Generic placeholder image

Recent Patents on Nanotechnology

Editor-in-Chief

ISSN (Print): 1872-2105
ISSN (Online): 2212-4020

Review Article

Review on Different Vesicular Drug Delivery Systems (VDDSs) and Their Applications

Author(s): Asma M. Alenzi, Sana A. Albalawi, Shatha G. Alghamdi, Rawan F. Albalawi, Hadeel S. Albalawi and Mona Qushawy*

Volume 17, Issue 1, 2023

Published on: 22 April, 2022

Page: [18 - 32] Pages: 15

DOI: 10.2174/1872210516666220228150624

Price: $65

conference banner
Abstract

Background: Colloidal dispersions, also known as vesicular drug delivery systems (VDDSs), are highly ordered assemblies composed of one or more concentric bilayers formed by the self-assembly of amphiphilic building blocks in the presence of water.

Objective: VDDSs are important to target the entrapped drugs at specific sites inside the body, control the drug release, enhance the drug bioavailability, and reduce undesired side effects.

Methods: There are different types of VDDSs suitable for the entrapment of both hydrophilic and lipophilic drugs. According to the patent composition, VDDSs are classified into lipid-based and nonlipid- based VDDSs.

Results: There are different types of VDDSs which include liposomes, ethosomes, transferosomes, ufasomes, colloidosomes, cubosomes, niosomes, bilosomes, aquasomes, etc.

Conclusion: This review article aims to address the different types of VDDSs, their advantages and disadvantages, and their therapeutic applications.

Keywords: Drug delivery, niosomes, liposomes, bioavailability, drug targeting, colloidal dispersion.

Graphical Abstract
[1]
Kamboj S, Saini V, Maggon N, Bala S, Jhawat V. Vesicular drug delivery systems: A novel approach for drug targeting. Int J Drug Deliv 2013; 5(2): 121-30.
[2]
Biju SS, Talegaonkar S, Mishra PR, Khar RK. Vesicular systems: An overview. Indian J Pharm Sci 2006; 68(2): 141-53.
[3]
Jain S, Jain V, Mahajan SC. Lipid based vesicular drug delivery systems. Adv Pharm 2014; 2014: 574673.
[http://dx.doi.org/10.1155/2014/574673]
[4]
Dwivedi C, Sahu R, Tiwari SP, Satapathy T, Roy A. Role of liposome in novel drug delivery system. J Drug Deliv Ther 2014; 4(2): 116-29.
[http://dx.doi.org/10.22270/jddt.v4i2.768]
[5]
Anwekar H, Patel S, Singhai AK. Liposome-as drug carriers. Int J Pharm Life Sci 2011; 2(7): 945-51.
[6]
Wagner A, Vorauer-Uhl K. Liposome technology for industrial purposes. J Drug Deliv 2011; 2011: 591325.
[7]
Szoka F Jr, Papahadjopoulos D. Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu Rev Biophys Bioeng 1980; 9(1): 467-508.
[http://dx.doi.org/10.1146/annurev.bb.09.060180.002343] [PMID: 6994593]
[8]
Winterhalter M, Lasic DD. Liposome stability and formation: experimental parameters and theories on the size distribution. Chem Phys Lipids 1993; 64(1-3): 35-43.
[http://dx.doi.org/10.1016/0009-3084(93)90056-9] [PMID: 8242841]
[9]
Lee M-K. Liposomes for enhanced bioavailability of water-insoluble drugs: In vivo. evidence and recent approaches. Pharmaceutics 2020; 12(3): 264.
[http://dx.doi.org/10.3390/pharmaceutics12030264] [PMID: 32183185]
[10]
Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: Classification, preparation, and applications. Nanoscale Res Lett 2013; 8(1): 102.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[11]
Mozafari MR. Liposomes: An overview of manufacturing techniques. Cell Mol Biol Lett 2005; 10(4): 711-9.
[PMID: 16341279]
[12]
Sharma A, Sharma US. Liposomes in drug delivery: Progress and limitations. Int J Pharm 1997; 154(2): 123-40.
[http://dx.doi.org/10.1016/S0378-5173(97)00135-X]
[13]
Riaz M. Liposomes preparation methods. Pak J Pharm Sci 1996; 9(1): 65-77.
[PMID: 16414777]
[14]
Sapra P, Allen TM. Ligand-targeted liposomal anticancer drugs. Prog Lipid Res 2003; 42(5): 439-62.
[http://dx.doi.org/10.1016/S0163-7827(03)00032-8] [PMID: 12814645]
[15]
Lukyanov AN, Elbayoumi TA, Chakilam AR, Torchilin VP. Tumor-targeted liposomes: Doxorubicin-loaded long-circulating liposomes modified with anti-cancer antibody. J Control Release 2004; 100(1): 135-44.
[http://dx.doi.org/10.1016/j.jconrel.2004.08.007] [PMID: 15491817]
[16]
Alvi IA, Madan J, Kaushik D, Sardana S, Pandey RS, Ali A. Comparative study of transfersomes, liposomes, and niosomes for topical delivery of 5-fluorouracil to skin cancer cells: preparation, characterization, in-vitro release, and cytotoxicity analysis. Anticancer Drugs 2011; 22(8): 774-82.
[http://dx.doi.org/10.1097/CAD.0b013e328346c7d6] [PMID: 21799471]
[17]
Laniado-Laborín R, Cabrales-Vargas MN, Amphotericin B. Amphotericin B: side effects and toxicity. Rev Iberoam Micol 2009; 26(4): 223-7.
[http://dx.doi.org/10.1016/j.riam.2009.06.003] [PMID: 19836985]
[18]
Schroit AJ, Madsen J, Nayar R. Liposome-cell interactions: In vitro discrimination of uptake mechanism and in vivo targeting strategies to mononuclear phagocytes. Chem Phys Lipids 1986; 40(2-4): 373-93.
[http://dx.doi.org/10.1016/0009-3084(86)90080-0] [PMID: 3527460]
[19]
Patel R, Patel H, Baria A. Formulation and evaluation of liposomes of ketoconazole. Int J Drug Deliv Technol 2009; 1(1): 8834.
[http://dx.doi.org/10.25258/ijddt.v1i1.8834]
[20]
Pace JR, Jog R, Burgess DJ, Hadden MK. Formulation and evaluation of itraconazole liposomes for Hedgehog pathway inhibition. J Liposome Res 2020; 30(3): 305-11.
[http://dx.doi.org/10.1080/08982104.2019.1668011] [PMID: 31576768]
[21]
Sirisha VNL. BhavaniHarika I, Sruthi B, et al. Liposomes-the potential drug carriers. J Pharm (Cairo) 2012; 2(5): 26-38.
[22]
اÇağdaş M, Sezer AD, Bucak S. Liposomes as potential drug carrier systems for drug delivery. Appl Nanotechnol Drug Deliv 2014; 2014: 1-100.
[23]
Singh D, Pradhan M, Nag M, Singh MR. Vesicular system: Versatile carrier for transdermal delivery of bioactives. Artif Cells Nanomed Biotechnol 2015; 43(4): 282-90.
[http://dx.doi.org/10.3109/21691401.2014.883401] [PMID: 24564350]
[24]
Benson HA. Transfersomes for transdermal drug delivery. Expert Opin Drug Deliv 2006; 3(6): 727-37.
[http://dx.doi.org/10.1517/17425247.3.6.727] [PMID: 17076595]
[25]
Fernández-García R, Lalatsa A, Statts L, Bolás-Fernández F, Ballesteros MP, Serrano DR. Transferosomes as nanocarriers for drugs across the skin: Quality by design from lab to industrial scale. Int J Pharm 2020; 573: 118817.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118817] [PMID: 31678520]
[26]
Salem HF, Kharshoum RM, Abou-Taleb HA, Naguib DM. Nanosized transferosome-based intranasal in situ gel for brain targeting of resveratrol: Formulation, optimization, in vitro evaluation, and in vivo pharmacokinetic study. AAPS PharmSciTech 2019; 20(5): 181.
[http://dx.doi.org/10.1208/s12249-019-1353-8] [PMID: 31049748]
[27]
Omar MM, Hasan OA, El Sisi AM. Preparation and optimization of lidocaine transferosomal gel containing permeation enhancers: A promising approach for enhancement of skin permeation. Int J Nanomedicine 2019; 14: 1551-62.
[http://dx.doi.org/10.2147/IJN.S201356] [PMID: 30880964]
[28]
Qushawy M, Nasr A, Abd-Alhaseeb M, Swidan S. Design, optimization and characterization of a transfersomal gel using miconazole nitrate for the treatment of candida skin infections. Pharmaceutics 2018; 10(1): 26.
[http://dx.doi.org/10.3390/pharmaceutics10010026] [PMID: 29473897]
[29]
Sundralingam U, Chakravarthi S, Radhakrishnan AK, Muniyandy S, Palanisamy UD. Efficacy of Emu oil transfersomes for local transdermal delivery of 4-OH tamoxifen in the treatment of breast cancer. Pharmaceutics 2020; 12(9): 807.
[http://dx.doi.org/10.3390/pharmaceutics12090807] [PMID: 32854385]
[30]
Abdelmonem R, Hamed RR, Abdelhalim SA, ElMiligi MF, El-Nabarawi MA. Formulation and characterization of cinnarizine targeted aural transfersomal gel for vertigo treatment: a pharmacokinetic study on rabbits. Int J Nanomedicine 2020; 15: 6211-23.
[http://dx.doi.org/10.2147/IJN.S258764] [PMID: 32904111]
[31]
Aggarwal D, Nautiyal U. Ethosomes: A revew. Int J Pharm Med Res 2016; 4(4): 354-63.
[32]
Patil R, Patil S, Patil S, Patil S. Ethosome: A versatile tool for novel drug delivery system. J Curr Pharm Res 2014; 4(2): 1172.
[http://dx.doi.org/10.33786/JCPR.2014.v04i02.010]
[33]
Verma DD, Fahr A. Synergistic penetration enhancement effect of ethanol and phospholipids on the topical delivery of cyclosporin A. J Control Release 2004; 97(1): 55-66.
[http://dx.doi.org/10.1016/j.jconrel.2004.02.028] [PMID: 15147804]
[34]
Pawar P, Kalamkar R, Jain A, Amberkar S. Ethosomes: A novel tool for herbal drug delivery. IJPPR Hum 2015; 3: 191-202.
[35]
Parashar T, Sachan R, Singh V, et al. Ethosomes: A recent vesicle of transdermal drug delivery system. Int J Res Dev Pharm Life Sci 2013; 2(2): 285-92.
[36]
Ainbinder D, Touitou E. Testosterone ethosomes for enhanced transdermal delivery. Drug Deliv 2005; 12(5): 297-303.
[http://dx.doi.org/10.1080/10717540500176910] [PMID: 16188729]
[37]
Zhou Y, Wei Y-H, Zhang G-Q, Wu X-A. Synergistic penetration of ethosomes and lipophilic prodrug on the transdermal delivery of acyclovir. Arch Pharm Res 2010; 33(4): 567-74.
[http://dx.doi.org/10.1007/s12272-010-0411-2] [PMID: 20422366]
[38]
Godin B, Touitou E. Erythromycin ethosomal systems: Physicochemical characterization and enhanced antibacterial activity. Curr Drug Deliv 2005; 2(3): 269-75.
[http://dx.doi.org/10.2174/1567201054367931] [PMID: 16305429]
[39]
Lodzki M, Godin B, Rakou L, Mechoulam R, Gallily R, Touitou E. Cannabidiol-transdermal delivery and anti-inflammatory effect in a murine model. J Control Release 2003; 93(3): 377-87.
[http://dx.doi.org/10.1016/j.jconrel.2003.09.001] [PMID: 14644587]
[40]
Koli J R, Lin S. Development of anti oxidant ethosomes for topical delivery utilizing the synergistic properties of Vit A palmitate, Vit E and Vit C. AAPS Pharm Sci Tec 2009; 11: 1-8.
[41]
Lakshmi VS, Manohar RD, Mathan S, Dharan SS. Ufasomes: A potential vesicular carrier system. J Pharm Sci Res 2020; 12(10): 1332-5.
[42]
Gebicki JM, Hicks M. Ufasomes are stable particles surrounded by unsaturated fatty acid membranes. Nature 1973; 243(5404): 232-4.
[http://dx.doi.org/10.1038/243232a0] [PMID: 4706295]
[43]
Gebicki JM, Hicks M. Preparation and properties of vesicles enclosed by fatty acid membranes. Chem Phys Lipids 1976; 16(2): 142-60.
[http://dx.doi.org/10.1016/0009-3084(76)90006-2] [PMID: 1269068]
[44]
Sharma A, Arora S. Formulation and in vitro evaluation of ufasomes for dermal administration of methotrexate. Int Sch Res Not 2012; 2012.
[http://dx.doi.org/10.5402/2012/873653]
[45]
Bhattacharya S. Preparation and characterizations of glyceryl oleate ufasomes of terbinafine hydrochloride: A novel approach to trigger Candida albicans fungal infection. Future J Pharm Sci 2021; 7(1): 1-11.
[http://dx.doi.org/10.1186/s43094-020-00143-w]
[46]
Karami Z, Hamidi M. Cubosomes: Remarkable drug delivery potential. Drug Discov Today 2016; 21(5): 789-801.
[http://dx.doi.org/10.1016/j.drudis.2016.01.004] [PMID: 26780385]
[47]
Duttagupta AS, Chaudhary HM, Jadhav KR, Kadam VJ. Cubosomes: Innovative nanostructures for drug delivery. Curr Drug Deliv 2016; 13(4): 482-93.
[http://dx.doi.org/10.2174/1567201812666150224114751] [PMID: 25707403]
[48]
Pan X, Han K, Peng X, et al. Nanostructured cubosomes as advanced drug delivery system. Curr Pharm Des 2013; 19(35): 6290-7.
[http://dx.doi.org/10.2174/1381612811319350006] [PMID: 23470001]
[49]
Gaballa SA, El Garhy OH, Abdelkader H. Cubosomes: Composition, preparation, and drug delivery applications. J Adv Biomed Pharm Sci 2020; 3(1): 1-9.
[50]
Garg G, Saraf S, Saraf S. Cubosomes: an overview. Biol Pharm Bull 2007; 30(2): 350-3.
[http://dx.doi.org/10.1248/bpb.30.350] [PMID: 17268078]
[51]
Tilekar K, Khade P, Kakade S, Kotwal S, Patil R. Cubosomes-A drug delivery system. Int J Pharm Chem Biol Sci 2014; 4(4): 100561.
[52]
Azmi ID, Moghimi SM, Yaghmur A. Cubosomes and hexosomes as versatile platforms for drug delivery. Ther Deliv 2015; 6(12): 1347-64.
[http://dx.doi.org/10.4155/tde.15.81] [PMID: 26652281]
[53]
Yang Z, Tan Y, Chen M, et al. Development of amphotericin B-loaded cubosomes through the SolEmuls technology for enhancing the oral bioavailability. AAPS PharmSciTech 2012; 13(4): 1483-91.
[http://dx.doi.org/10.1208/s12249-012-9876-2] [PMID: 23090113]
[54]
Nasr M, Younes H, Abdel-Rashid RS. Formulation and evaluation of cubosomes containing colchicine for transdermal delivery. Drug Deliv Transl Res 2020; 10(5): 1302-13.
[http://dx.doi.org/10.1007/s13346-020-00785-6] [PMID: 32399604]
[55]
Ahirrao M, Shrotriya S. in vitro and in vivo evaluation of cubosomal in situ nasal gel containing resveratrol for brain targeting. Drug Dev Ind Pharm 2017; 43(10): 1686-93.
[http://dx.doi.org/10.1080/03639045.2017.1338721] [PMID: 28574732]
[56]
Aboud HM, Hassan AH, Ali AA, Abdel-Razik AH. Novel in situ gelling vaginal sponges of sildenafil citrate-based cubosomes for uterine targeting. Drug Deliv 2018; 25(1): 1328-39.
[http://dx.doi.org/10.1080/10717544.2018.1477858] [PMID: 29869515]
[57]
Thompson KL, Williams M, Armes SP. Colloidosomes: Synthesis, properties and applications. J Colloid Interface Sci 2015; 447: 217-28.
[http://dx.doi.org/10.1016/j.jcis.2014.11.058] [PMID: 25533538]
[58]
Rossier-Miranda FJ, Schroën C, Boom RM. Colloidosomes: Versatile microcapsules in perspective. Colloids Surf Physicochem Eng Asp 2009; 343(1-3): 43-9.
[http://dx.doi.org/10.1016/j.colsurfa.2009.01.027]
[59]
Chilkawar RN, Patil SM, Nanjwade BK, Panchal VS. Development and evaluation of colloidosomes of glibenclamide. World J Pharm Res 2014; 933-46.
[60]
Niaz T, Shabbir S, Noor T, Abbasi R, Raza ZA, Imran M. Polyelectrolyte multicomponent colloidosomes loaded with Nisin Z for enhanced antimicrobial activity against foodborne resistant pathogens. Front Microbiol 2018; 8: 2700.
[http://dx.doi.org/10.3389/fmicb.2017.02700] [PMID: 29379490]
[61]
Pandita A, Sharma P. Pharmacosomes: An emerging novel vesicular drug delivery system for poorly soluble synthetic and herbal drugs. Int Sch Res Notices 2013; 2013: 348186.
[62]
Sharma PH, Powar PV, Sharma SS. Pharmacosomes: A novel drug delivery system. Pharma Innov 2014; 3 (10, Part B): 94.
[63]
Semalty A, Semalty M, Rawat BS, Singh D, Rawat MSM. Pharmacosomes: The lipid-based new drug delivery system. Expert Opin Drug Deliv 2009; 6(6): 599-612.
[http://dx.doi.org/10.1517/17425240902967607] [PMID: 19519287]
[64]
Supraja B, Mulangi S. An updated review on pharmacosomes, a vesicular drug delivery system. J Drug Deliv Ther 2019; 9(1-s): 393-402.
[http://dx.doi.org/10.22270/jddt.v9i1-s.2234]
[65]
Meenu S, Shaiju SD. An updated review on pharmacosomes: Novel drug delivery system. J Pharm Sci Res 2020; 12(10): 1252-5.
[66]
Bhingare U, Khadabadi S, Shinde N. Pharmacosomes: A novel drug delivery system. Int J 2014; 3(1): 14-20.
[67]
Kaur A, Sharma N, Harikumar SL. Design and development of ketoprofen pharmacosomes for oral delivery. Phamacophore 2013; 4: 4.
[68]
Semalty A, Semalty M, Singh D, Rawat MS. Development and physicochemical evaluation of pharmacosomes of diclofenac. Acta Pharm 2009; 59(3): 335-44.
[http://dx.doi.org/10.2478/v10007-009-0023-x] [PMID: 19819829]
[69]
Xue F, Lin X, Cai Z, Liu X, Ma Y, Wu M. Doxifluridine-based pharmacosomes delivering miR-122 as tumor microenvironments-activated nanoplatforms for synergistic treatment of hepatocellular carcinoma. Colloids Surf B Biointerfaces 2021; 197: 111367.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111367] [PMID: 33007506]
[70]
Saraf S, Gupta D, Kaur CD, Saraf S. Sphingosomes a novel approach to vesicular drug delivery. Int J Cur Sci Res 2011; 1(2): 63-8.
[71]
Chaudhari SP, Gaikwad SU. Sphingosomes: A novel lipoidal vesicular drug delivery system. System 2020; 5(04): 261-7.
[72]
Kumar D, Sharma D, Singh G, Singh M, Rathore MS. Lipoidal soft hybrid biocarriers of supramolecular construction for drug delivery. Int Sch Res Notices 2012; 2012: 474830.
[http://dx.doi.org/10.5402/2012/474830]
[73]
Thomas DA, Sarris AH, Cortes J, et al. Phase II study of sphingosomal vincristine in patients with recurrent or refractory adult acute lymphocytic leukemia. Cancer 2006; 106(1): 120-7.
[http://dx.doi.org/10.1002/cncr.21595] [PMID: 16331634]
[74]
Kumar A, Kumar B, Singh S, Kaur B, Singh S. A review on phytosomes: Novel approach for herbal phytochemicals. Asian J Pharm Clin Res 2017; 10(10): 41-7.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i10.20424]
[75]
Nimbalkar CK, Hatware K. Phytosomes-novel drug delivery system. Indian J Drugs 2017; 5(1): 16-36.
[76]
Karimi N, Ghanbarzadeh B, Hamishehkar H. Phytosome and liposome: The beneficial encapsulation systems in drug delivery and food application. Appl Biotechnol 2015; 2(3): 17-27.
[77]
Sharma D, Bhujbale AA, Vadgaon P. Phytosomes is a novel drug delivery system based herbal formulation: An review. PharmaTutor 2018; 6(3): 23-6.
[http://dx.doi.org/10.29161/PT.v6.i3.2018.23]
[78]
Awasthi R, Kulkarni GT, Pawar VK. Phytosomes: An approach to increase the bioavailability of plant extracts. Int J Pharm Pharm Sci 2011; 3(2): 1-3.
[79]
Babazadeh A, Zeinali M, Hamishehkar H. Nano-Phytosome: A developing platform for herbal anti-cancer agents in cancer therapy. Curr Drug Targets 2018; 19(2): 170-80.
[http://dx.doi.org/10.2174/1389450118666170508095250] [PMID: 28482783]
[80]
Anitha V, Reddy PD, Ramkanth S. Phytosomes: A promising technology in novel herbal drug delivery system. Pharma News 2021. [Epub ahead of print]
[81]
Sahu AR, Bothara SB. Formulation and evaluation of phytosome drug delivery system of Boswellia serrata extract. Int J Res Med 2015; 4(2): 94-9.
[82]
Das M K, Kalita B. Design and evaluation of phyto-phospholipid complexes (phytosomes) of rutin for transdermal application. J Appl Pharm Sci 2014; 4(10): 051-7.
[83]
Rathee S, Kamboj A. Optimization and development of antidiabetic phytosomes by the Box-Behnken design. J Liposome Res 2018; 28(2): 161-72.
[http://dx.doi.org/10.1080/08982104.2017.1311913] [PMID: 28337938]
[84]
Panahi Y, Kianpour P, Mohtashami R, Jafari R, Simental-Mendيa LE, Sahebkar A. Efficacy and safety of phytosomal curcumin in non-alcoholic fatty liver disease: A randomized controlled trial. Drug Res (Stuttg) 2017; 67(4): 244-51.
[http://dx.doi.org/10.1055/s-0043-100019] [PMID: 28158893]
[85]
Teng C-F, Yu C-H, Chang H-Y, et al. Chemopreventive effect of phytosomal curcumin on hepatitis B virus-related hepatocellular carcinoma in A transgenic mouse model. Sci Rep 2019; 9(1): 10338.
[http://dx.doi.org/10.1038/s41598-019-46891-5] [PMID: 31316146]
[86]
Kalra N, Dhanya V, Saini V, Jeyabalan G. Virosomes: As a drug delivery carrier. Am J Adv Drug Deliv 2013; 1(1): 29-35.
[87]
Singh N, Gautam SP, Kumari N, Kaur R, Kaur M. Virosomes as novel drug delivery system: An overview. PharmaTutor 2017; 5(9): 47-55.
[88]
Rathor S, Soni P, Lal D. Unique drug delivery system: Virosomes. Res J Pharm Dos Forms Technol 2019; 11(4): 304-8.
[http://dx.doi.org/10.5958/0975-4377.2019.00050.8]
[89]
Bron R, Ortiz A, Dijkstra J, Stegmann T, Wilschut J. Preparation, properties, and applications of reconstituted influenza virus envelopes (virosomes). Methods Enzymol 1993; 220: 313-31.
[http://dx.doi.org/10.1016/0076-6879(93)20091-G] [PMID: 8350760]
[90]
Wilschut J. Influenza vaccines: The virosome concept. Immunol Lett 2009; 122(2): 118-21.
[http://dx.doi.org/10.1016/j.imlet.2008.11.006] [PMID: 19100779]
[91]
Rathore P, Swami G. Virosomes: A novel vaccination technology. Int J Pharm Sci Res 2012; 3(10): 3591.
[92]
Zhang X, Zong W, Wang J, et al. Multicompartmentalized vesosomes containing DOX loaded liposomes and 5FU loaded liposomes for synergistic tumor treatment. New J Chem 2019; 43(12): 4895-9.
[http://dx.doi.org/10.1039/C9NJ00238C]
[93]
Paleos CM, Tsiourvas D, Sideratou Z, Pantos A. Formation of artificial multicompartment vesosome and dendrosome as prospected drug and gene delivery carriers. J Control Release 2013; 170(1): 141-52.
[http://dx.doi.org/10.1016/j.jconrel.2013.05.011] [PMID: 23707326]
[94]
Baranowski P, Karolewicz B, Gajda M, Pluta J. Ophthalmic drug dosage forms: Characterisation and research methods. ScientificWorldJournal 2014; 2014: 861904.
[95]
Shah P, Jariwala R, Kapadiya S, Sabale VP, Patel P, Chaudhari PM. Niosomes: A novel nanometric vesicular system for drug delivery. In: Nanocarriers: Drug Delivery System. Springer 2021; pp. 201-26.
[http://dx.doi.org/10.1007/978-981-33-4497-6_8]
[96]
Bennett L. Topical versus systemic ocular drug delivery. In: Ocular Drug Delivery: Advances, Challenges and Applications. Springer 2016; pp. 53-74.
[http://dx.doi.org/10.1007/978-3-319-47691-9_5]
[97]
Ibraheem D, Elaissari A, Fessi H. Gene therapy and DNA delivery systems. Int J Pharm 2014; 459(1-2): 70-83.
[http://dx.doi.org/10.1016/j.ijpharm.2013.11.041] [PMID: 24286924]
[98]
Karmali PP, Chaudhuri A. Cationic liposomes as non-viral carriers of gene medicines: Resolved issues, open questions, and future promises. Med Res Rev 2007; 27(5): 696-722.
[http://dx.doi.org/10.1002/med.20090] [PMID: 17022036]
[99]
Zhdanov RI, Podobed OV, Vlassov VV. Cationic lipid-DNA complexes-lipoplexes-for gene transfer and therapy. Bioelectrochemistry 2002; 58(1): 53-64.
[http://dx.doi.org/10.1016/S1567-5394(02)00132-9] [PMID: 12401571]
[100]
Zhang X-X, McIntosh TJ, Grinstaff MW. Functional lipids and lipoplexes for improved gene delivery. Biochimie 2012; 94(1): 42-58.
[http://dx.doi.org/10.1016/j.biochi.2011.05.005] [PMID: 21621581]
[101]
Vhora I, Lalani R, Bhatt P, et al. Colloidally stable small unilamellar stearyl amine lipoplexes for effective BMP-9 gene delivery to stem cells for osteogenic differentiation. AAPS PharmSciTech 2018; 19(8): 3550-60.
[http://dx.doi.org/10.1208/s12249-018-1161-6] [PMID: 30187446]
[102]
Caracciolo G, Amenitsch H. Cationic liposome/DNA complexes: From structure to interactions with cellular membranes. Eur Biophys J 2012; 41(10): 815-29.
[http://dx.doi.org/10.1007/s00249-012-0830-8] [PMID: 22710765]
[103]
Uchegbu IF, Vyas SP. Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int J Pharm 1998; 172(1-2): 33-70.
[http://dx.doi.org/10.1016/S0378-5173(98)00169-0]
[104]
Ahmed A, Ghourab M, Gad S, Qushawy M. The application of plackett-burman design and response surface methodology for optimization of formulation variables to produce piroxicam niosomes. Int J Drug Dev Res 2013; 5(2): 121-30.
[105]
Chen S, Hanning S, Falconer J, Locke M, Wen J. Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications. Eur J Pharm Biopharm 2019; 144: 18-39.
[http://dx.doi.org/10.1016/j.ejpb.2019.08.015] [PMID: 31446046]
[106]
Tangri P, Khurana S. Niosomes: Formulation and evaluation. Int J 2011; 2229: 7499.
[107]
Moghassemi S, Hadjizadeh A. Nano-niosomes as nanoscale drug delivery systems: an illustrated review. J Control Release 2014; 185: 22-36.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.015] [PMID: 24747765]
[108]
Khoee S, Yaghoobian M. Niosomes: A novel approach in modern drug delivery systems. In: Nanostructures for drug delivery. Elsevier 2017; pp. 207-37.
[http://dx.doi.org/10.1016/B978-0-323-46143-6.00006-3]
[109]
Grit M, Crommelin DJ. Chemical stability of liposomes: implications for their physical stability. Chem Phys Lipids 1993; 64(1-3): 3-18.
[http://dx.doi.org/10.1016/0009-3084(93)90053-6] [PMID: 8242840]
[110]
Sahin NO. Niosomes as nanocarrier systems. Nanomater Nanosyst Biomed Appl 2007; 67-81.
[http://dx.doi.org/10.1007/978-1-4020-6289-6_4]
[111]
Arunachalam A, Jeganath S, Yamini K, Tharangini K. Niosomes: A novel drug delivery system. Int J Novel Trends Pharm Sci 2012; 2(1): 25-31.
[112]
Marianecci C, Di Marzio L, Rinaldi F, et al. Niosomes from 80s to present: the state of the art. Adv Colloid Interface Sci 2014; 205: 187-206.
[http://dx.doi.org/10.1016/j.cis.2013.11.018] [PMID: 24369107]
[113]
Keshav J. Niosomes as apotential carrier system: A review. Int J Pharm Chem Biol Sci 2015; 5(4): 947-59.
[114]
Imran M, Shah MR, Ullah F, et al. Sugar-based novel niosomal nanocarrier system for enhanced oral bioavailability of levofloxacin. Drug Deliv 2016; 23(9): 3653-64.
[http://dx.doi.org/10.1080/10717544.2016.1214991] [PMID: 27886514]
[115]
Varshosaz J, Pardakhty A, Hajhashemi VI, Najafabadi AR. Development and physical characterization of sorbitan monoester niosomes for insulin oral delivery. Drug Deliv 2003; 10(4): 251-62.
[http://dx.doi.org/10.1080/drd_10_4_251] [PMID: 14612341]
[116]
Xu Y-Q, Chen W-R, Tsosie JK, et al. Niosome encapsulation of curcumin: Characterization and cytotoxic effect on ovarian cancer cells. J Nanomater 2016; 2016: 6365295.
[117]
Salem HF, Kharshoum RM, Abo El-Ela FI. F AG, Abdellatif KRA. Evaluation and optimization of pH-responsive niosomes as a carrier for efficient treatment of breast cancer. Drug Deliv Transl Res 2018; 8(3): 633-44.
[http://dx.doi.org/10.1007/s13346-018-0499-3] [PMID: 29488171]
[118]
Abu Hashim II, El-Dahan MS, Yusif RM, Abd-Elgawad A-EH, Arima H. Potential use of niosomal hydrogel as an ocular delivery system for atenolol. Biol Pharm Bull 2014; 37(4): 541-51.
[http://dx.doi.org/10.1248/bpb.b13-00724] [PMID: 24694602]
[119]
Ramadan AA, Eladawy SA, El-Enin ASMA, Hussein ZM. Development and investigation of timolol maleate niosomal formulations for the treatment of glaucoma. J Pharm Investig 2020; 50(1): 59-70.
[http://dx.doi.org/10.1007/s40005-019-00427-1]
[120]
Singh S, Parashar P, Kanoujia J, Singh I, Saha S, Saraf SA. Transdermal potential and anti-gout efficacy of febuxostat from niosomal gel. J Drug Deliv Sci Technol 2017; 39: 348-61.
[http://dx.doi.org/10.1016/j.jddst.2017.04.020]
[121]
Hakimi Parizi M, Pardakhty A. harifi I, et al. Antileishmanial activity and immune modulatory effects of benzoxonium chloride and its entrapped forms in niosome on Leishmania tropica. J Parasit Dis 2019; 43(3): 406-15.
[http://dx.doi.org/10.1007/s12639-019-01105-7] [PMID: 31406406]
[122]
Ag Seleci D, Seleci M, Stahl F, Scheper T. Tumor homing and penetrating peptide-conjugated niosomes as multi-drug carriers for tumor-targeted drug delivery. RSC Advances 2017; 7(53): 33378-84.
[http://dx.doi.org/10.1039/C7RA05071B]
[123]
Banerjee S, Sen KK. Aquasomes: A novel nanoparticulate drug carrier. J Drug Deliv Sci Technol 2018; 43: 446-52.
[http://dx.doi.org/10.1016/j.jddst.2017.11.011]
[124]
Chaudhary JS. Aquasomes; A new approach for delivering therapeutics: An overview. Asian J Pharm 2018; 12(02): S420.
[125]
Umashankar MS, Sachdeva RK, Gulati M. Aquasomes: A promising carrier for peptides and protein delivery. Nanomedicine 2010; 6(3): 419-26.
[http://dx.doi.org/10.1016/j.nano.2009.11.002] [PMID: 19931422]
[126]
Narang N. Aquasomes: Self-assembled systems for the delivery of bioactive molecules. Asian J Pharm 2014; 6(2): 102931.
[http://dx.doi.org/10.4103/0973-8398.102931]
[127]
Jain SS, Jagtap PS, Dand NM, Jadhav KR, Kadam VJ. Aquasomes: A novel drug carrier. J Appl Pharm Sci 2012; 2(1): 184-92.
[128]
Kumar JM, Kumar VV, Mounica R, Bolla SP, Pavani M. Aquasomes-the best carriers for protein and peptide delivery. Asian J Pharm Res Dev 2013; 7(7): 2585-607.
[129]
Sahoo CK, Ramana DV, Satyanarayana K, Mohanty D. Drug Delivery through Aquasomes. J Pharm Adv Res 2018; 1: 156-62.
[130]
Cherian AK, Rana AC, Jain SK. Self-assembled carbohydrate-stabilized ceramic nanoparticles for the parenteral delivery of insulin. Drug Dev Ind Pharm 2000; 26(4): 459-63.
[http://dx.doi.org/10.1081/DDC-100101255] [PMID: 10769790]
[131]
Damera DP, Kaja S, Janardhanam LSL, Alim S, Venuganti VVK, Nag A. Synthesis, detailed characterization, and dual drug delivery application of BSA loaded aquasomes. ACS Appl Bio Mater 2019; 2(10): 4471-84.
[http://dx.doi.org/10.1021/acsabm.9b00635]
[132]
Palekar-Shanbhag P, Lande S, Chandra R, Rane D. Bilosomes: Superior vesicular carriers. Curr Drug Ther 2020; 15(4): 312-20.
[http://dx.doi.org/10.2174/1574885514666190917145510]
[133]
Chilkawar R, Nanjwade B, Nwaji M, Idris S, Mohamied A. Bilosomes based drug delivery system. J Chem Appl 2015; 2(5): 5.
[134]
Jyolsna P. Overview on different organic nanomaterials in medical field. J Pharm Sci Res 2020; 12(7): 973-7.
[135]
Shukla A, Mishra V, Kesharwani P. Bilosomes in the context of oral immunization: Development, challenges and opportunities. Drug Discov Today 2016; 21(6): 888-99.
[http://dx.doi.org/10.1016/j.drudis.2016.03.013] [PMID: 27038539]
[136]
Shukla A, Khatri K, Gupta PN, Goyal AK, Mehta A, Vyas SP. Oral immunization against hepatitis B using bile salt stabilized vesicles (bilosomes). J Pharm Pharm Sci 2008; 11(1): 59-66.
[http://dx.doi.org/10.18433/J3K01M] [PMID: 18445364]
[137]
Al-Mahallawi AM, Abdelbary AA, Aburahma MH. Investigating the potential of employing bilosomes as a novel vesicular carrier for transdermal delivery of tenoxicam. Int J Pharm 2015; 485(1-2): 329-40.
[http://dx.doi.org/10.1016/j.ijpharm.2015.03.033] [PMID: 25796122]
[138]
El-Nabarawi MA, Shamma RN, Farouk F, Nasralla SM. Bilosomes as a novel carrier for the cutaneous delivery for dapsone as a potential treatment of acne: Preparation, characterization and in vivo skin deposition assay. J Liposome Res 2020; 30(1): 1-11.
[http://dx.doi.org/10.1080/08982104.2019.1577256] [PMID: 31010357]
[139]
Mohsen AM, Salama A, Kassem AA. Development of Acetazolamide loaded bilosomes for improved ocular delivery: Preparation, characterization and in vivo evaluation. J Drug Deliv Sci Technol 2020; 59: 101910.
[http://dx.doi.org/10.1016/j.jddst.2020.101910]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy