Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

Amazon Rainforest: A Natural Source for New Therapeutic Alternatives against Neglected Tropical Diseases

Author(s): Soraya da Silva Santos*, João Vitor Silva, Pone Kamdem Boniface and Jeanine Giarolla

Volume 12, Issue 6, 2022

Published on: 25 March, 2022

Article ID: e280222201500 Pages: 15

DOI: 10.2174/2210315512666220228151415

Price: $65

Abstract

The Amazon rainforest has wide and unique biodiversity, which is an important source of natural products for the development of drugs. Neglected tropical diseases (NTDs) represent a major health problem as they affect over 1 billion people, especially vulnerable populations living in tropical and subtropical regions. Currently available drugs are generally inadequate for the majority of these diseases, thus, there is an urgent need for new treatments. The present review aims to summarize upto- date and comprehensive information on the efficacy of the Amazon plants, in treating certainneglected tropical diseases. According to the literature information, several compounds (phenolics, alkaloids, terpenoids and steroids, among others) which were isolated from plants of the Amazon forest showed in vtro activity against Leishmania sp., Trypanosoma cruzi, the parasites responsible for leishmaniasis and Chagas disease, respectively. Moreover, extracts and essential oil from certain plants were reported to have mosquito repellent and insecticidal activities against Aedes aegypti, the vector of dengue, and chikungunya. This review demonstrated that the Amazonian rainforest is endowed with pharmacologically active plants which can be used as a starting point for the development of new drugs against NTDs, such as leishmaniasis, Chagas disease, dengue, and chikungunya.

Keywords: Neglected tropical diseases, amazon rainforest, biodiversity, natural products, drug design, drug discovery.

Graphical Abstract
[1]
WHO. Control of Neglected Tropical Diseases Available from: https://www.who.int/teams/control-of-neglected-tropical-diseases (Accessed on May 12, 2021).
[2]
Cook, P.P. What is new in infectious diseases? N. C. Med. J., 2016, 77(5), 320-323.
[http://dx.doi.org/10.18043/ncm.77.5.320] [PMID: 27621340]
[3]
Engels, D.; Zhou, X.N. Neglected tropical diseases: An effective global response to local poverty-related disease priorities. Infect. Dis. Poverty, 2020, 9(1), 10.
[http://dx.doi.org/10.1186/s40249-020-0630-9] [PMID: 31987053]
[4]
Gil, E.S.; Paula, J.R.; Nascimento, F.R.F.; Bezerra, J.C.B. Natural products with leishmanicidal potential. Rev. Cienc. Farm. Basica Apl., 2008, 29, 223-230.
[5]
Wang, J.; Peng, Q.; Li, G. New compounds of natural resources in 2008. Afr. J. Biotechnol., 2009, 8, 4299-4307.
[6]
Odonne, G.; Houël, E.; Bourdy, G.; Stien, D. Treating leishmaniasis in Amazonia: A review of ethnomedicinal concepts and pharmaco-chemical analysis of traditional treatments to inspire modern phytotherapies. J. Ethnopharmacol., 2017, 199, 211-230.
[http://dx.doi.org/10.1016/j.jep.2017.01.048] [PMID: 28131912]
[7]
Da Silva, B.J.M.; Hage, A.A.P.; Silva, E.O.; Rodrigues, A.P.D. Medicinal plants from the Brazilian Amazonian region and their antileish-manial activity: A review. J. Integr. Med., 2018, 16(4), 211-222.
[http://dx.doi.org/10.1016/j.joim.2018.04.004] [PMID: 29691188]
[8]
de Oliveira, L.O.; Fernandes, K.V. Pádua, Dde.S.; Carvalho, Ade.O.; Lemos, F.J.; Gomes, V.M.; Oliveira, A.E.; Ferreira, A.T.; Perales, J. A Trypsin inhibitor from Clitoria fairchildiana cotyledons is active against digestive enzymes of Aedes aegypti larvae. Protein Pept. Lett., 2015, 22(10), 893-902.
[http://dx.doi.org/10.2174/0929866522666150708112100] [PMID: 26156641]
[9]
Bieski, I.G.C.; Leonti, M.; Arnason, J.T.; Ferrier, J.; Rapinski, M.; Violante, I.M.P.; Balogun, S.O.; Pereira, J.F. Figueiredo, Rde.C.; Lopes, C.R.; da Silva, D.R.; Pacini, A.; Albuquerque, U.P.; Martins, D.T. Ethnobotanical study of medicinal plants by population of Valley of Ju-ruena Region, Legal Amazon, Mato Grosso, Brazil. J. Ethnopharmacol., 2015, 173, 383-423.
[http://dx.doi.org/10.1016/j.jep.2015.07.025] [PMID: 26234177]
[10]
Moreira, R da CR.; Rebelo, J.M.M.; Gama, M.E.A.; Costa, J.M. L knowledge level about of American tegumentary leishmaniasis (ATL) and use of alternative therapies in an endemic area in the Amazon Region in the State of Maranhão, Brazil. Cad Saúde Pública / Ministério Da Saúde. Fundação Oswaldo Cruz Esc Nac Saúde Pública, 2002, 18, 187-195.
[11]
Da Silva, S.A.G.; Costa, S.S.; Mendonça, S.C.F.; Silva, E.M.; Moraes, V.L.G.; Rossi-Bergmann, B. Therapeutic effect of oral Kalanchoe pinnata leaf extract in murine leishmaniasis. Acta Trop., 1995, 60(3), 201-210.
[http://dx.doi.org/10.1016/0001-706X(95)00128-2] [PMID: 8907398]
[12]
França, F.; Lago, E.L.; Marsden, P.D. Plants used in the treatment of leishmanial ulcers due to Leishmania (Viannia) braziliensis in an endemic area of Bahia, Brazil. Rev. Soc. Bras. Med. Trop., 1996, 29(3), 229-232.
[http://dx.doi.org/10.1590/S0037-86821996000300002] [PMID: 8701041]
[13]
Accioly, M.P.; Bevilaqua, C.M.L.; Rondon, F.C.M.; de Morais, S.M.; Machado, L.K.A.; Almeida, C.A.; de Andrade, H.F., Jr; Cardoso, R.P. Leishmanicidal activity in vtro of Musa paradisiaca L. and Spondias mombin L. fractions. Vet. Parasitol., 2012, 187(1-2), 79-84.
[http://dx.doi.org/10.1016/j.vetpar.2011.12.029] [PMID: 22521971]
[14]
Silva, A.A.S.; Morais, S.M.; Falcão, M.J.C.; Vieira, I.G.P.; Ribeiro, L.M.; Viana, S.M.; Teixeira, M.J.; Barreto, F.S.; Carvalho, C.A.; Cardo-so, R.P.; Andrade-Junior, H.F. Activity of cycloartane-type triterpenes and sterols isolated from Musa paradisiaca fruit peel against Leish-mania infantum chagasi. Phytomedicine, 2014, 21(11), 1419-1423.
[http://dx.doi.org/10.1016/j.phymed.2014.05.005] [PMID: 24916706]
[15]
Luque-Ortega, J.R.; Martínez, S.; Saugar, J.M.; Izquierdo, L.R.; Abad, T.; Luis, J.G.; Piñero, J.; Valladares, B.; Rivas, L. Fungus-elicited metabolites from plants as an enriched source for new leishmanicidal agents: antifungal phenyl-phenalenone phytoalexins from the bana-na plant (Musa acuminata) target mitochondria of Leishmania donovani promastigotes. Antimicrob. Agents Chemother., 2004, 48(5), 1534-1540.
[http://dx.doi.org/10.1128/AAC.48.5.1534-1540.2004] [PMID: 15105102]
[16]
Danelli, M.G.M.; Soares, D.C.; Abreu, H.S.; Peçanha, L.M.T.; Saraiva, E.M. Leishmanicidal effect of LLD-3 (1), a nor-triterpene isolated from Lophanthera lactescens. Phytochemistry, 2009, 70(5), 608-614.
[http://dx.doi.org/10.1016/j.phytochem.2009.03.009] [PMID: 19359020]
[17]
Santos, A.O.; Ueda-Nakamura, T.; Dias Filho, B.P.; Veiga, Junior, V.F.; Pinto, A.C.; Nakamura, C.V. Effect of Brazilian copaiba oils on Leishmania amazonensis. J. Ethnopharmacol., 2008, 120(2), 204-208.
[http://dx.doi.org/10.1016/j.jep.2008.08.007] [PMID: 18775772]
[18]
Valadeau, C.; Pabon, A.; Deharo, E.; Albán-Castillo, J.; Estevez, Y.; Lores, F.A.; Rojas, R.; Gamboa, D.; Sauvain, M.; Castillo, D.; Bourdy, G. Medicinal plants from the Yanesha (Peru): Evaluation of the leishmanicidal and antimalarial activity of selected extracts. J. Ethnopharmacol., 2009, 123(3), 413-422.
[http://dx.doi.org/10.1016/j.jep.2009.03.041] [PMID: 19514108]
[19]
De Fátima Oliveira Almeida, M.; Rodrigues De Melo, A.C.; Pinheiro, M.L.B.; De Andrade Silva, J.R.; De Souza, A.D.L.; Barison, A. Chemical constituents and leishmanicidal activity of Gustavia elliptica (Lecythidaceae). Quim. Nova, 2011, 34, 1182-1187.
[http://dx.doi.org/10.1590/S0100-40422011000700015]
[20]
Costa, E.V.; Pinheiro, M.L.B.; Silva, J.R.D.A.; Maia, B.H.L.D.N.S.; Duarte, M.C.T.; Amaral, A.C.F. Antimicrobial and antileishmanial activity of essential oil from the leaves of Annona foetida (Annonaceae). Quim. Nova, 2009, 32, 78-81.
[http://dx.doi.org/10.1590/S0100-40422009000100015]
[21]
De Lima, J.P.S.; Pinheiro, M.L.B.; Santos, A.M.G.; Pereira, J.L.S.; Santos, D.M.F.; Barison, A. In vtro antileishmanial and cytotoxic activi-ties of Annona mucosa (Annonaceae). Rev Virtual Quim, 2012, (d), 692-702.
[http://dx.doi.org/10.5935/1984-6835.20120052]
[22]
da Silva, F.M.A.; Koolen, H.H.F.; de Lima, J.P.S.; Santos, D.M.F.; Jardim, I.S.; de Souza, A.D.L. Leishmanicidal activity of fractions rich in aporphine alkaloids from Amazonian Unonopsis species. Rev. Bras. Farmacogn., 2012, 22, 1368-1371.
[http://dx.doi.org/10.1590/S0102-695X2012005000103]
[23]
Rodrigues, I.A.; Azevedo, M.M.B.; Chaves, F.C.M.; Alviano, C.S.; Alviano, D.S.; Vermelho, A.B. Arrabidaea chica hexanic extract induc-es mitochondrion damage and peptidase inhibition on Leishmania spp. BioMed Res. Int., 2014, 2014, 985171.
[http://dx.doi.org/10.1155/2014/985171] [PMID: 24818162]
[24]
da Silva, R.R.P.; da Silva, B.J.M.; Rodrigues, A.P.D.; Farias, L.H.S.; da Silva, M.N.; Alves, D.T.V.; Bastos, G.N.; do Nascimento, J.L.; Silva, E.O. In vtro biological action of aqueous extract from roots of Physalis angulata against Leishmania (Leishmania) amazonensis. BMC Complement. Altern. Med., 2015, 15, 249.
[http://dx.doi.org/10.1186/s12906-015-0717-1] [PMID: 26205771]
[25]
Guimarães, E.T.; Lima, M.S.; Santos, L.A.; Ribeiro, I.M.; Tomassini, T.B.C.; dos Santos, R.R. Effects of seco-steroids purified from Phy-salis angulata L., Solanaceae, on the viability of Leishmania sp. Rev. Bras. Farmacogn., 2010, 20, 945-949.
[http://dx.doi.org/10.1590/S0102-695X2010005000036]
[26]
Moraes, L.S.; Donza, M.R.H.; Rodrigues, A.P.D.; Silva, B.J.M.; Brasil, D.S.B.; Zoghbi, Md.; Andrade, E.H.; Guilhon, G.M.; Silva, E.O. Leishmanicidal activity of (+)-phyllanthidine and the phytochemical profile of Margaritaria nobilis (Phyllanthaceae). Molecules, 2015, 20(12), 22157-22169.
[http://dx.doi.org/10.3390/molecules201219829] [PMID: 26690400]
[27]
Almeida-Souza, F.; Taniwaki, N.N.; Amaral, A.C.F. de Souza, Cda.S.; Calabrese, Kda.S.; Abreu-Silva, A.L. Ultrastructural changes and death of Leishmania infantum promastigotes induced by Morinda citrifolia Linn. fruit (Noni) juice treatment. Evid. Based Complement. Alternat. Med., 2016, 2016, 5063540.
[http://dx.doi.org/10.1155/2016/5063540] [PMID: 27313649]
[28]
Sattar, F.A.; Ahmed, F.; Ahmed, N.; Sattar, S.A.; Malghani, M.A.K.; Choudhary, M.I. A double-blind, randomized, clinical trial on the antileishmanial activity of a Morinda citrifolia (Noni) stem extract and its major constituents. Nat. Prod. Commun., 2012, 7(2), 195-196.
[http://dx.doi.org/10.1177/1934578X1200700218] [PMID: 22474954]
[29]
Da Silva, B.J.M.; Souza-Monteiro, J.R.; Rogez, H.; Crespo-López, M.E.; Do Nascimento, J.L.M.; Silva, E.O. Selective effects of Euterpe oleracea (açai) on Leishmania (Leishmania) amazonensis and Leishmania infantum. Biomed. Pharmacother., 2018, 97, 1613-1621.
[http://dx.doi.org/10.1016/j.biopha.2017.11.089] [PMID: 29793323]
[30]
Maquiaveli, C.D.C.; Oliveira, E.; Sá, A.M.; Vieira, P.C.; da Silva, E.R. Stachytarpheta cayennensis extract inhibits promastigote and amastigote growth in Leishmania amazonensis via parasite arginase inhibition. J. Ethnopharmacol., 2016, 192, 108-113.
[http://dx.doi.org/10.1016/j.jep.2016.07.044] [PMID: 27432217]
[31]
Maquiaveli, C.D.C.; Rochetti, A.L.; Fukumasu, H.; Vieira, P.C.; da Silva, E.R. Antileishmanial activity of verbascoside: Selective arginase inhibition of intracellular amastigotes of Leishmania (Leishmania) amazonensis with resistance induced by LPS plus IFN-& Biochem. Pharmacol., 2017, 127, 28-33.
[http://dx.doi.org/10.1016/j.bcp.2016.12.018] [PMID: 28017773]
[32]
Nilma de Souza, F.; Desoti, V.C.; Dias, A.; da Silva, Y.C.; de Azevedo dos Santos, A.P.; Passarini, G.M. Styrylpyrone, isolated from an Amazon plant, induces cell cycle arrest and autophagy in Leishmania amazonensis. Nat. Prod. Res., 2020, 35(22), 4729-4733.
[http://dx.doi.org/10.1080/14786419.2020.1715395] [PMID: 31983230]
[33]
Silva, L.G.; Gomes, K.S.; Costa-Silva, T.A.; Romanelli, M.M.; Tempone, A.G.; Sartorelli, P. Calanolides E1 and E2, two related coumarins from Calophyllum brasiliense Cambess. (Clusiaceae), displayed in vtro activity against amastigote forms of Trypanosoma cruzi and Leish-mania infantum. Nat. Prod. Res., 2020, 35(23), 5373-5377.
[http://dx.doi.org/10.1080/14786419.2020.1765347] [PMID: 32441133]
[34]
Kedzierski, L.; Sakthianandeswaren, A.; Curtis, J.M.; Andrews, P.C.; Junk, P.C.; Kedzierska, K. Leishmaniasis: Current treatment and prospects for new drugs and vaccines. Curr. Med. Chem., 2009, 16(5), 599-614.
[http://dx.doi.org/10.2174/092986709787458489] [PMID: 19199925]
[35]
Hussain, H.; Al-Harrasi, A.; Al-Rawahi, A.; Green, I.R.; Gibbons, S. Fruitful decade for antileishmanial compounds from 2002 to late 2011. Chem. Rev., 2014, 114(20), 10369-10428.
[http://dx.doi.org/10.1021/cr400552x] [PMID: 25253511]
[36]
Santos, S.S.; de Araújo, R.V.; Giarolla, J.; Seoud, O.E.; Ferreira, E.I. Searching for drugs for Chagas disease, leishmaniasis and schistoso-miasis: A review. Int. J. Antimicrob. Agents, 2020, 55(4), 105906.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105906] [PMID: 31987883]
[37]
Gomes, D.C.O.; Muzitano, M.F.; Costa, S.S.; Rossi-Bergmann, B. Effectiveness of the immunomodulatory extract of Kalanchoe pinnata against murine visceral leishmaniasis. Parasitology, 2010, 137(4), 613-618.
[http://dx.doi.org/10.1017/S0031182009991405] [PMID: 19961648]
[38]
Guimarães, L.R.C.; Rodrigues, A.P.D.; Marinho, P.S.B.; Muller, A.H.; Guilhon, G.M.S.; Santos, L.S.; do Nascimento, J.L.; Silva, E.O. Activity of the julocrotine, a glutarimide alkaloid from Croton pullei var. glabrior, on Leishmania (L.) amazonensis. Parasitol. Res., 2010, 107(5), 1075-1081.
[http://dx.doi.org/10.1007/s00436-010-1973-0] [PMID: 20661748]
[39]
M., Netto E; Tada, MS.; Golightly, L.; Kalter, DC; Lago, E; Barreto, AC Conceitos de uma população local a respeito da leishmaniose mu-cocutânea em uma área endêmica. Rev. Soc. Bras. Med. Trop., 1985, 18, 33-37.
[40]
Pereira, C.; De Oliveira, L.L.; Gonçalves, R.; Amaral, A.C.F.; Kuster, R.M.; Sakuragui, C.M. Phytochemical and phylogenetic analysis of Spondias (Anacardiaceae). Quim. Nova, 2015, 38, 813-816.
[http://dx.doi.org/10.5935/0100-4042.20150087]
[41]
Cabral, B.; Siqueira, E.M.S.; Bitencourt, M.A.O.; Lima, M.C.J.S.; Lima, A.K.; Ortmann, C.F. Phytochemical study and anti-inflammatory and antioxidant potential of Spondias mombin leaves. Rev. Bras. Farmacogn., 2016, 26, 304-311.
[http://dx.doi.org/10.1016/j.bjp.2016.02.002]
[42]
da Silva, A.R.A.; de Morais, S.M.; Marques, M.M.; de Oliveira, D.F.; Barros, C.C.; de Almeida, R.R.; Vieira, Í.G.; Guedes, M.I. Chemical composition, antioxidant and antibacterial activities of two Spondias species from Northeastern Brazil. Pharm. Biol., 2012, 50(6), 740-746.
[http://dx.doi.org/10.3109/13880209.2011.627347] [PMID: 22486631]
[43]
Corthout, J.; Pieters, L.; Claeys, M.; Geerts, S.; Vanden Berghe, D.; Vlietinck, A. Antibacterial and molluscicidal phenolic acids from Spondias mombin. Planta Med., 1994, 60(5), 460-463.
[http://dx.doi.org/10.1055/s-2006-959532] [PMID: 7997478]
[44]
Corthout, J.; Pieters, L.A.; Claeys, M.; Vanden Berghe, D.A.; Vlietinck, A.J. Antiviral ellagitannins from Spondias mombin. Phytochemistry, 1991, 30, 1129-1130.
[http://dx.doi.org/10.1016/S0031-9422(00)95187-2]
[45]
Coelho-Ferreira, M. Medicinal knowledge and plant utilization in an Amazonian coastal community of Marudá, Pará State (Brazil). J. Ethnopharmacol., 2009, 126(1), 159-175.
[http://dx.doi.org/10.1016/j.jep.2009.07.016] [PMID: 19632314]
[46]
Calderon, L de A.; Silva-Jardim, I.; Zuliani, J.P. Silva, A de A e; Ciancaglini, P; Silva, LHP da Amazonian biodiversity: A view of drug development for leishmaniasis and malaria. J. Brazil. Chem. Soc., 2009, 20, 1011-1023.
[47]
dos Santos, A.O.; Costa, M.A.; Ueda-Nakamura, T.; Dias-Filho, B.P.; da Veiga-Júnior, V.F.; de Souza Lima, M.M.; Nakamura, C.V. Leishmania amazonensis: Effects of oral treatment with copaiba oil in mice. Exp. Parasitol., 2011, 129(2), 145-151.
[http://dx.doi.org/10.1016/j.exppara.2011.06.016] [PMID: 21771592]
[48]
Julianti, T.; De Mieri, M.; Zimmermann, S.; Ebrahimi, S.N.; Kaiser, M.; Neuburger, M.; Raith, M.; Brun, R.; Hamburger, M. HPLC-based activity profiling for antiplasmodial compounds in the traditional Indonesian medicinal plant Carica papaya L. J. Ethnopharmacol., 2014, 155(1), 426-434.
[http://dx.doi.org/10.1016/j.jep.2014.05.050] [PMID: 24892830]
[49]
Montrieux, E.; Perera, W.H.; García, M.; Maes, L.; Cos, P.; Monzote, L. In vtro and in vivo activity of major constituents from Pluchea carolinensis against Leishmania amazonensis. Parasitol. Res., 2014, 113(8), 2925-2932.
[http://dx.doi.org/10.1007/s00436-014-3954-1] [PMID: 24906989]
[50]
Sanchez, J.A.; Moreno-Murillo, B.; Cuca, S. Luis, Enrique. Two new secoiridoids from Chelonanthus alatus (Aubl.) Pulle (Gentianaceae) Available from: https://www.redalyc.org/articulo.oa?id=85625780008 (Accessed on May 12, 2021).
[51]
Bierer, D.E.; Gerber, R.E.; Jolad, S.D.; Ubillas, R.P.; Randle, J.; Nauka, E. Isolation, structure elucidation, and synthesis of irlbacholine, l,22-bis [[[2-(trimethylammonium)ethoxy]- phosphinyl]oxy]docosane: A novel antifungal plant metabolite from Irlbachia alata and An-thocleista djalonensis. J. Org. Chem., 1995, 60, 7022-7026.
[http://dx.doi.org/10.1021/jo00126a066]
[52]
Lu, Q.; Ubillas, R.P.; Zhou, Y.; Dubenko, L.G.; Dener, J.M.; Litvak, J.; Phuan, P.W.; Flores, M.; Ye, Z.; Gerber, R.E.; Truong, T.; Bierer, D.E. Synthetic analogues of irlbacholine: a novel antifungal plant metabolite isolated from Irlbachia alata. J. Nat. Prod., 1999, 62(6), 824-828.
[http://dx.doi.org/10.1021/np980425n] [PMID: 10395496]
[53]
Soto, J.; Arana, B.A.; Toledo, J.; Rizzo, N.; Vega, J.C.; Diaz, A.; Luz, M.; Gutierrez, P.; Arboleda, M.; Berman, J.D.; Junge, K.; Engel, J.; Sindermann, H. Miltefosine for new world cutaneous leishmaniasis. Clin. Infect. Dis., 2004, 38(9), 1266-1272.
[http://dx.doi.org/10.1086/383321] [PMID: 15127339]
[54]
Croft, S.L.; Engel, J. Miltefosine-discovery of the antileishmanial activity of phospholipid derivatives. Trans. R. Soc. Trop. Med. Hyg., 2006, 100(Suppl. 1), S4-S8.
[http://dx.doi.org/10.1016/j.trstmh.2006.03.009] [PMID: 16904717]
[55]
Costa, E.V.; Pinheiro, M.L.B.; de Souza, A.D.L.; Barison, A.; Campos, F.R.; Valdez, R.H.; Ueda-Nakamura, T.; Filho, B.P.; Nakamura, C.V. Trypanocidal activity of oxoaporphine and pyrimidine-&-carboline alkaloids from the branches of Annona foetida Mart. (An-nonaceae). Molecules, 2011, 16(11), 9714-9720.
[http://dx.doi.org/10.3390/molecules16119714] [PMID: 22113579]
[56]
Costa, E.V.; Pinheiro, M.L.B.; Xavier, C.M.; Silva, J.R.A.; Amaral, A.C.F.; Souza, A.D.L.; Barison, A.; Campos, F.R.; Ferreira, A.G.; Ma-chado, G.M.; Leon, L.L. A pyrimidine-&-carboline and other alkaloids from Annona foetida with antileishmanial activity. J. Nat. Prod., 2006, 69(2), 292-294.
[http://dx.doi.org/10.1021/np050422s] [PMID: 16499336]
[57]
Behrens, M.D.; Tellis, C.J.M. Chagas, MdS. Arrabidaea chica (Humb. & Bonpl.) B. Verlot; Bignoniaceae, 2012.
[58]
Da Silva, B.J.M.; Da Silva, R.R.P.; Rodrigues, A.P.D.; Farias, L.H.S.; Do Nascimento, J.L.M.; Silva, E.O. Physalis angulata induces death of promastigotes and amastigotes of Leishmania (Leishmania) amazonensisvia the generation of reactive oxygen species. Micron, 2016, 82, 25-32.
[http://dx.doi.org/10.1016/j.micron.2015.12.001] [PMID: 26765293]
[59]
Nogueira, R.C.; Rocha, V.P.C.; Nonato, F.R.; Tomassini, T.C.B.; Ribeiro, I.M.; dos Santos, R.R.; Soares, M.B. Genotoxicity and antileish-manial activity evaluation of Physalis angulata concentrated ethanolic extract. Environ. Toxicol. Pharmacol., 2013, 36(3), 1304-1311.
[http://dx.doi.org/10.1016/j.etap.2013.10.013] [PMID: 24231691]
[60]
Kandaswamy, D.; Venkateshbabu, N.; Gogulnath, D.; Kindo, A.J. Dentinal tubule disinfection with 2% chlorhexidine gel, propolis, morin-da citrifolia juice, 2% povidone iodine, and calcium hydroxide. Int. Endod. J., 2010, 43(5), 419-423.
[http://dx.doi.org/10.1111/j.1365-2591.2010.01696.x] [PMID: 20518935]
[61]
Kang, J.; Xie, C.; Li, Z.; Nagarajan, S.; Schauss, A.G.; Wu, T.; Wu, X. Flavonoids from acai (Euterpe oleracea Mart.) pulp and their anti-oxidant and anti-inflammatory activities. Food Chem., 2011, 128(1), 152-157.
[http://dx.doi.org/10.1016/j.foodchem.2011.03.011] [PMID: 25214342]
[62]
Souza-Monteiro, J.R.; Hamoy, M.; Santana-Coelho, D.; Arrifano, G.P.F.; Paraense, R.S.O.; Costa-Malaquias, A.; Mendonça, J.R.; da Silva, R.F.; Monteiro, W.S.; Rogez, H.; de Oliveira, D.L.; do Nascimento, J.L.; Crespo-López, M.E. Anticonvulsant properties of Euterpe oleracea in mice. Neurochem. Int., 2015, 90, 20-27.
[http://dx.doi.org/10.1016/j.neuint.2015.06.014] [PMID: 26142570]
[63]
Bonney, K.M. Chagas disease in the 21st century: A public health success or an emerging threat? Parasite, 2014, 21, 11.
[http://dx.doi.org/10.1051/parasite/2014012] [PMID: 24626257]
[64]
Fairlamb, A.H.; Gow, N.A.R.; Matthews, K.R.; Waters, A.P. Drug resistance in eukaryotic microorganisms. Nat. Microbiol., 2016, 1(7), 16092.
[http://dx.doi.org/10.1038/nmicrobiol.2016.92] [PMID: 27572976]
[65]
Hotez, P.J.; Pecoul, B. “Manifesto” for advancing the control and elimination of neglected tropical diseases. PLoS Negl. Trop. Dis., 2010, 4(5), e718.
[http://dx.doi.org/10.1371/journal.pntd.0000718] [PMID: 20520793]
[66]
Izumi, E.; Ueda-Nakamura, T.; Veiga, V.F., Jr; Pinto, A.C.; Nakamura, C.V. Terpenes from Copaifera demonstrated in vtro antiparasitic and synergic activity. J. Med. Chem., 2012, 55(7), 2994-3001.
[http://dx.doi.org/10.1021/jm201451h] [PMID: 22440015]
[67]
Matos, M de Q.; Felfili, J.M. Floristics, phytosociology and diversity of tree vegetation in gallery forests of Sete Cidades National Park (PNSC), Piauí, Brazil. Acta Bot. Bras., 2010, 24, 483-496.
[http://dx.doi.org/10.1590/S0102-33062010000200019]
[68]
Cechinel Filho, V.; Meyre-Silva, C.; Niero, R. Chemical and pharmacological aspects of the genus Calophyllum. Chem. Biodivers., 2009, 6(3), 313-327.
[http://dx.doi.org/10.1002/cbdv.200800082] [PMID: 19319867]
[69]
Brenzan, M; Dias-Filho, B; Torres-Santos, E; Cardozo-Filho, L; Cortez, L; Cortez, D Antileishmanial activity of extracts from Calophyllum brasiliense Cambess leaves obtained by conventional and supercritical extraction. Planta Med, 2014, 80, P2O38.
[http://dx.doi.org/10.1055/s-0034-1395030]
[70]
Cardoso, B.M.; De Mello, T.F.P.; Lera, D.S.L.; Brenzan, M.A.; Cortez, D.A.G.; Donatti, L.; Silveira, T.G.; Lonardoni, M.V. Antileishmanial activity of a Calophyllum brasiliense leaf extract. Planta Med, 2017, 83, (1-02), 57-62..
[http://dx.doi.org/10.1055/s-0042-107673] [PMID: 27224267]
[71]
Rea, A.; Tempone, A.G.; Pinto, E.G.; Mesquita, J.T.; Rodrigues, E.; Silva, L.G.M.; Sartorelli, P.; Lago, J.H. Soulamarin isolated from Calophyllum brasiliense (Clusiaceae) induces plasma membrane permeabilization of Trypanosoma cruzi and mytochondrial dysfunction. PLoS Negl. Trop. Dis., 2013, 7(12), e2556.
[http://dx.doi.org/10.1371/journal.pntd.0002556] [PMID: 24340110]
[72]
Morrison, T.E. Reemergence of chikungunya virus. J. Virol., 2014, 88(20), 11644-11647.
[http://dx.doi.org/10.1128/JVI.01432-14] [PMID: 25078691]
[73]
WHO. Dengue and severe dengue. Available from: https://www.who.int/health-topics/dengue-and-severe-dengue#tab=tab_1 (Accessed on May 12, 2021).
[74]
Heitzman, M.E.; Neto, C.C.; Winiarz, E.; Vaisberg, A.J.; Hammond, G.B. Ethnobotany, phytochemistry and pharmacology of Uncaria (Rubiaceae). Phytochemistry, 2005, 66(1), 5-29.
[http://dx.doi.org/10.1016/j.phytochem.2004.10.022] [PMID: 15649507]
[75]
Reis, S.R.I.N.; Valente, L.M.M.; Sampaio, A.L.; Siani, A.C.; Gandini, M.; Azeredo, E.L.; D’Avila, L.A.; Mazzei, J.L.; Henriques, Md.; Kubelka, C.F. Immunomodulating and antiviral activities of Uncaria tomentosa on human monocytes infected with Dengue Virus-2. Int. Immunopharmacol., 2008, 8(3), 468-476.
[http://dx.doi.org/10.1016/j.intimp.2007.11.010] [PMID: 18279801]
[76]
Wurm, M.; Kacani, L.; Laus, G.; Keplinger, K.; Dierich, M.P. Pentacyclic oxindole alkaloids from Uncaria tomentosa induce human endo-thelial cells to release a lymphocyte-proliferation-regulating factor. Planta Med., 1998, 64(8), 701-704.
[http://dx.doi.org/10.1055/s-2006-957561] [PMID: 9933988]
[77]
‘Plantas Medicinales Usadas por Mujeres Nativas y Mestizas en la Región Ucayali. ASB parthership for the tropical forest margins. Available from: https://www.asb.cgiar.org/publication/plantas-medicinales-usadas-por-mujeres-nativas-y-mestizas-en-la-regi (Accessed on May 12, 2021).
[78]
Cabral, M.M.O.; Alencar, J.A.; Guimarães, A.E.; Kato, M.J. Larvicidal activity of grandisin against Aedes aegypti. J. Am. Mosq. Control Assoc., 2009, 25(1), 103-105.
[http://dx.doi.org/10.2987/08-5828.1] [PMID: 19432075]
[79]
Sukumar, K.; Perich, M.J.; Boobar, L.R. Botanical derivatives in mosquito control: A review. J. Am. Mosq. Control Assoc., 1991, 7(2), 210-237.
[PMID: 1680152]
[80]
Pontual, E.V.; de Lima Santos, N.D.; de Moura, M.C.; Coelho, L.C.B.B.; do Amaral Ferraz Navarro, D.M.; Napoleão, T.H.; Paiva, P.M. Trypsin inhibitor from Moringa oleifera flowers interferes with survival and development of Aedes aegypti larvae and kills bacteria inhab-itant of larvae midgut. Parasitol. Res., 2014, 113(2), 727-733.
[http://dx.doi.org/10.1007/s00436-013-3702-y] [PMID: 24271154]
[81]
Lawrence, P.K.; Koundal, K.R. Plant protease inhibitors in control of phytophagous insects. In: Electron. J. Biotechnol, 2002, 5, p. v.5 n.1..
[82]
Narciso, J.O.A.; Soares, R.O.; Reis dos Santos Mallet, J.; Guimarães, A.É.; de Oliveira Chaves, M.C.; Barbosa-Filho, J.M.; Maleck, M. Burchellin: study of bioactivity against Aedes aegypti. Parasit. Vectors, 2014, 7, 172.
[http://dx.doi.org/10.1186/1756-3305-7-172] [PMID: 24713267]
[83]
Dias, C.N.; Moraes, D.F.C. Essential oils and their compounds as Aedes aegypti L. (Diptera: Culicidae) larvicides Review. Parasitol. Res., 2014, 113(2), 565-592.
[http://dx.doi.org/10.1007/s00436-013-3687-6] [PMID: 24265058]
[84]
Dias, C.N.; Alves, L.P.L.; Rodrigues, K.A.D.F.; Brito, M.C.A. Rosa, Cdos.S.; do Amaral, F.M.M.; Monteiro, Odos.S.; Andrade, E.H.; Maia, J.G.; Moraes, D.F. Chemical composition and larvicidal activity of essential oils extracted from Brazilian legal Amazon plants against Aedes aegypti L. (Diptera: Culicidae). Evid. Based Complement. Alternat. Med., 2015, 2015, 490765.
[http://dx.doi.org/10.1155/2015/490765] [PMID: 25949264]
[85]
de Almeida, R.R.P.; Souto, R.N.P.; Bastos, C.N.; da Silva, M.H.L.; Maia, J.G.S. Chemical variation in Piper aduncum and biological prop-erties of its dillapiole-rich essential oil. Chem. Biodivers., 2009, 6(9), 1427-1434.
[http://dx.doi.org/10.1002/cbdv.200800212] [PMID: 19774604]
[86]
Ferreira, T.P.; Oliveira, E.E.; Tschoeke, P.H.; Pinheiro, R.G.; Maia, A.M.S.; Aguiar, R.W.S. Potential use of Negramina (Siparuna guianen-sis Aubl.) essential oil to control wax moths and its selectivity in relation to honey bees. Ind. Crops Prod., 2017, 109, 151-157.
[http://dx.doi.org/10.1016/j.indcrop.2017.08.023]
[87]
Aguiar, R.W.S.; dos Santos, S.F.; da Silva Morgado, F.; Ascencio, S.D.; de Mendonça Lopes, M.; Viana, K.F.; Didonet, J.; Ribeiro, B.M. Insecticidal and repellent activity of Siparuna guianensis Aubl. (Negramina) against Aedes aegypti and Culex quinquefasciatus. PLoS One, 2015, 10(2), e0116765.
[http://dx.doi.org/10.1371/journal.pone.0116765] [PMID: 25646797]
[88]
Andrade, M.A.; Azevedo, C.D.; Motta, F.N.; Santos, M.L.; Silva, C.L.; Santana, J.M.; Bastos, I.M. Essential oils: In vtro activity against Leishmania amazonensis, cytotoxicity and chemical composition. BMC Complement. Altern. Med., 2016, 16(1), 444.
[http://dx.doi.org/10.1186/s12906-016-1401-9] [PMID: 27825341]
[89]
Maia, M.F.; Moore, S.J. Plant-based insect repellents: A review of their efficacy, development and testing. Malar. J., 2011, 10(Suppl. 1), S11.
[http://dx.doi.org/10.1186/1475-2875-10-S1-S11] [PMID: 21411012]
[90]
The World Health Organization (WHO). Snakebite envenoming. 2021. Available from: https://www.who.int/health-topics/snakebite#tab=tab_1 (Accessed on 15th October 2021).
[91]
Manual for diagnosis and treatment of accidents by poisonous animals. 2021. Available from: https://www.icict.fiocruz.br/sites/www.icict.fiocruz.br/files/Manual-de-Diagnostico-e-Tratamento-de-Acidentes-por-Animais-Pe-onhentos.pdf (Accessed on May 13, 2021).
[92]
Rosenfeld, G. Symptomatology, pathology and treatment of snakes bites in South America. In: Venom; Anim: Their Venoms, New York , 1971.
[http://dx.doi.org/10.1016/B978-0-12-138902-4.50021-0]
[93]
da Silva, C.J.; Jorge, M.T.; Ribeiro, L.A. Epidemiology of snakebite in a central region of Brazil. Toxicon, 2003, 41(2), 251-255.
[http://dx.doi.org/10.1016/S0041-0101(02)00287-8] [PMID: 12565745]
[94]
de Moura, V.M.; Freitas de Sousa, L.A.; Cristina Dos-Santos, M.; Almeida Raposo, J.D.; Evangelista Lima, A.; de Oliveira, R.B.; da Silva, M.N.; Veras Mourão, R.H. Plants used to treat snakebites in Santarém, western Pará, Brazil: an assessment of their effectiveness in inhibit-ing hemorrhagic activity induced by Bothrops jararaca venom. J. Ethnopharmacol., 2015, 161, 224-232.
[http://dx.doi.org/10.1016/j.jep.2014.12.020] [PMID: 25536288]
[95]
de Moura, V.M.; da Costa Guimarães, N.; Batista, L.T.; Freitas-de-Sousa, L.A.; de Sousa Martins, J.; de Souza, M.C.S. Oliveira de Al-meida, P.D.; Monteiro, W.M.; de Oliveira, R.B.; Dos-Santos, M.C.; Mourão, R.H.V. Assessment of the anti-snakebite properties of ex-tracts of Aniba fragrans Ducke (Lauraceae) used in folk medicine as complementary treatment in cases of envenomation by Bothrops atrox. J. Ethnopharmacol., 2018, 213, 350-358.
[http://dx.doi.org/10.1016/j.jep.2017.11.027] [PMID: 29183746]
[96]
de Moura, V.M.; da Silva, W.C.R.; Raposo, J.D.A.; Freitas-de-Sousa, L.A.; Dos-Santos, M.C.; de Oliveira, R.B.; Veras Mourão, R.H. The inhibitory potential of the condensed-tannin-rich fraction of Plathymenia reticulata Benth. (Fabaceae) against Bothrops atrox enven-omation. J. Ethnopharmacol., 2016, 183, 136-142.
[http://dx.doi.org/10.1016/j.jep.2016.02.047] [PMID: 26940901]
[97]
Patiño, A.C.; López, J.; Aristizábal, M.; Quintana, J.C. inhibitory Effect extract of Renealmia alpinia Rottb. Maas (Zingiberaceae) on the poison of bothrops asper (mapaná). Biomedica., 2012, 32(3), 365-374.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy