang, Y-Y.; Luo, H.G.; Du, S.; Xiang, T.; Hofer, W.A.; Gao, H.J. Tunable giant magnetoresistance in a single-molecule junction. Nat. Commun., 2019, 10(1), 3599.
[http://dx.doi.org/10.1038/s41467-019-11587-x] [PMID: 31399599]
[40]
Xiang, D.; Jeong, H.; Lee, T.; Mayer, D. Mechanically controllable break junctions for molecular electronics. Adv. Mater., 2013, 25(35), 4845-4867.
[http://dx.doi.org/10.1002/adma.201301589] [PMID: 23913697]
[41]
Kuang, G.; Zhang, Q.; Lin, T.; Pang, R.; Shi, X.; Xu, H.; Lin, N. Mechanically-controlled reversible spin crossover of single Fe-porphyrin molecules. ACS Nano, 2017, 11(6), 6295-6300.
[http://dx.doi.org/10.1021/acsnano.7b02567] [PMID: 28498652]
[42]
Wang, L.; Wang, L.; Zhang, L.; Xiang, D. Advance of Mechanically Controllable Break Junction for Molecular Electronics; Guo, X., Ed.; Springer International Publishing: Cham, 2019.
[http://dx.doi.org/10.1007/978-3-030-03305-7_2]
[43]
Loth, S.; Von Bergmann, K.; Ternes, M.; Otte, A.F.; Lutz, C.P.; Heinrich, A.J. Controlling the state of quantum spins with electric currents. Nat. Phys., 2010, 6(5), 340-344.
[http://dx.doi.org/10.1038/nphys1616]
[44]
Ormaza, M.; Abufager, P.; Verlhac, B.; Bachellier, N.; Bocquet, M-L.; Lorente, N.; Limot, L. Controlled spin switching in a metallocene molecular junction. Nat. Commun., 2017, 8(1), 1974.
[http://dx.doi.org/10.1038/s41467-017-02151-6] [PMID: 29215014]
[45]
Ormaza, M.; Bachellier, N.; Faraggi, M.N.; Verlhac, B.; Abufager, P.; Ohresser, P.; Joly, L.; Romeo, M.; Scheurer, F.; Bocquet, M-L.; Lorente, N.; Limot, L. Efficient spin-flip excitation of a nickelocene molecule. Nano Lett., 2017, 17(3), 1877-1882.
[http://dx.doi.org/10.1021/acs.nanolett.6b05204] [PMID: 28199115]
[46]
Czap, G.; Wagner, P.J.; Xue, F.; Gu, L.; Li, J.; Yao, J.; Wu, R.; Ho, W. Probing and imaging spin interactions with a magnetic single-molecule sensor. Science, 2019, 364(6441), 670-673.
[http://dx.doi.org/10.1126/science.aaw7505] [PMID: 31097665]
[47]
Wang, Y.; Zheng, X.; Li, B.; Yang, J. Understanding the Kondo resonance in the d-CoPc/Au(111) adsorption system. J. Chem. Phys., 2014, 141(8), 084713.
[http://dx.doi.org/10.1063/1.4893953] [PMID: 25173036]
[48]
Wang, Y.; Zheng, X.; Yang, J. Kondo screening and spin excitation in few-layer CoPc molecular assembly stacking on Pb(111) surface: A DFT+HEOM study. J. Chem. Phys., 2016, 145(15), 154301.
[http://dx.doi.org/10.1063/1.4964675] [PMID: 27782491]
[49]
Wang, Y.; Zheng, X.; Yang, J. Environment-modulated Kondo phenomena in FePc/Au (111) adsorption systems. Phys. Rev. B, 2016, 93(12), 125114.
[http://dx.doi.org/10.1103/PhysRevB.93.125114]
[50]
Wang, X.; Hou, D.; Zheng, X.; Yan, Y. Anisotropy induced Kondo splitting in a mechanically stretched molecular junction: A first-principles based study. J. Chem. Phys., 2016, 144(3), 034101.
[http://dx.doi.org/10.1063/1.4939843] [PMID: 26801014]
[51]
Heinrich, B.W.; Braun, L.; Pascual, J.I.; Franke, K.J. Tuning the magnetic anisotropy of single molecules. Nano Lett., 2015, 15(6), 4024-4028.
[http://dx.doi.org/10.1021/acs.nanolett.5b00987] [PMID: 25942560]
[52]
Heinrich, B.W.; Ehlert, C.; Hatter, N.; Braun, L.; Lotze, C.; Saalfrank, P.; Franke, K.J. Control of oxidation and spin state in a single-molecule junction. ACS Nano, 2018, 12(4), 3172-3177.
[http://dx.doi.org/10.1021/acsnano.8b00312] [PMID: 29489330]
[53]
Heinrich, B.W.; Pascual, J.I.; Franke, K.J. Single magnetic adsorbates on s-wave superconductors. Prog. Surf. Sci., 2018, 93(1), 1-19.
[http://dx.doi.org/10.1016/j.progsurf.2018.01.001]
[54]
Heinrich, B.; Braun, L.; Pascual, J.; Franke, K. Protection of excited spin states by a superconducting energy gap. Nat. Phys., 2013, 9(12), 765-768.
[http://dx.doi.org/10.1038/nphys2794]
[55]
Choi, D-J.; Guissart, S.; Ormaza, M.; Bachellier, N.; Bengone, O.; Simon, P.; Limot, L. Kondo resonance of a Co atom exchange coupled to a ferromagnetic tip. Nano Lett., 2016, 16(10), 6298-6302.
[http://dx.doi.org/10.1021/acs.nanolett.6b02617] [PMID: 27598512]
[56]
Veldman, L.M.; Farinacci, L.; Rejali, R.; Broekhoven, R.; Gobeil, J.; Coffey, D.; Ternes, M.; Otte, A.F. Free coherent evolution of a cou-pled atomic spin system initialized by electron scattering. Science, 2021, 372(6545), 964-968.
[http://dx.doi.org/10.1126/science.abg8223] [PMID: 34045351]
[57]
Nakatani, N.; Guo, S. Density matrix renormalization group (DMRG) method as a common tool for large active-space CASSCF/CASPT2 calculations. J. Chem. Phys., 2017, 146(9), 094102.
[http://dx.doi.org/10.1063/1.4976644]
[58]
Mühlbacher, L.; Rabani, E. Real-time path integral approach to nonequilibrium many-body quantum systems. Phys. Rev. Lett., 2008, 100(17), 176403.
[http://dx.doi.org/10.1103/PhysRevLett.100.176403] [PMID: 18518314]
[59]
Weiss, S.; Eckel, J.; Thorwart, M.; Egger, R. Iterative real-time path integral approach to nonequilibrium quantum transport. Phys. Rev. B Condens. Matter Mater. Phys., 2008, 77(19), 195316.
[http://dx.doi.org/10.1103/PhysRevB.77.195316]
[60]
Hirsch, J.E.; Fye, R.M. Monte Carlo method for magnetic impurities in metals. Phys. Rev. Lett., 1986, 56(23), 2521-2524.
[http://dx.doi.org/10.1103/PhysRevLett.56.2521] [PMID: 10033014]
[61]
Gull, E.; Millis, A.J.; Lichtenstein, A.I.; Rubtsov, A.N.; Troyer, M.; Werner, P. Continuous-time Monte Carlo methods for quantum impu-rity models. Rev. Mod. Phys., 2011, 83(2), 349-404.
[http://dx.doi.org/10.1103/RevModPhys.83.349]
[62]
Beck, M.H.; Jäckle, A.; Worth, G.A.; Meyer, H-D. The multiconfiguration time-dependent Hartree (MCTDH) method: A highly efficient algorithm for propagating wavepackets. Phys. Rep., 2000, 324(1), 1-105.
[http://dx.doi.org/10.1016/S0370-1573(99)00047-2]
[63]
Bulla, R.; Costi, T.A.; Pruschke, T. Numerical renormalization group method for quantum impurity systems. Rev. Mod. Phys., 2008, 80(2), 395-450.
[http://dx.doi.org/10.1103/RevModPhys.80.395]
[64]
Jacob, D.; Kurth, S. Many-body spectral functions from steady state density functional theory. Nano Lett., 2018, 18(3), 2086-2090.
[http://dx.doi.org/10.1021/acs.nanolett.8b00255] [PMID: 29437404]
[65]
Ye, L.; Wang, X.; Hou, D.; Xu, R.X.; Zheng, X.; Yan, Y. HEOMQUICK: A program for accurate, efficient, and universal characterization of strongly correlated quantum impurity systems. WIREs Comput. Mol. Sci., 2016, 6(6), 608-638.
[http://dx.doi.org/10.1002/wcms.1269]
[66]
Zhang, H-D.; Cui, L.; Gong, H.; Xu, R-X.; Zheng, X.; Yan, Y. Hierarchical equations of motion method based on Fano spectrum decom-position for low temperature environments. J. Chem. Phys., 2020, 152(6), 064107.
[http://dx.doi.org/10.1063/1.5136093] [PMID: 32061227]
[67]
Cui, L.; Zhang, H-D.; Zheng, X.; Xu, R-X.; Yan, Y. Highly efficient and accurate sum-over-poles expansion of Fermi and Bose functions at near zero temperatures: Fano spectrum decomposition scheme. J. Chem. Phys., 2019, 151(2), 024110.
[http://dx.doi.org/10.1063/1.5096945] [PMID: 31301715]
[68]
Uzma, F.; Yang, L.; He, D.; Wang, X.; Hu, S.; Ye, L.; Zheng, X.; Yan, Y. Understanding the sub-meV precision-tuning of magnetic anisot-ropy of single-molecule junction. J. Phys. Chem. C, 2021, 125(12), 6990-6997.
[http://dx.doi.org/10.1021/acs.jpcc.1c01398]
[69]
Yang, L.; Wang, X.; Uzma, F.; Zheng, X.; Yan, Y. Evolution of magnetic anisotropy of an organometallic molecule in a mechanically con-trolled break junction: The roles of connecting electrodes. J. Phys. Chem. C, 2019, 123(50), 30754-30764.
[http://dx.doi.org/10.1021/acs.jpcc.9b10156]
[70]
Wang, X.; Yang, L.; Ye, L.; Zheng, X.; Yan, Y. Precise control of local spin states in an adsorbed magnetic molecule with an stm tip: The-oretical insights from first-principles-based simulation. J. Phys. Chem. Lett., 2018, 9(9), 2418-2425.
[http://dx.doi.org/10.1021/acs.jpclett.8b00808] [PMID: 29685031]
[71]
Wang, Y.; Li, X.; Zheng, X.; Yang, J. Manipulation of spin and magnetic anisotropy in bilayer magnetic molecular junctions. Phys. Chem. Chem. Phys., 2018, 20(41), 26396-26404.
[http://dx.doi.org/10.1039/C8CP05759A] [PMID: 30306171]
[72]
Roos, B.O. The complete active space self-consistent field method and its applications in electronic structure calculations. In: Advances in Chemical Physics; Lawley, K.P., Ed.; John Wiley & Sons, Ltd., 1987; pp. 399-445.
[http://dx.doi.org/10.1002/9780470142943.ch7]
[73]
Li, S.; Ma, J.; Jiang, Y. Linear scaling local correlation approach for solving the coupled cluster equations of large systems. J. Comput. Chem., 2002, 23(2), 237-244.
[http://dx.doi.org/10.1002/jcc.10003] [PMID: 11924736]
[74]
Libisch, F.; Huang, C.; Carter, E.A. Embedded correlated wavefunction schemes: Theory and applications. Acc. Chem. Res., 2014, 47(9), 2768-2775.
[http://dx.doi.org/10.1021/ar500086h] [PMID: 24873211]
[75]
Jin, J.; Zheng, X.; Yan, Y. Exact dynamics of dissipative electronic systems and quantum transport: Hierarchical equations of motion approach. J. Chem. Phys., 2008, 128(23), 234703.
[http://dx.doi.org/10.1063/1.2938087] [PMID: 18570515]
[76]
Zheng, X.; Jin, J.; Welack, S.; Luo, M.; Yan, Y. Numerical approach to time-dependent quantum transport and dynamical Kondo transi-tion. J. Chem. Phys., 2009, 130(16), 164708.
[http://dx.doi.org/10.1063/1.3123526] [PMID: 19405617]
[77]
Hou, D.; Wang, R.; Zheng, X.; Tong, N.; Wei, J.; Yan, Y. Hierarchical equations of motion for an impurity solver in dynamical mean-field theory. Phys. Rev. B Condens. Matter Mater. Phys., 2014, 90(4), 045141.
[http://dx.doi.org/10.1103/PhysRevB.90.045141]
[78]
Hou, D.; Wang, S.; Wang, R.; Ye, L.; Xu, R.; Zheng, X.; Yan, Y. Improving the efficiency of hierarchical equations of motion approach and application to coherent dynamics in Aharonov-Bohm interferometers. J. Chem. Phys., 2015, 142(10), 104112.
[http://dx.doi.org/10.1063/1.4914514] [PMID: 25770531]
[79]
Zheng, X.; Luo, J.; Jin, J.; Yan, Y. Complex non-Markovian effect on time-dependent quantum transport. J. Chem. Phys., 2009, 130(12), 124508.
[http://dx.doi.org/10.1063/1.3095424] [PMID: 19334852]
[80]
Han, L.; Zhang, H-D.; Zheng, X.; Yan, Y. On the exact truncation tier of fermionic hierarchical equations of motion. J. Chem. Phys., 2018, 148(23), 234108.
[http://dx.doi.org/10.1063/1.5034776] [PMID: 29935503]
[81]
Parks, J.J.; Champagne, A.R.; Costi, T.A.; Shum, W.W.; Pasupathy, A.N.; Neuscamman, E.; Flores-Torres, S.; Cornaglia, P.S.; Aligia, A.A.; Balseiro, C.A.; Chan, G.K.; Abruña, H.D.; Ralph, D.C. Mechanical control of spin states in spin-1 molecules and the underscreened Kon-do effect. Science, 2010, 328(5984), 1370-1373.
[http://dx.doi.org/10.1126/science.1186874] [PMID: 20538943]
[82]
Žitko, R.; Peters, R.; Pruschke, T. Splitting of the Kondo resonance in anisotropic magnetic impurities on surfaces. New J. Phys., 2009, 11(5), 053003.
[http://dx.doi.org/10.1088/1367-2630/11/5/053003]
[83]
Oberg, J.C.; Calvo, M.R.; Delgado, F.; Moro-Lagares, M.; Serrate, D.; Jacob, D.; Fernández-Rossier, J.; Hirjibehedin, C.F. Control of sin-gle-spin magnetic anisotropy by exchange coupling. Nat. Nanotechnol., 2014, 9(1), 64-68.
[http://dx.doi.org/10.1038/nnano.2013.264] [PMID: 24317285]
[84]
Sugisaki, K.; Toyota, K.; Sato, K.; Shiomi, D.; Takui, T. Quasi-restricted orbital treatment for the density functional theory calculations of the spin–orbit term of zero-field splitting tensors. J. Phys. Chem. A, 2016, 120(49), 9857-9866.
[http://dx.doi.org/10.1021/acs.jpca.6b10253] [PMID: 27973798]
[85]
Chen, X.; Fu, Y-S.; Ji, S-H.; Zhang, T.; Cheng, P.; Ma, X-C.; Zou, X-L.; Duan, W-H.; Jia, J-F.; Xue, Q-K. Probing superexchange interac-tion in molecular magnets by spin-flip spectroscopy and microscopy. Phys. Rev. Lett., 2008, 101(19), 197208.
[http://dx.doi.org/10.1103/PhysRevLett.101.197208] [PMID: 19113306]
[86]
Fu, Y-S.; Zhang, T.; Ji, S-H.; Chen, X.; Ma, X-C.; Jia, J-F.; Xue, Q-K. Identifying charge states of molecules with spin-flip spectroscopy. Phys. Rev. Lett., 2009, 103(25), 257202.
[http://dx.doi.org/10.1103/PhysRevLett.103.257202] [PMID: 20366279]
[87]
Ohta, N.; Arafune, R.; Tsukahara, N.; Kawai, M.; Takagi, N. Enhancement of inelastic electron tunneling conductance caused by electronic decoupling in iron phthalocyanine bilayer on Ag (111). J. Phys. Chem. C, 2013, 117(42), 21832-21837.
[http://dx.doi.org/10.1021/jp406317t]
[88]
Tsukahara, N.; Noto, K.; Ohara, M.; Shiraki, S.; Takagi, N.; Takata, Y.; Miyawaki, J.; Taguchi, M.; Chainani, A.; Shin, S.; Kawai, M. Ad-sorption-induced switching of magnetic anisotropy in a single iron(II) phthalocyanine molecule on an oxidized Cu(110) surface. Phys. Rev. Lett., 2009, 102(16), 167203.
[http://dx.doi.org/10.1103/PhysRevLett.102.167203] [PMID: 19518750]

© 2024 Bentham Science Publishers | Privacy Policy