Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Investigating the Mechanism of Shengmaiyin (Codonopsis pilosula) in the Treatment of Heart Failure Based on Network Pharmacology

Author(s): Mo Kan*, Jifeng Wang, Sitong Ming, Xin Sui, Zhuang Zhang, Qing Yang, Xiaoran Liu, Jianan Lin, Yanhong Zhang, Qihang Pang, Yaxin Liu, Zhen Li, Na Li and Zhe Lin

Volume 25, Issue 13, 2022

Published on: 14 April, 2022

Page: [2191 - 2202] Pages: 12

DOI: 10.2174/1386207325666220221093415

Price: $65

Abstract

Background and Objective: To explore the molecular mechanism by which Shengmaiyin (Codonopsis pilosula) (SMY) improves isoproterenol (ISO)-induced heart failure (HF) in rats via a traditional Chinese medicine (TCM) integrated pharmacology research platform, The Chinese Medicine Integrated Pharmacology Platform (TCMIP V2.0).

Method: The chemical constituents and drug targets of SMY medicines were identified through TCMIP, and HF disease target information was collected. A prescription Chinese medicinecomponent- core target network was constructed through the TCM network mining module, and biological process and pathway enrichment analyses of core targets were conducted. In vivo experiments in rats were performed to verify the pathway targets. Hematoxylin and eosin staining was used to observe myocardial tissue morphology. ELISA kits were used to detect cAMP content, and Western blotting was used to detect the expression levels of signaling pathway-related proteins.

Results: The TCMIP analysis indicated that SMY treatment of HF activates the GS-β-adrenergic receptor (βAR)-cAMP-protein kinase A (PKA) signaling pathway. The in vivo experimental results confirmed this finding. High-dose SMY significantly improved the morphology of ISO-injured myocardium. The levels of G-protein-coupled receptor (GPCR), adenylate cyclase (AC), βAR, and PKA proteins in myocardial tissue were significantly increased in the SMY group. In addition, the content of cAMP in myocardial tissue was increased, and the content of cAMP in serum was decreased.

Conclusion: Based on the analysis of TCMIP, SMY treatment of HF may activate the GS-βARcAMP- PKA signaling pathway. The findings provide a theoretical basis for further research on the anti-HF mechanism of SMY.

Keywords: Myocardial hypertrophy, isoproterenol hydrochloride (ISO), shengmaiyin (SMY), network pharmacology, TCMIP V2.0, GS-βAR-cAMP-PKA signaling pathway.

Graphical Abstract
[1]
Ahn, M.S.; Yoo, B.S.; Son, J.W.; Yu, M.H.; Kang, D.R.; Lee, H.Y.; Jeon, E.S.; Kim, J.J.; Chae, S.C.; Baek, S.H.; Kang, S.M.; Choi, D.J.; Kim, K.H.; Cho, M.C.; Kim, S.Y. Beta-blocker therapy at discharge in patients with acute heart failure and atrial fibrillation. J. Korean Med. Sci., 2020, 35(33), e278.
[http://dx.doi.org/10.3346/jkms.2020.35.e278] [PMID: 32830467]
[2]
Ambrosy, A.P.; Braunwald, E.; Morrow, D.A.; DeVore, A.D.; McCague, K.; Meng, X.; Duffy, C.I.; Rocha, R.; Velazquez, E.J. Angiotensin receptor-neprilysin inhibition based on history of heart failure and use of renin-angiotensin system antagonists. J. Am. Coll. Cardiol., 2020, 76(9), 1034-1048.
[http://dx.doi.org/10.1016/j.jacc.2020.06.073] [PMID: 32854838]
[3]
Anlu, W.; Dongcheng, C.; He, Z.; Qiuyi, L.; Yan, Z.; Yu, Q.; Hao, X.; Keji, C. Using herbal medicine to target the “microbiota-metabolism-immunity” axis as possible therapy for cardiovascular disease. Pharmacol. Res., 2019, 142, 205-222.
[http://dx.doi.org/10.1016/j.phrs.2019.02.018] [PMID: 30794922]
[4]
DiNello, E.; Bovo, E.; Thuo, P.; Martin, T.G.; Kirk, J.A.; Zima, A.V.; Cao, Q.; Kuo, I.Y. Deletion of cardiac polycystin 2/PC2 results in increased SR calcium release and blunted adrenergic reserve. Am. J. Physiol. Heart Circ. Physiol., 2020, 319(5), H1021-H1035.
[http://dx.doi.org/10.1152/ajpheart.00302.2020] [PMID: 32946258]
[5]
Ghigo, A.; Mika, D. cAMP/PKA signaling compartmentalization in cardiomyocytes: Lessons from FRET-based biosensors. J. Mol. Cell. Cardiol., 2019, 131, 112-121.
[http://dx.doi.org/10.1016/j.yjmcc.2019.04.020] [PMID: 31028775]
[6]
Hegyi, B.; Bányász, T.; Izu, L.T.; Belardinelli, L.; Bers, D.M.; Chen-Izu, Y. β-adrenergic regulation of late Na+ current during cardiac action potential is mediated by both PKA and CaMKII. J. Mol. Cell. Cardiol., 2018, 123, 168-179.
[http://dx.doi.org/10.1016/j.yjmcc.2018.09.006] [PMID: 30240676]
[7]
Jiang, Y.; He, Q.; Zhang, T.; Xiang, W.; Long, Z.; Wu, S. Exploring the mechanism of Shengmai Yin for coronary heart disease based on systematic pharmacology and chemoinformatics. Biosci. Rep., 2020, 40(6), BSR20200286.
[http://dx.doi.org/10.1042/BSR20200286] [PMID: 32436944]
[8]
Qiu, Y.; Mao, Z.J.; Ruan, Y.P.; Zhang, X. Exploration of the anti-insomnia mechanism of Ganoderma by central-peripheral multi-level interaction network analysis. BMC Microbiol., 2021, 21(1), 296.
[http://dx.doi.org/10.1186/s12866-021-02361-5] [PMID: 34715778]
[9]
Wang, P.; Wang, S.; Chen, H.; Deng, X.; Zhang, L.; Xu, H.; Yang, H. TCMIP v2.0 powers the identification of chemical constituents available in Xinglou Chengqi decoction and the exploration of pharmacological mechanisms acting on stroke complicated with Tanre Fushi syndrome. Front. Pharmacol., 2021, 12, 598200.
[http://dx.doi.org/10.3389/fphar.2021.598200] [PMID: 34335236]
[10]
Xu, H.; Zhang, Y.; Wang, P.; Zhang, J.; Chen, H.; Zhang, L.; Du, X.; Zhao, C.; Wu, D.; Liu, F.; Yang, H.; Liu, C. A comprehensive review of integrative pharmacology-based investigation: A paradigm shift in traditional Chinese medicine. Acta Pharm. Sin. B, 2021, 11(6), 1379-1399.
[http://dx.doi.org/10.1016/j.apsb.2021.03.024] [PMID: 34221858]
[11]
Lee, J.H.; Seo, H.W.; Ryu, J.Y.; Lim, C.J.; Yi, K.Y.; Oh, K.S.; Lee, B.H. KR-39038, a Novel GRK5 inhibitor, attenuates cardiac hypertrophy and improves cardiac function in heart failure. Biomol. Ther. (Seoul), 2020, 28(5), 482-489.
[http://dx.doi.org/10.4062/biomolther.2020.129] [PMID: 32856617]
[12]
Linder, J.; Hupfeld, E.; Weyand, M.; Steegborn, C.; Moniot, S. Crystal structure of a class III adenylyl cyclase-like ATP-binding protein from Pseudomonas aeruginosa. J. Struct. Biol., 2020, 211(2), 107534.
[http://dx.doi.org/10.1016/j.jsb.2020.107534] [PMID: 32454240]
[13]
Lukasheva, V.; Devost, D.; Le Gouill, C.; Namkung, Y.; Martin, R.D.; Longpré, J.M.; Amraei, M.; Shinjo, Y.; Hogue, M.; Lagacé, M.; Breton, B.; Aoki, J.; Tanny, J.C.; Laporte, S.A.; Pineyro, G.; Inoue, A.; Bouvier, M.; Hébert, T.E. Signal profiling of the β1AR reveals coupling to novel signalling pathways and distinct phenotypic responses mediated by β1AR and β2AR. Sci. Rep., 2020, 10(1), 8779.
[http://dx.doi.org/10.1038/s41598-020-65636-3] [PMID: 32471984]
[14]
Luo, J.; Zhang, T.; Zhu, C.; Sun, J.; Zhu, W.; Ai, W.; Huang, X.; Wang, X. Asiaticoside might attenuate bleomycin-induced pulmonary fibrosis by activating cAMP and Rap1 signalling pathway assisted by A2AR. J. Cell. Mol. Med., 2020, 24(14), 8248-8261.
[http://dx.doi.org/10.1111/jcmm.15505] [PMID: 32548952]
[15]
Mao, X.; Xu, H.; Li, S.; Su, J.; Li, W.; Guo, Q.; Wang, P.; Guo, R.; Xiao, X.; Zhang, Y.; Yang, H. Exploring pharmacological mechanisms of Xueshuan-Xinmai-Ning tablets acting on coronary heart disease based on drug target-disease gene interaction network. Phytomedicine, 2019, 54, 159-168.
[16]
Marsden, A.N.; Dessauer, C.W. Nanometric targeting of type 9 adenylyl cyclase in heart. Biochem. Soc. Trans., 2019, 47(6), 1749-1756.
[http://dx.doi.org/10.1042/BST20190227] [PMID: 31769471]
[17]
Musheshe, N.; Lobo, M.J.; Schmidt, M.; Zaccolo, M. Targeting FRET-based reporters for cAMP and PKA activity using AKAP79. Sensors (Basel), 2018, 18(7), E2164.
[http://dx.doi.org/10.3390/s18072164] [PMID: 29976855]
[18]
Nash, C.A.; Wei, W.; Irannejad, R.; Smrcka, A.V. Golgi localized β1-adrenergic receptors stimulate Golgi PI4P hydrolysis by PLCε to regulate cardiac hypertrophy. eLife, 2019, 8, 8.
[http://dx.doi.org/10.7554/eLife.48167] [PMID: 31433293]
[19]
Paruchuri, S.; Thodeti, C.K. Form follows function: polymorphisms in mAKAP alter cardiac cAMP/PKA signaling. Am. J. Physiol. Heart Circ. Physiol., 2018, 315(3), H626-H628.
[http://dx.doi.org/10.1152/ajpheart.00248.2018] [PMID: 29727216]
[20]
Pollard, C.M.; Desimine, V.L.; Wertz, S.L.; Perez, A.; Parker, B.M.; Maning, J.; McCrink, K.A.; Shehadeh, L.A.; Lymperopoulos, A. Deletion of osteopontin enhances β2-adrenergic receptor-dependent anti-fibrotic signaling in cardiomyocytes. Int. J. Mol. Sci., 2019, 20(6), E1396.
[http://dx.doi.org/10.3390/ijms20061396] [PMID: 30897705]
[21]
Silverman, D.N.; Rambod, M.; Lustgarten, D.L.; Lobel, R.; LeWinter, M.M.; Meyer, M. Heart rate-induced myocardial Ca2+ retention and left ventricular volume loss in patients with heart failure with preserved ejection fraction. J. Am. Heart Assoc., 2020, 9(17), e017215.
[http://dx.doi.org/10.1161/JAHA.120.017215] [PMID: 32856526]
[22]
Sun, N.; Li, D.; Chen, X.; Wu, P.; Lu, Y.J.; Hou, N.; Chen, W.H.; Wong, W.L. New applications of oleanolic acid and its derivatives as cardioprotective agents: A review of their therapeutic perspectives. Curr. Pharm. Des., 2019, 25(35), 3740-3750.
[http://dx.doi.org/10.2174/1381612825666191105112802] [PMID: 31692428]
[23]
Xu, H.Y.; Zhang, Y.Q.; Liu, Z.M.; Chen, T.; Lv, C.Y.; Tang, S.H.; Zhang, X.B.; Zhang, W.; Li, Z.Y.; Zhou, R.R.; Yang, H.J.; Wang, X.J.; Huang, L.Q. ETCM: An encyclopaedia of traditional Chinese medicine. Nucleic Acids Res., 2019, 47(D1), D976-D982.
[http://dx.doi.org/10.1093/nar/gky987] [PMID: 30365030]
[24]
Zhang, L.; Shang, C.; Sun, C. Simultaneous determination of 17 phthalate esters in Shengmaiyin by gas chromatography-triple quadrupole mass spectrometry. Se Pu, 2014, 32(6), 653-657.
[http://dx.doi.org/10.3724/SP.J.1123.2014.02015] [PMID: 25269266]
[25]
Zhang, S.; Sun, H.; Wang, C.; Zheng, X.; Jia, X.; Cai, E.; Zhao, Y. Comparative analysis of active ingredients and effects of the combination of Panax ginseng and Ophiopogon japonicus at different proportions on chemotherapy-induced myelosuppression mouse. Food Funct., 2019, 10(3), 1563-1570.
[http://dx.doi.org/10.1039/C8FO02354A] [PMID: 30806385]
[26]
Cao, Z.; Pan, J.; Sui, X.; Fang, C.; Li, N.; Huang, X.; Qu, X.; Han, D. Protective Effects of Huangqi Shengmai Yin on type 1 diabetes-induced cardiomyopathy by improving myocardial lipid metabolism. Evid. Based Complement. Alternat. Med., 2021, 2021, 5590623.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy