Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Glycogen Synthase Kinase 3β Involvement in Neuroinflammation and Neurodegenerative Diseases

Author(s): Teresa Gianferrara, Eleonora Cescon, Ilenia Grieco, Giampiero Spalluto and Stephanie Federico*

Volume 29, Issue 27, 2022

Published on: 30 March, 2022

Page: [4631 - 4697] Pages: 67

DOI: 10.2174/0929867329666220216113517

Price: $65

conference banner
Abstract

Background: GSK-3β activity has been strictly related to neuroinflammation and neurodegeneration. Alzheimer’s disease is the most studied neurodegenerative disease, but GSK-3β seems to be involved in almost all neurodegenerative diseases, including Parkinson’s disease, amyotrophic lateral sclerosis, frontotemporal dementia, Huntington’s disease, and the autoimmune disease multiple sclerosis.

Objective: This review aims to help researchers both working on this research topic or not to have a comprehensive overview of GSK-3β in the context of neuroinflammation and neurodegeneration.

Methods: Literature has been searched using PubMed and SciFinder databases by inserting specific keywords. A total of more than 500 articles have been discussed.

Results: First of all, the structure and regulation of the kinase were briefly discussed, and then, specific GSK-3β implications in neuroinflammation and neurodegenerative diseases were illustrated with the help of figures, to conclude with a comprehensive overview on the most important GSK-3β and multitarget inhibitors. The structure and IC50 values at the target kinase have been reported for all the discussed compounds.

Conclusion: GSK-3β is involved in several signaling pathways in neurons, glial cells and immune cells. The fine regulation and interconnection of all these pathways are at the base of the rationale use of GSK-β inhibitors in neuroinflammation and neurodegeneration. Some compounds are now under clinical trials. Despite this, the compounds’ pharmacodynamic and ADME/Tox profiles were often not fully characterized which is deleterious in such a complex system.

Keywords: Glycogen synthase kinase 3β, neuroinflammation, neurodegeneration, Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, GSK-3β inhibitors, multitarget ligands.

[1]
Embi, N.; Rylatt, D.B.; Cohen, P. Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur. J. Biochem., 1980, 107(2), 519-527.
[http://dx.doi.org/10.1111/j.1432-1033.1980.tb06059.x] [PMID: 6249596]
[2]
Woodgett, J.R. Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J., 1990, 9(8), 2431-2438.
[http://dx.doi.org/10.1002/j.1460-2075.1990.tb07419.x] [PMID: 2164470]
[3]
Mandelkow, E.M.; Drewes, G.; Biernat, J.; Gustke, N.; Van Lint, J.; Vandenheede, J.R.; Mandelkow, E. Glycogen synthase kinase-3 and the Alzheimer-like state of microtubule-associated protein tau. FEBS Lett., 1992, 314(3), 315-321.
[http://dx.doi.org/10.1016/0014-5793(92)81496-9] [PMID: 1334849]
[4]
Yang, S.-D.; Yu, J.-S.; Lai, Y.-G. Identification and characterization of the atp•mg-dependent protein phosphatase activator (F A) as a microtubule protein kinase in the brain. J. Protein Chem., 1991, 10(2), 171-181.
[5]
Plyte, S.E.; Hughes, K.; Nikolakaki, E.; Pulverer, B.J.; Woodgett, J.R. Glycogen synthase kinase-3: Functions in oncogenesis and development. Biochim. Biophys. Acta, 1992, 1114(2-3), 147-162.
[PMID: 1333807]
[6]
Martinez, A.; Castro, A.; Dorronsoro, I.; Alonso, M. Glycogen synthase kinase 3 (GSK-3) inhibitors as new promising drugs for diabetes, neurodegeneration, cancer, and inflammation. Med. Res. Rev., 2002, 22(4), 373-384.
[http://dx.doi.org/10.1002/med.10011] [PMID: 12111750]
[7]
Krueger, J.; Rudd, C.E.; Taylor, A. Glycogen Synthase 3 (GSK-3) regulation of PD-1 expression and and its therapeutic implications. Semin. Immunol., 2019, 42, 101295.
[8]
Welham, M.J.; Kingham, E.; Sanchez-Ripoll, Y.; Kumpfmueller, B.; Storm, M.; Bone, H. Controlling embryonic stem cell proliferation and pluripotency: The role of PI3K- and GSK-3-dependent signalling. Biochem. Soc. Trans., 2011, 39(2), 674-678.
[http://dx.doi.org/10.1042/BST0390674] [PMID: 21428960]
[9]
Saraswati, A. P.; Ali Hussaini, S. M.; Krishna, N. H.; Babu, B. N.; Kamal, A. Glycogen synthase kinase-3 and its inhibitors: Potential target for various therapeutic conditions. European J. Med. Chem., 2018, 144, 843-858.
[10]
Rana, A.K.; Singh, D. Targeting glycogen synthase kinase-3 for oxidative stress and neuroinflammation: Opportunities, challenges and future directions for cerebral stroke management. Neuropharmacology, 2018, 139, 124-136.
[http://dx.doi.org/10.1016/j.neuropharm.2018.07.006] [PMID: 30017999]
[11]
Wang, H.; Kumar, A.; Lamont, R.J.; Scott, D.A. GSK3β and the control of infectious bacterial diseases. Trends Microbiol., 2014, 22(4), 208-217.
[12]
Rana, A.K.; Rahmatkar, S.N.; Kumar, A.; Singh, D. Glycogen synthase kinase-3: A putative target to combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Cytokine Growth Factor Rev., 2021, 58, 92-101.
[http://dx.doi.org/10.1016/j.cytogfr.2020.08.002] [PMID: 32948440]
[13]
Hoeflich, K.P.; Luo, J.; Rubie, E.A.; Tsao, M.S.; Jin, O.; Woodgett, J.R. Requirement for glycogen synthase kinase-3β in cell survival and NF-kappaB activation. Nature, 2000, 406(6791), 86-90.
[http://dx.doi.org/10.1038/35017574] [PMID: 10894547]
[14]
Lee, S.J.; Chung, Y.H.; Joo, K.M.; Lim, H.C.; Jeon, G.S.; Kim, D.; Lee, W.B.; Kim, Y.S.; Cha, C.I. Age-related changes in glycogen synthase kinase 3β (GSK3β) immunoreactivity in the central nervous system of rats. Neurosci. Lett., 2006, 409(2), 134-139.
[http://dx.doi.org/10.1016/j.neulet.2006.09.026] [PMID: 17046157]
[15]
Bax, B.; Carter, P.S.; Lewis, C.; Guy, A.R.; Bridges, A.; Tanner, R.; Pettman, G.; Mannix, C.; Culbert, A.A.; Brown, M.J.B.; Smith, D.G.; Reith, A.D. The structure of phosphorylated GSK-3β complexed with a peptide, FRATtide, that inhibits β-catenin phosphorylation. Structure, 2001, 9(12), 1143-1152.
[http://dx.doi.org/10.1016/S0969-2126(01)00679-7] [PMID: 11738041]
[16]
Dajani, R.; Fraser, E.; Roe, S.M.; Young, N.; Good, V.; Dale, T.C.; Pearl, L.H. Crystal structure of glycogen synthase kinase 3 β: structural basis for phosphate-primed substrate specificity and autoinhibition. Cell, 2001, 105(6), 721-732.
[http://dx.doi.org/10.1016/S0092-8674(01)00374-9] [PMID: 11440715]
[17]
ter Haar, E.; Coll, J.T.; Austen, D.A.; Hsiao, H.M.; Swenson, L.; Jain, J. Structure of GSK3β reveals a primed phosphorylation mechanism. Nat. Struct. Biol., 2001, 8(7), 593-596.
[http://dx.doi.org/10.1038/89624] [PMID: 11427888]
[18]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[19]
Aoki, M.; Yokota, T.; Sugiura, I.; Sasaki, C.; Hasegawa, T.; Okumura, C.; Ishiguro, K.; Kohno, T.; Sugio, S.; Matsuzaki, T. Structural insight into nucleotide recognition in tau-protein kinase I/glycogen synthase kinase 3 β. Acta Crystallogr. D Biol. Crystallogr., 2004, 60(Pt 3), 439-446.
[http://dx.doi.org/10.1107/S090744490302938X] [PMID: 14993667]
[20]
Dajani, R.; Fraser, E.; Roe, S.M.; Yeo, M.; Good, V.M.; Thompson, V.; Dale, T.C.; Pearl, L.H. Structural basis for recruitment of glycogen synthase kinase 3β to the axin-APC scaffold complex. EMBO J., 2003, 22(3), 494-501.
[http://dx.doi.org/10.1093/emboj/cdg068] [PMID: 12554650]
[21]
Bertrand, J.A.; Thieffine, S.; Vulpetti, A.; Cristiani, C.; Valsasina, B.; Knapp, S.; Kalisz, H.M.; Flocco, M. Structural characterization of the GSK-3β active site using selective and non-selective ATP-mimetic inhibitors. J. Mol. Biol., 2003, 333(2), 393-407.
[http://dx.doi.org/10.1016/j.jmb.2003.08.031] [PMID: 14529625]
[22]
Bhat, R.; Xue, Y.; Berg, S.; Hellberg, S.; Ormö, M.; Nilsson, Y.; Radesäter, A.C.; Jerning, E.; Markgren, P.O.; Borgegård, T.; Nylöf, M.; Giménez-Cassina, A.; Hernández, F.; Lucas, J.J.; Díaz-Nido, J.; Avila, J. Structural insights and biological effects of glycogen synthase kinase 3-specific inhibitor AR-A014418. J. Biol. Chem., 2003, 278(46), 45937-45945.
[http://dx.doi.org/10.1074/jbc.M306268200] [PMID: 12928438]
[23]
Meijer, L.; Skaltsounis, A-L.; Magiatis, P.; Polychronopoulos, P.; Knockaert, M.; Leost, M.; Ryan, X.P.; Vonica, C.A.; Brivanlou, A.; Dajani, R.; Crovace, C.; Tarricone, C.; Musacchio, A.; Roe, S.M.; Pearl, L.; Greengard, P. GSK-3-selective inhibitors derived from Tyrian purple indirubins. Chem. Biol., 2003, 10(12), 1255-1266.
[http://dx.doi.org/10.1016/j.chembiol.2003.11.010] [PMID: 14700633]
[24]
Atilla-Gokcumen, G.E.; Pagano, N.; Streu, C.; Maksimoska, J.; Filippakopoulos, P.; Knapp, S.; Meggers, E. Extremely tight binding of a ruthenium complex to glycogen synthase kinase 3. ChemBioChem, 2008, 9(18), 2933-2936.
[http://dx.doi.org/10.1002/cbic.200800489] [PMID: 19035373]
[25]
Shin, D.; Lee, S.C.; Heo, Y.S.; Lee, W.Y.; Cho, Y.S.; Kim, Y.E.; Hyun, Y.L.; Cho, J.M.; Lee, Y.S.; Ro, S. Design and synthesis of 7-hydroxy-1H-benzoimidazole derivatives as novel inhibitors of glycogen synthase kinase-3β. Bioorg. Med. Chem. Lett., 2007, 17(20), 5686-5689.
[http://dx.doi.org/10.1016/j.bmcl.2007.07.056] [PMID: 17764934]
[26]
Zhang, H.C.; Boñaga, L.V.; Ye, H.; Derian, C.K.; Damiano, B.P.; Maryanoff, B.E. Novel bis(indolyl)maleimide pyridinophanes that are potent, selective inhibitors of glycogen synthase kinase-3. Bioorg. Med. Chem. Lett., 2007, 17(10), 2863-2868.
[http://dx.doi.org/10.1016/j.bmcl.2007.02.059] [PMID: 17350261]
[27]
Menichincheri, M.; Bargiotti, A.; Berthelsen, J.; Bertrand, J.A.; Bossi, R.; Ciavolella, A.; Cirla, A.; Cristiani, C.; Croci, V.; D’Alessio, R.; Fasolini, M.; Fiorentini, F.; Forte, B.; Isacchi, A.; Martina, K.; Molinari, A.; Montagnoli, A.; Orsini, P.; Orzi, F.; Pesenti, E.; Pezzetta, D.; Pillan, A.; Poggesi, I.; Roletto, F.; Scolaro, A.; Tatò, M.; Tibolla, M.; Valsasina, B.; Varasi, M.; Volpi, D.; Santocanale, C.; Vanotti, E. First Cdc7 kinase inhibitors: pyrrolopyridinones as potent and orally active antitumor agents. 2. Lead discovery. J. Med. Chem., 2009, 52(2), 293-307.
[http://dx.doi.org/10.1021/jm800977q] [PMID: 19115845]
[28]
Saitoh, M.; Kunitomo, J.; Kimura, E.; Hayase, Y.; Kobayashi, H.; Uchiyama, N.; Kawamoto, T.; Tanaka, T.; Mol, C.D.; Dougan, D.R.; Textor, G.S.; Snell, G.P.; Itoh, F. Design, synthesis and structure-activity relationships of 1,3,4-oxadiazole derivatives as novel inhibitors of glycogen synthase kinase-3β. Bioorg. Med. Chem., 2009, 17(5), 2017-2029.
[http://dx.doi.org/10.1016/j.bmc.2009.01.019] [PMID: 19200745]
[29]
Saitoh, M.; Kunitomo, J.; Kimura, E.; Iwashita, H.; Uno, Y.; Onishi, T.; Uchiyama, N.; Kawamoto, T.; Tanaka, T.; Mol, C.D.; Dougan, D.R.; Textor, G.P.; Snell, G.P.; Takizawa, M.; Itoh, F.; Kori, M. 2-3-[4-(Alkylsulfinyl)phenyl]-1-benzofuran-5-yl-5-methyl-1,3,4-oxadiazole derivatives as novel inhibitors of glycogen synthase kinase-3β with good brain permeability. J. Med. Chem., 2009, 52(20), 6270-6286.
[http://dx.doi.org/10.1021/jm900647e] [PMID: 19775160]
[30]
Aronov, A.M.; Tang, Q.; Martinez-Botella, G.; Bemis, G.W.; Cao, J.; Chen, G.; Ewing, N.P.; Ford, P.J.; Germann, U.A.; Green, J.; Hale, M.R.; Jacobs, M.; Janetka, J.W.; Maltais, F.; Markland, W.; Namchuk, M.N.; Nanthakumar, S.; Poondru, S.; Straub, J.; ter Haar, E.; Xie, X. Structure-guided design of potent and selective pyrimidylpyrrole inhibitors of extracellular signal-regulated kinase (ERK) using conformational control. J. Med. Chem., 2009, 52(20), 6362-6368.
[http://dx.doi.org/10.1021/jm900630q] [PMID: 19827834]
[31]
Arnost, M.; Pierce, A.; ter Haar, E.; Lauffer, D.; Madden, J.; Tanner, K.; Green, J. 3-Aryl-4-(arylhydrazono)-1H-pyrazol-5-ones: Highly ligand efficient and potent inhibitors of GSK3β. Bioorg. Med. Chem. Lett., 2010, 20(5), 1661-1664.
[http://dx.doi.org/10.1016/j.bmcl.2010.01.072] [PMID: 20138514]
[32]
Atilla-Gokcumen, G.E.; Di Costanzo, L.; Meggers, E. Structure of anticancer ruthenium half-sandwich complex bound to glycogen synthase kinase 3β. Eur. J. Biochem., 2011, 16(1), 45-50.
[http://dx.doi.org/10.1007/s00775-010-0699-x] [PMID: 20821241]
[33]
Feng, L.; Geisselbrecht, Y.; Blanck, S.; Wilbuer, A.; Atilla-Gokcumen, G.E.; Filippakopoulos, P.; Kräling, K.; Celik, M.A.; Harms, K.; Maksimoska, J.; Marmorstein, R.; Frenking, G.; Knapp, S.; Essen, L.O.; Meggers, E. Structurally sophisticated octahedral metal complexes as highly selective protein kinase inhibitors. J. Am. Chem. Soc., 2011, 133(15), 5976-5986.
[http://dx.doi.org/10.1021/ja1112996] [PMID: 21446733]
[34]
Coffman, K.; Brodney, M.; Cook, J.; Lanyon, L.; Pandit, J.; Sakya, S.; Schachter, J.; Tseng-Lovering, E.; Wessel, M. 6-amino-4-(pyrimidin-4-yl)pyridones: Novel glycogen synthase kinase-3β inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(5), 1429-1433.
[http://dx.doi.org/10.1016/j.bmcl.2011.01.017] [PMID: 21295469]
[35]
Fugel, W.; Oberholzer, A.E.; Gschloessl, B.; Dzikowski, R.; Pressburger, N.; Preu, L.; Pearl, L.H.; Baratte, B.; Ratin, M.; Okun, I.; Doerig, C.; Kruggel, S.; Lemcke, T.; Meijer, L.; Kunick, C. 3,6-Diamino-4-(2-halophenyl)-2-benzoylthieno[2,3-b]pyridine-5-carbonitriles are selective inhibitors of Plasmodium falciparum glycogen synthase kinase-3. J. Med. Chem., 2013, 56(1), 264-275.
[http://dx.doi.org/10.1021/jm301575n] [PMID: 23214499]
[36]
Gentile, G.; Bernasconi, G.; Pozzan, A.; Merlo, G.; Marzorati, P.; Bamborough, P.; Bax, B.; Bridges, A.; Brough, C.; Carter, P.; Cutler, G.; Neu, M.; Takada, M. Identification of 2-(4-pyridyl)thienopyridinones as GSK-3β inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(16), 4823-4827.
[http://dx.doi.org/10.1016/j.bmcl.2011.06.050] [PMID: 21764580]
[37]
Berg, S.; Bergh, M.; Hellberg, S.; Högdin, K.; Lo-Alfredsson, Y.; Söderman, P.; von Berg, S.; Weigelt, T.; Ormö, M.; Xue, Y.; Tucker, J.; Neelissen, J.; Jerning, E.; Nilsson, Y.; Bhat, R. Discovery of novel potent and highly selective glycogen synthase kinase-3β (GSK3β) inhibitors for Alzheimer’s disease: design, synthesis, and characterization of pyrazines. J. Med. Chem., 2012, 55(21), 9107-9119.
[http://dx.doi.org/10.1021/jm201724m] [PMID: 22489897]
[38]
Gentile, G.; Merlo, G.; Pozzan, A.; Bernasconi, G.; Bax, B.; Bamborough, P.; Bridges, A.; Carter, P.; Neu, M.; Yao, G.; Brough, C.; Cutler, G.; Coffin, A.; Belyanskaya, S. 5-Aryl-4-carboxamide-1,3-oxazoles: Potent and selective GSK-3 inhibitors. Bioorg. Med. Chem. Lett., 2012, 22(5), 1989-1994.
[http://dx.doi.org/10.1016/j.bmcl.2012.01.034] [PMID: 22310227]
[39]
Tahtouh, T.; Elkins, J.M.; Filippakopoulos, P.; Soundararajan, M.; Burgy, G.; Durieu, E.; Cochet, C.; Schmid, R.S.; Lo, D.C.; Delhommel, F.; Oberholzer, A.E.; Pearl, L.H.; Carreaux, F.; Bazureau, J.P.; Knapp, S.; Meijer, L. Selectivity, cocrystal structures, and neuroprotective properties of leucettines, a family of protein kinase inhibitors derived from the marine sponge alkaloid leucettamine B. J. Med. Chem., 2012, 55(21), 9312-9330.
[http://dx.doi.org/10.1021/jm301034u] [PMID: 22998443]
[40]
Tong, Y.; Stewart, K.D.; Florjancic, A.S.; Harlan, J.E.; Merta, P.J.; Przytulinska, M.; Soni, N.; Swinger, K.K.; Zhu, H.; Johnson, E.F.; Shoemaker, A.R.; Penning, T.D. Azaindole-based inhibitors of Cdc7 Kinase: Impact of the Pre-DFG residue, Val 195. ACS Med. Chem. Lett., 2013, 4(2), 211-215.
[http://dx.doi.org/10.1021/ml300348c] [PMID: 24900653]
[41]
Stamos, J.L.; Chu, M.L.H.; Enos, M.D.; Shah, N.; Weis, W.I. Structural basis of GSK-3 inhibition by N-terminal phosphorylation and by the Wnt receptor LRP6. eLife, 2014, 3(3), e01998.
[http://dx.doi.org/10.7554/eLife.01998] [PMID: 24642411]
[42]
Sivaprakasam, P.; Han, X.; Civiello, R.L.; Jacutin-Porte, S.; Kish, K.; Pokross, M.; Lewis, H.A.; Ahmed, N.; Szapiel, N.; Newitt, J.A.; Baldwin, E.T.; Xiao, H.; Krause, C.M.; Park, H.; Nophsker, M.; Lippy, J.S.; Burton, C.R.; Langley, D.R.; Macor, J.E.; Dubowchik, G.M. Discovery of new acylaminopyridines as GSK-3 inhibitors by a structure guided in-depth exploration of chemical space around a pyrrolopyridinone core. Bioorg. Med. Chem. Lett., 2015, 25(9), 1856-1863.
[http://dx.doi.org/10.1016/j.bmcl.2015.03.046] [PMID: 25845281]
[43]
Luo, G.; Chen, L.; Burton, C.R.; Xiao, H.; Sivaprakasam, P.; Krause, C.M.; Cao, Y.; Liu, N.; Lippy, J.; Clarke, W.J.; Snow, K.; Raybon, J.; Arora, V.; Pokross, M.; Kish, K.; Lewis, H.A.; Langley, D.R.; Macor, J.E.; Dubowchik, G.M. Discovery of isonicotinamides as highly selective, brain penetrable, and orally active glycogen synthase kinase-3 inhibitors. J. Med. Chem., 2016, 59(3), 1041-1051.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01550] [PMID: 26751161]
[44]
Simone, P.D.; Struble, L.R.; Kellezi, A.; Brown, C.A.; Grabow, C.E.; Khutsishvili, I.; Marky, L.A.; Pavlov, Y.I.; Borgstahl, G.E.O. The human ITPA polymorphic variant P32T is destabilized by the unpacking of the hydrophobic core. J. Struct. Biol., 2013, 182(3), 197-208.
[http://dx.doi.org/10.1016/j.jsb.2013.03.007] [PMID: 23528839]
[45]
Wagner, F.F.; Bishop, J.A.; Gale, J.P.; Shi, X.; Walk, M.; Ketterman, J.; Patnaik, D.; Barker, D.; Walpita, D.; Campbell, A.J.; Nguyen, S.; Lewis, M.; Ross, L.; Weïwer, M.; An, W.F.; Germain, A.R.; Nag, P.P.; Metkar, S.; Kaya, T.; Dandapani, S.; Olson, D.E.; Barbe, A.L.; Lazzaro, F.; Sacher, J.R.; Cheah, J.H.; Fei, D.; Perez, J.; Munoz, B.; Palmer, M.; Stegmaier, K.; Schreiber, S.L.; Scolnick, E.; Zhang, Y.L.; Haggarty, S.J.; Holson, E.B.; Pan, J.Q. Inhibitors of glycogen synthase kinase 3 with exquisite kinome-wide selectivity and their functional effects. ACS Chem. Biol., 2016, 11(7), 1952-1963.
[http://dx.doi.org/10.1021/acschembio.6b00306] [PMID: 27128528]
[46]
Liang, S.H.; Chen, J.M.; Normandin, M.D.; Chang, J.S.; Chang, G.C.; Taylor, C.K.; Trapa, P.; Plummer, M.S.; Para, K.S.; Conn, E.L.; Lopresti-Morrow, L.; Lanyon, L.F.; Cook, J.M.; Richter, K.E.G.; Nolan, C.E.; Schachter, J.B.; Janat, F.; Che, Y.; Shanmugasundaram, V.; Lefker, B.A.; Enerson, B.E.; Livni, E.; Wang, L.; Guehl, N.J.; Patnaik, D.; Wagner, F.F.; Perlis, R.; Holson, E.B.; Haggarty, S.J.; El Fakhri, G.; Kurumbail, R.G.; Vasdev, N. Discovery of a highly selective glycogen synthase kinase-3 inhibitor (PF-04802367) that modulates tau phosphorylation in the brain: translation for PET neuroimaging. Angew. Chem. Int. Ed. Engl., 2016, 55(33), 9601-9605.
[http://dx.doi.org/10.1002/anie.201603797] [PMID: 27355874]
[47]
Wagner, F.F.; Benajiba, L.; Campbell, A.J.; Weïwer, M.; Sacher, J.R.; Gale, J.P.; Ross, L.; Puissant, A.; Alexe, G.; Conway, A.; Back, M.; Pikman, Y.; Galinsky, I.; DeAngelo, D.J.; Stone, R.M.; Kaya, T.; Shi, X.; Robers, M.B.; Machleidt, T.; Wilkinson, J.; Hermine, O.; Kung, A.; Stein, A.J.; Lakshminarasimhan, D.; Hemann, M.T.; Scolnick, E.; Zhang, Y.L.; Pan, J.Q.; Stegmaier, K.; Holson, E.B. Exploiting an Asp-Glu “switch” in glycogen synthase kinase 3 to design paralog-selective inhibitors for use in acute myeloid leukemia. Sci. Transl. Med., 2018, 10(431), 1-18.
[http://dx.doi.org/10.1126/scitranslmed.aam8460] [PMID: 29515000]
[48]
Henley, Z.A.; Bax, B.D.; Inglesby, L.M.; Champigny, A.; Gaines, S.; Faulder, P.; Le, J.; Thomas, D.A.; Washio, Y.; Baldwin, I.R. From PIM1 to PI3Kδ via GSK3β: Target Hopping through the Kinome. ACS Med. Chem. Lett., 2017, 8(10), 1093-1098.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00296] [PMID: 29057057]
[49]
Wagman, A.S.; Boyce, R.S.; Brown, S.P.; Fang, E.; Goff, D.; Jansen, J.M.; Le, V.P.; Levine, B.H.; Ng, S.C.; Ni, Z.J.; Nuss, J.M.; Pfister, K.B.; Ramurthy, S.; Renhowe, P.A.; Ring, D.B.; Shu, W.; Subramanian, S.; Zhou, X.A.; Shafer, C.M.; Harrison, S.D.; Johnson, K.W.; Bussiere, D.E. Synthesis, binding mode, and antihyperglycemic activity of potent and selective (5-Imidazol-2-yl-4-phenylpyrimidin-2-yl)[2-(2-pyridylamino)ethyl]amine inhibitors of Glycogen Synthase Kinase 3. J. Med. Chem., 2017, 60(20), 8482-8514.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00922] [PMID: 29016121]
[50]
Tesch, R.; Becker, C.; Müller, M.P.; Beck, M.E.; Quambusch, L.; Getlik, M.; Lategahn, J.; Uhlenbrock, N.; Costa, F.N.; Polêto, M.D.; Pinheiro, P. de S. M.; Rodrigues, D.A.; Sant’Anna, C.M.R.; Ferreira, F.F.; Verli, H.; Fraga, C.A.M.; Rauh, D. An unusual intramolecular halogen bond guides conformational selection. Angew. Chem. Int. Ed., 2018, 57(31), 9970-9975.
[http://dx.doi.org/10.1002/anie.201804917]
[51]
Redenti, S.; Marcovich, I.; De Vita, T.; Pérez, C.; De Zorzi, R.; Demitri, N.; Perez, D.I.; Bottegoni, G.; Bisignano, P.; Bissaro, M.; Moro, S.; Martinez, A.; Storici, P.; Spalluto, G.; Cavalli, A.; Federico, S. A triazolotriazine-based dual GSK-3β/CK-1δ ligand as a potential neuroprotective agent presenting two different mechanisms of enzymatic inhibition. ChemMedChem, 2019, 14(3), 310-314.
[http://dx.doi.org/10.1002/cmdc.201800778] [PMID: 30548443]
[52]
Gobbo, D.; Piretti, V.; Di Martino, R.M.C.; Tripathi, S.K.; Giabbai, B.; Storici, P.; Demitri, N.; Girotto, S.; Decherchi, S.; Cavalli, A. Investigating drug-target residence time in kinases through enhanced sampling simulations. J. Chem. Theory Comput., 2019, 15(8), 4646-4659.
[http://dx.doi.org/10.1021/acs.jctc.9b00104] [PMID: 31246463]
[53]
Prati, F.; Buonfiglio, R.; Furlotti, G.; Cavarischia, C.; Mangano, G.; Picollo, R.; Oggianu, L.; di Matteo, A.; Olivieri, S.; Bovi, G.; Porceddu, P.F.; Reggiani, A.; Garrone, B.; Di Giorgio, F.P.; Ombrato, R. Optimization of indazole-based GSK-3 inhibitors with mitigated herg issue and in vivo activity in a mood disorder model. ACS Med. Chem. Lett., 2020, 11(5), 825-831.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00633] [PMID: 32435391]
[54]
Ramurthy, S.; Pfister, K.B.; Boyce, R.S.; Brown, S.P.; Costales, A.Q.; Desai, M.C.; Fang, E.; Levine, B.H.; Ng, S.C.; Nuss, J.M.; Ring, D.B.; Shafer, C.M.; Shu, W.; Subramanian, S.; Wagman, A.S.; Wang, H.; Bussiere, D.E. Discovery and optimization of novel pyridines as highly potent and selective glycogen synthase kinase 3 inhibitors. Bioorg. Med. Chem. Lett., 2020, 30(4), 126930.
[http://dx.doi.org/10.1016/j.bmcl.2019.126930] [PMID: 31926786]
[55]
Buonfiglio, R.; Prati, F.; Bischetti, M.; Cavarischia, C.; Furlotti, G.; Ombrato, R. Discovery of novel imidazopyridine GSK-3β inhibitors supported by computational approaches. Molecules, 2020, 25(9), E2163.
[http://dx.doi.org/10.3390/molecules25092163] [PMID: 32380735]
[56]
Bateman, A. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res., 2019, 47(D1), D506-D515.
[57]
COVID-19. The national center for biotechnology information nucleotide data base. Available from: https://www.ncbi.nlm.nih.gov/nuccore/ (Accessed on: 6th July 2021).
[58]
Kaidanovich-Beilin, O.; Woodgett, J.R. GSK-3: functional insights from cell biology and animal models. Front. Mol. Neurosci., 2011, 4, 40.
[http://dx.doi.org/10.3389/fnmol.2011.00040] [PMID: 22110425]
[59]
Castaño, Z.; Gordon-Weeks, P.R.; Kypta, R.M. The neuron-specific isoform of glycogen synthase kinase-3β is required for axon growth. J. Neurochem., 2010, 113(1), 117-130.
[http://dx.doi.org/10.1111/j.1471-4159.2010.06581.x] [PMID: 20067585]
[60]
Manning, G.; Whyte, D. B.; Martinez, R.; Hunter, T.; Sudarsanam, S. The protein kinase complement of the human genome. Science (80-.), 2002, 298, 1912-1934.
[61]
Duong-Ly, K.C.; Peterson, J.R. The human kinome and kinase inhibition as a therapeutic strategy. Curr. Protocols Pharmacol., 2014, 215, 1-21.
[62]
Patel, P.; Woodgett, J.R. Glycogen synthase kinase 3: A kinase for all pathways? Curr. Topics Develop. Biol., 2017, 123, 277-302.
[63]
Hanks, S.K.; Hunter, T. Protein kinases 6. The eukaryotic protein kinase superfamily: Kinase (catalytic) domain structure and classification. FASEB J., 1995, 9(8), 576-596.
[http://dx.doi.org/10.1096/fasebj.9.8.7768349] [PMID: 7768349]
[64]
Buescher, J.L.; Phiel, C.J. A noncatalytic domain of glycogen synthase kinase-3 (GSK-3) is essential for activity. J. Biol. Chem., 2010, 285(11), 7957-7963.
[http://dx.doi.org/10.1074/jbc.M109.091603] [PMID: 20080974]
[65]
Hughes, K.; Nikolakaki, E.; Plyte, S.E.; Totty, N.F.; Woodgett, J.R. Modulation of the glycogen synthase kinase-3 family by tyrosine phosphorylation. EMBO J., 1993, 12(2), 803-808.
[http://dx.doi.org/10.1002/j.1460-2075.1993.tb05715.x] [PMID: 8382613]
[66]
Payne, D.M.; Rossomando, A.J.; Martino, P.; Erickson, A.K.; Her, J.H.; Shabanowitz, J.; Hunt, D.F.; Weber, M.J.; Sturgill, T.W. Identification of the regulatory phosphorylation sites in pp42/mitogen-activated protein kinase (MAP kinase). EMBO J., 1991, 10(4), 885-892.
[http://dx.doi.org/10.1002/j.1460-2075.1991.tb08021.x] [PMID: 1849075]
[67]
Cole, A.; Frame, S.; Cohen, P. Further evidence that the tyrosine phosphorylation of glycogen synthase kinase-3 (GSK3) in mammalian cells is an autophosphorylation event. Biochem. J., 2004, 377(Pt 1), 249-255.
[http://dx.doi.org/10.1042/bj20031259] [PMID: 14570592]
[68]
Sutherland, C.; Leighton, I.A.; Cohen, P. Inactivation of glycogen synthase kinase-3 β by phosphorylation: new kinase connections in insulin and growth-factor signalling. Biochem. J., 1993, 296(Pt 1), 15-19.
[http://dx.doi.org/10.1042/bj2960015] [PMID: 8250835]
[69]
Frame, S.; Cohen, P.; Biondi, R.M. A common phosphate binding site explains the unique substrate specificity of GSK3 and its inactivation by phosphorylation. Mol. Cell, 2001, 7(6), 1321-1327.
[http://dx.doi.org/10.1016/S1097-2765(01)00253-2] [PMID: 11430833]
[70]
Shapira, M.; Licht, A.; Milman, A.; Pick, C.G.; Shohami, E.; Eldar-Finkelman, H. Role of glycogen synthase kinase-3β in early depressive behavior induced by mild traumatic brain injury. Mol. Cell. Neurosci., 2007, 34(4), 571-577.
[http://dx.doi.org/10.1016/j.mcn.2006.12.006] [PMID: 17289399]
[71]
Fang, X.; Yu, S.X.; Lu, Y.; Bast, R.C., Jr; Woodgett, J.R.; Mills, G.B. Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proc. Natl. Acad. Sci. USA, 2000, 97(22), 11960-11965.
[http://dx.doi.org/10.1073/pnas.220413597] [PMID: 11035810]
[72]
Frame, S.; Cohen, P. GSK3 takes centre stage more than 20 years after its discovery. Biochem. J., 2001, 359(Pt 1), 1-16.
[http://dx.doi.org/10.1042/bj3590001] [PMID: 11563964]
[73]
Grabinski, T.; Kanaan, N.M. Novel non-phosphorylated serine 9/21 GSK3β/α antibodies: Expanding the tools for studying GSK3 regulation. Front. Mol. Neurosci., 2016, 9, 123.
[http://dx.doi.org/10.3389/fnmol.2016.00123] [PMID: 27909397]
[74]
Thornton, T. M.; Pedraza-alva, G.; Deng, B.; Wood, C. D.; Clements, J. L.; Sabio, G.; Davis, R. J.; Dwight, E.; Doble, B.; Rincon, M. Phosphorylation by P38 MAPK as an alternative pathway for GSK3β inactivation. Science, 2008, 320(5876), 667-670.
[http://dx.doi.org/10.1126/science.1156037]
[75]
Ding, Q.; Xia, W.; Liu, J.C.; Yang, J.Y.; Lee, D.F.; Xia, J.; Bartholomeusz, G.; Li, Y.; Pan, Y.; Li, Z.; Bargou, R.C.; Qin, J.; Lai, C.C.; Tsai, F.J.; Tsai, C.H.; Hung, M.C. Erk associates with and primes GSK-3β for its inactivation resulting in upregulation of β-catenin. Mol. Cell, 2005, 19(2), 159-170.
[http://dx.doi.org/10.1016/j.molcel.2005.06.009] [PMID: 16039586]
[76]
Sarikhani, M.; Mishra, S.; Maity, S.; Kotyada, C.; Wolfgeher, D.; Gupta, M.P.; Singh, M.; Sundaresan, N.R. SIRT2 deacetylase regulates the activity of GSK3 isoforms independent of inhibitory phosphorylation. eLife, 2018, 7, 1-35.
[http://dx.doi.org/10.7554/eLife.32952] [PMID: 29504933]
[77]
Stadler, S.C.; Vincent, C.T.; Fedorov, V.D.; Patsialou, A.; Cherrington, B.D.; Wakshlag, J.J.; Mohanan, S.; Zee, B.M.; Zhang, X.; Garcia, B.A.; Condeelis, J.S.; Brown, A.M.C.; Coonrod, S.A.; Allis, C.D. Dysregulation of PAD4-mediated citrullination of nuclear GSK3β activates TGF-β signaling and induces epithelial-to-mesenchymal transition in breast cancer cells. Proc. Natl. Acad. Sci. USA, 2013, 110(29), 11851-11856.
[http://dx.doi.org/10.1073/pnas.1308362110] [PMID: 23818587]
[78]
Feijs, K.L.; Kleine, H.; Braczynski, A.; Forst, A.H.; Herzog, N.; Verheugd, P.; Linzen, U.; Kremmer, E.; Lüscher, B. ARTD10 substrate identification on protein microarrays: Regulation of GSK3β by mono-ADP-ribosylation. Cell Commun. Signal., 2013, 11(1), 1-11.
[http://dx.doi.org/10.1186/1478-811X-11-5] [PMID: 23289948]
[79]
Jia, J.; Amanai, K.; Wang, G.; Tang, J.; Wang, B.; Jiang, J. Shaggy/GSK3 antagonizes Hedgehog signalling by regulating Cubitus interruptus. Nature, 2002, 416(6880), 548-552.
[http://dx.doi.org/10.1038/nature733] [PMID: 11912487]
[80]
Salic, A.; Lee, E.; Mayer, L.; Kirschner, M.W. Control of β-catenin stability: Reconstitution of the cytoplasmic steps of the wnt pathway in Xenopus egg extracts. Mol. Cell, 2000, 5(3), 523-532.
[http://dx.doi.org/10.1016/S1097-2765(00)80446-3] [PMID: 10882137]
[81]
Zhao, Z.; Liu, Q.; Bliven, S.; Xie, L.; Bourne, P.E. Determining cysteines available for covalent inhibition across the human kinome. J. Med. Chem., 2017, 60(7), 2879-2889.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01815] [PMID: 28326775]
[82]
Beurel, E.; Grieco, S.F.; Jope, R.S. Glycogen synthase kinase-3 (GSK3): Regulation, actions, and diseases. Pharmacol. Ther., 2015, 148, 114-131.
[http://dx.doi.org/10.1016/j.pharmthera.2014.11.016] [PMID: 25435019]
[83]
Ombrato, R.; Cazzolla, N.; Mancini, F.; Mangano, G. Structure-based discovery of 1H-indazole-3-carboxamides as a novel structural class of human GSK-3 inhibitors. J. Chem. Inf. Model., 2015, 55(12), 2540-2551.
[http://dx.doi.org/10.1021/acs.jcim.5b00486] [PMID: 26600430]
[84]
Boyle, W.J.; Smeal, T.; Defize, L.H.K.; Angel, P.; Woodgett, J.R.; Karin, M.; Hunter, T. Activation of protein kinase C decreases phosphorylation of c-Jun at sites that negatively regulate its DNA-binding activity. Cell, 1991, 64(3), 573-584.
[http://dx.doi.org/10.1016/0092-8674(91)90241-P] [PMID: 1846781]
[85]
Happel, N.; Stoldt, S.; Schmidt, B.; Doenecke, D. M phase-specific phosphorylation of histone H1.5 at threonine 10 by GSK-3. J. Mol. Biol., 2009, 386(2), 339-350.
[http://dx.doi.org/10.1016/j.jmb.2008.12.047] [PMID: 19136008]
[86]
Kosuga, S.; Tashiro, E.; Kajioka, T.; Ueki, M.; Shimizu, Y.; Imoto, M. GSK-3β directly phosphorylates and activates MARK2/PAR-1. J. Biol. Chem., 2005, 280(52), 42715-42722.
[http://dx.doi.org/10.1074/jbc.M507941200] [PMID: 16257959]
[87]
Beurel, E. Regulation by glycogen synthase kinase-3 of inflammation and T cells in CNS diseases. Front. Mol. Neurosci., 2011, 4, 18.
[http://dx.doi.org/10.3389/fnmol.2011.00018] [PMID: 21941466]
[88]
DiSabato, D.J.; Quan, N.; Godbout, J.P. Neuroinflammation: the devil is in the details. J. Neurochem., 2016, 139(Suppl. 2), 136-153.
[http://dx.doi.org/10.1111/jnc.13607] [PMID: 26990767]
[89]
Argaw, A.T.; Asp, L.; Zhang, J.; Navrazhina, K.; Pham, T.; Mariani, J.N.; Mahase, S.; Dutta, D.J.; Seto, J.; Kramer, E.G.; Ferrara, N.; Sofroniew, M.V.; John, G.R. Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. J. Clin. Invest., 2012, 122(7), 2454-2468.
[http://dx.doi.org/10.1172/JCI60842] [PMID: 22653056]
[90]
Yang, Q.Q.; Zhou, J.W. Neuroinflammation in the central nervous system: Symphony of glial cells. Glia, 2019, 67(6), 1017-1035.
[http://dx.doi.org/10.1002/glia.23571] [PMID: 30548343]
[91]
Ransohoff, R. M. How neuroinflammation contributes to neurodegeneration. Science (80.), 2016, 353(6301), 777-783.
[92]
Gelders, G.; Baekelandt, V.; Van der Perren, A. Linking neuroinflammation and neurodegeneration in Parkinson’s disease. J. Immunol. Res., 2018, 2018, 4784268.
[http://dx.doi.org/10.1155/2018/4784268]
[93]
McCauley, M. E.; Baloh, R. H. Inflammation in ALS/FTD pathogenesis. Acta Neuropathol, 2018, 137(5), 715-730.
[94]
Yuskaitis, C.J.; Jope, R.S. Glycogen synthase kinase-3 regulates microglial migration, inflammation, and inflammation-induced neurotoxicity. Cell. Signal., 2009, 21(2), 264-273.
[http://dx.doi.org/10.1016/j.cellsig.2008.10.014] [PMID: 19007880]
[95]
Beurel, E.; Jope, R.S. Glycogen synthase kinase-3 regulates inflammatory tolerance in astrocytes. Neuroscience, 2010, 169(3), 1063-1070.
[http://dx.doi.org/10.1016/j.neuroscience.2010.05.044] [PMID: 20553816]
[96]
Bernaus, A.; Blanco, S.; Sevilla, A. Glia crosstalk in neuroinflammatory diseases. Front. Cell. Neurosci., 2020, 14, 209.
[http://dx.doi.org/10.3389/fncel.2020.00209] [PMID: 32848613]
[97]
Beurel, E.; Michalek, S.M.; Jope, R.S. Innate and adaptive immune responses regulated by Glycogen Synthae Kinase-3 (GSK3). Trends Immunol., 2010, 31(1), 1-16.
[http://dx.doi.org/10.1016/j.it.2009.09.007] [PMID: 19836999]
[98]
Beurel, E.; Yeh, W-I.; Michalek, S.M.; Harrington, L.E.; Jope, R.S. Glycogen synthase kinase-3 is an early determinant in the differentiation of pathogenic Th17 cells. J. Immunol., 2011, 186(3), 1391-1398.
[http://dx.doi.org/10.4049/jimmunol.1003511] [PMID: 21191064]
[99]
Zhang, D.; Lu, Z.; Man, J.; Cui, K.; Fu, X.; Yu, L.; Gao, Y.; Liao, L.; Xiao, Q.; Guo, R.; Zhang, Y.; Zhang, Z.; Liu, X.; Lu, H.; Wang, J. Wnt-3a alleviates neuroinflammation after ischemic stroke by modulating the responses of microglia/macrophages and astrocytes. Int. Immunopharmacol., 2019, 75, 105760.
[http://dx.doi.org/10.1016/j.intimp.2019.105760] [PMID: 31323530]
[100]
Song, D.; Zhang, X.; Chen, J.; Liu, X.; Xue, J.; Zhang, L.; Lan, X. Wnt canonical pathway activator TWS119 drives microglial anti-inflammatory activation and facilitates neurological recovery following experimental stroke. J. Neuroinflammation, 2019, 16(1), 256.
[http://dx.doi.org/10.1186/s12974-019-1660-8] [PMID: 31810470]
[101]
Marchetti, B.; Pluchino, S. Wnt your brain be inflamed? Yes, it Wnt! Trends Mol. Med., 2013, 19(3), 144-156.
[http://dx.doi.org/10.1016/j.molmed.2012.12.001] [PMID: 23312954]
[102]
Ma, B.; Hottiger, M.O. Crosstalk between Wnt/β-Catenin and NF-KB signaling pathway during inflammation. Front. Immunol., 2016, 7, 1.
[http://dx.doi.org/10.3389/fimmu.2016.00378]
[103]
Dominguez, I.; Itoh, K.; Sokol, S.Y. Role of glycogen synthase kinase 3 beta as a negative regulator of dorsoventral axis formation in Xenopus embryos. Proc. Natl. Acad. Sci. USA, 1995, 92(18), 8498-8502.
[http://dx.doi.org/10.1073/pnas.92.18.8498] [PMID: 7667318]
[104]
Kimelman, D.; Xu, W. β -catenin destruction complex: Insights and questions from a structural perspective. Oncogene, 2006, 25(57), 7482-7491.
[105]
Liu, J.; Xing, Y.; Hinds, T.R.; Zheng, J.; Xu, W. The third 20 amino acid repeat is the tightest binding site of APC for β-catenin. J. Mol. Biol., 2006, 360(1), 133-144.
[http://dx.doi.org/10.1016/j.jmb.2006.04.064] [PMID: 16753179]
[106]
Ikeda, S.; Kishida, S.; Yamamoto, H.; Murai, H.; Koyama, S.; Kikuchi, A. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3β and β- catenin and promotes GSK-3β-dependent phosphorylation of β-catenin. EMBO J., 1998, 17(5), 1371-1384.
[http://dx.doi.org/10.1093/emboj/17.5.1371] [PMID: 9482734]
[107]
Wu, D.; Pan, W. GSK3: A multifaceted kinase in Wnt signaling. Trends Biochem. Sci., 2010, 35(3), 161-168.
[108]
Aberle, H.; Bauer, A.; Stappert, J.; Kispert, A.; Kemler, R. beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J., 1997, 16(13), 3797-3804.
[http://dx.doi.org/10.1093/emboj/16.13.3797] [PMID: 9233789]
[109]
McCubrey, J. A.; Steelman, L. S.; Bertrand, F. E.; Davis, N. M.; Abrams, S. L.; Montalto, G.; D’Assoro, A. B.; Libra, M.; Nicoletti, F.; Maestro, R.; Basecke, J.; Cocco, L.; Cervello, M.; Martelli, A. M. Multifaceted roles of GSK-3 and Wnt/β-catenin in hematopoiesis and leukemogenesis: opportunities for therapeutic intervention. Leukocytes, 2013, 28(1), 15-33.
[110]
Hui, J.; Zhang, J.; Pu, M.; Zhou, X.; Dong, L.; Mao, X.; Shi, G.; Zou, J.; Wu, J.; Jiang, D.; Xi, G. Modulation of GSK-3β/β-catenin signaling contributes to learning and memory impairment in a rat model of depression. Int. J. Neuropsychopharmacol., 2018, 21(9), 858-870.
[http://dx.doi.org/10.1093/ijnp/pyy040] [PMID: 29688389]
[111]
Myant, K.; Sansom, O.J. Wnt/Myc interactions in intestinal cancer: partners in crime. Exp. Cell Res., 2011, 317(19), 2725-2731.
[http://dx.doi.org/10.1016/j.yexcr.2011.08.001] [PMID: 21851818]
[112]
Noori, T.; Dehpour, A.R.; Sureda, A.; Fakhri, S.; Sobarzo- Sanchez, E.; Farzaei, M.H.; Küpeli Akkol, E.; Khodarahmi, Z.; Hosseini, S.Z.; Alavi, S.D.; Shirooie, S. The role of glycogen synthase kinase 3 beta in multiple sclerosis. Biomed. Pharmacother., 2020, 132, 110874.
[http://dx.doi.org/10.1016/j.biopha.2020.110874] [PMID: 33080467]
[113]
Lim, J.C.; Kania, K.D.; Wijesuriya, H.; Chawla, S.; Sethi, J.K.; Pulaski, L.; Romero, I.A.; Couraud, P.O.; Weksler, B.B.; Hladky, S.B.; Barrand, M.A. Activation of beta- catenin signalling by GSK-3 inhibition increases p-glycoprotein expression in brain endothelial cells. J. Neurochem., 2008, 106(4), 1855-1865.
[PMID: 18624906]
[114]
Ramirez, S.H.; Fan, S.; Dykstra, H.; Rom, S.; Mercer, A.; Reichenbach, N.L.; Gofman, L.; Persidsky, Y. Inhibition of glycogen synthase kinase 3β promotes tight junction stability in brain endothelial cells by half-life extension of occludin and claudin-5. PLoS One, 2013, 8(2), e55972.
[http://dx.doi.org/10.1371/journal.pone.0055972] [PMID: 23418486]
[115]
Ramirez, S.H.; Fan, S.; Zhang, M.; Papugani, A.; Reichenbach, N.; Dykstra, H.; Mercer, A.J.; Tuma, R.F.; Persidsky, Y. Inhibition of glycogen synthase kinase 3β (GSK3β) decreases inflammatory responses in brain endothelial cells. Am. J. Pathol., 2010, 176(2), 881-892.
[http://dx.doi.org/10.2353/ajpath.2010.090671] [PMID: 20056834]
[116]
Cortés-Vieyra, R.; Bravo-Patiño, A.; Valdez-Alarcón, J. J.; Juárez, M. C.; Finlay, B. B.; Baizabal-Aguirre, V. M. Role of Glycogen Synthase Kinase-3 beta in the inflammatory response caused by bacterial pathogens. J. Inflamm., 2012, 9(1), 1-9.
[117]
Liu, T.; Zhang, L.; Joo, D.; Sun, S.-C. NF-ΚB signaling in inflammation. Nat. Publ. Gr., 2017, 2, 17023.
[118]
DiDonato, J. A.; Hayakawa, M.; Rothwarf, D. M.; Zandi, E.; Karin, M. A cytokine-responsive iκb kinase that activates the transcription factor NF-ΚB. Nature, 1997, 388(6642), 548-554.
[119]
Koistinaho, J.; Malm, T.; Goldsteins, G. Glycogen synthase kinase-3β: A mediator of inflammation in Alzheimer’s disease? Int. J. Alzheimers. Dis., 2011, 2011, 129753.
[http://dx.doi.org/10.4061/2011/129753]
[120]
Wang, N.; Liang, H.; Zen, K. Molecular mechanisms that influence the macrophage m1-m2 polarization balance. Front. Immunol., 2014, 5, 614.
[PMID: 25506346]
[121]
Morris, K.R.; Lutz, R.D.; Choi, H.S.; Kamitani, T.; Chmura, K.; Chan, E.D. Role of the NF-kappaB signaling pathway and kappaB cis-regulatory elements on the IRF-1 and iNOS promoter regions in mycobacterial lipoarabinomannan induction of nitric oxide. Infect. Immun., 2003, 71(3), 1442-1452.
[http://dx.doi.org/10.1128/IAI.71.3.1442-1452.2003] [PMID: 12595462]
[122]
Hayden, M.S.; Ghosh, S. Shared principles in NF-kappaB signaling. Cell, 2008, 132(3), 344-362.
[http://dx.doi.org/10.1016/j.cell.2008.01.020] [PMID: 18267068]
[123]
Hoffmeister, L.; Diekmann, M.; Brand, K.; Huber, R. GSK3: A kinase balancing promotion and resolution of inflammation. Cells, 2020, 9(4), E820.
[http://dx.doi.org/10.3390/cells9040820] [PMID: 32231133]
[124]
Deng, J.; Miller, S.A.; Wang, H-Y.; Xia, W.; Wen, Y.; Zhou, B.P.; Li, Y.; Lin, S-Y.; Hung, M-C. β-catenin interacts with and inhibits NF-kappa B in human colon and breast cancer. Cancer Cell, 2002, 2(4), 323-334.
[http://dx.doi.org/10.1016/S1535-6108(02)00154-X] [PMID: 12398896]
[125]
Medunjanin, S.; Schleithoff, L.; Fiegehenn, C.; Weinert, S.; Zuschratter, W.; Braun-Dullaeus, R.C. GSK-3β controls NF-kappaB activity via IKKγ/NEMO. Sci. Rep., 2016, 6, 38553.
[http://dx.doi.org/10.1038/srep38553] [PMID: 27929056]
[126]
Itoh, S.; Saito, T.; Hirata, M.; Ushita, M.; Ikeda, T.; Woodgett, J.R.; Algül, H.; Schmid, R.M.; Chung, U.I.; Kawaguchi, H. GSK-3α and GSK-3β proteins are involved in early stages of chondrocyte differentiation with functional redundancy through RelA protein phosphorylation. J. Biol. Chem., 2012, 287(35), 29227-29236.
[http://dx.doi.org/10.1074/jbc.M112.372086] [PMID: 22761446]
[127]
Agarwal, D.; Dange, R.B.; Raizada, M.K.; Francis, J.; Angiotensin, I.I. Angiotensin II causes imbalance between pro- and anti-inflammatory cytokines by modulating GSK-3β in neuronal culture. Br. J. Pharmacol., 2013, 169(4), 860-874.
[http://dx.doi.org/10.1111/bph.12177] [PMID: 23516971]
[128]
Gong, R.; Rifai, A.; Ge, Y.; Chen, S.; Dworkin, L.D. Hepatocyte growth factor suppresses proinflammatory NFkappaB activation through GSK3β inactivation in renal tubular epithelial cells. J. Biol. Chem., 2008, 283(12), 7401-7410.
[http://dx.doi.org/10.1074/jbc.M710396200] [PMID: 18201972]
[129]
Sheppard, K-A.; Rose, D.W.; Haque, Z.K.; Kurokawa, R.; McInerney, E.; Westin, S.; Thanos, D.; Rosenfeld, M.G.; Glass, C.K.; Collins, T. Transcriptional activation by NF-kappaB requires multiple coactivators. Mol. Cell. Biol., 1999, 19(9), 6367-6378.
[http://dx.doi.org/10.1128/MCB.19.9.6367] [PMID: 10454583]
[130]
Martin, M.; Rehani, K.; Jope, R.S.; Michalek, S.M. Toll- like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat. Immunol., 2005, 6(8), 777-784.
[http://dx.doi.org/10.1038/ni1221] [PMID: 16007092]
[131]
Zhong, H.; Voll, R.E.; Ghosh, S. Phosphorylation of NF-kappa B p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol. Cell, 1998, 1(5), 661-671.
[http://dx.doi.org/10.1016/S1097-2765(00)80066-0] [PMID: 9660950]
[132]
Demarchi, F.; Bertoli, C.; Sandy, P.; Schneider, C. Glycogen synthase kinase-3 β regulates NF-kappa B1/p105 stability. J. Biol. Chem., 2003, 278(41), 39583-39590.
[http://dx.doi.org/10.1074/jbc.M305676200] [PMID: 12871932]
[133]
Busino, L.; Millman, S.E.; Scotto, L.; Kyratsous, C.A.; Basrur, V.; O’Connor, O.; Hoffmann, A.; Elenitoba-Johnson, K.S.; Pagano, M. Fbxw7α- and GSK3-mediated degradation of p100 is a pro-survival mechanism in multiple myeloma. Nat. Cell Biol., 2012, 14(4), 375-385.
[http://dx.doi.org/10.1038/ncb2463] [PMID: 22388891]
[134]
Ma, Y.; Wang, M.; Li, N.; Wu, R.; Wang, X. Bleomycin-induced nuclear factor-kappaB activation in human bronchial epithelial cells involves the phosphorylation of glycogen synthase kinase 3β. Toxicol. Lett., 2009, 187(3), 194-200.
[http://dx.doi.org/10.1016/j.toxlet.2009.02.023] [PMID: 19429264]
[135]
Wen, A.Y.; Sakamoto, K.M.; Miller, L.S. The role of the transcription factor CREB in immune function. J. Immunol., 2010, 185(11), 6413-6419.
[http://dx.doi.org/10.4049/jimmunol.1001829] [PMID: 21084670]
[136]
Parry, G.C.; Mackman, N. Role of cyclic AMP response element-binding protein in cyclic AMP inhibition of NF-kappaB-mediated transcription. J. Immunol., 1997, 159(11), 5450-5456.
[PMID: 9548485]
[137]
Avni, D.; Ernst, O.; Philosoph, A.; Zor, T. Role of CREB in modulation of TNFalpha and IL-10 expression in LPS-stimulated RAW264.7 macrophages. Mol. Immunol., 2010, 47(7-8), 1396-1403.
[http://dx.doi.org/10.1016/j.molimm.2010.02.015] [PMID: 20303596]
[138]
Sakamoto, K.; Karelina, K.; Obrietan, K. CREB: A multifaceted regulator of neuronal plasticity and protection. J. Neurochem., 2011, 116(1), 1-9.
[http://dx.doi.org/10.1111/j.1471-4159.2010.07080.x] [PMID: 21044077]
[139]
Johannessen, M.; Moens, U. Multisite phosphorylation of the cAMP response element-binding protein (CREB) by a diversity of protein kinases. Front. Biosci., 2007, 12, 1814-1832.
[http://dx.doi.org/10.2741/2190] [PMID: 17127423]
[140]
Johannessen, M.; Delghandi, M.P.; Moens, U. What turns CREB on? Cell. Signal., 2004, 16(11), 1211-1227.
[http://dx.doi.org/10.1016/j.cellsig.2004.05.001] [PMID: 15337521]
[141]
Park, S.S.; Choi, H.; Kim, S.J.; Chang, C.; Kim, E. CREB/GSK-3β signaling pathway regulates the expression of TR4 orphan nuclear receptor gene. Mol. Cell. Endocrinol., 2016, 423, 22-29.
[http://dx.doi.org/10.1016/j.mce.2015.12.023] [PMID: 26762765]
[142]
Woodgett, J.R.; Ohashi, P.S. GSK3: An in-Toll-erant protein kinase? Nat. Immunol., 2005, 6(8), 751-752.
[http://dx.doi.org/10.1038/ni0805-751] [PMID: 16034428]
[143]
Zolezzi, J.M.; Bastías-Candia, S.; Inestrosa, N.C. Neuroinflammation: A common line between the wnt pathway and toll-like receptors. EMJ Neurol., 2020, 8(1), 108-114.
[144]
Ko, R.; Lee, S.Y. Glycogen synthase kinase 3β in Toll-like receptor signaling. BMB Rep., 2016, 49(6), 305-310.
[http://dx.doi.org/10.5483/BMBRep.2016.49.6.059] [PMID: 26996345]
[145]
Hanke, M.L.; Kielian, T. Toll-like receptors in health and disease in the brain: Mechanisms and therapeutic potential. Clin. Sci. (Lond.), 2011, 121(9), 367-387.
[http://dx.doi.org/10.1042/CS20110164] [PMID: 21745188]
[146]
Guha, M.; Mackman, N. The phosphatidylinositol 3-kinase-Akt pathway limits lipopolysaccharide activation of signaling pathways and expression of inflammatory mediators in human monocytic cells. J. Biol. Chem., 2002, 277(35), 32124-32132.
[http://dx.doi.org/10.1074/jbc.M203298200] [PMID: 12052830]
[147]
Ko, R.; Park, J. H.; Ha, H.; Choi, Y.; Lee, S. Y. Glycogen synthase kinase 3β ubiquitination by traf6 regulates tlr3- mediated pro-inflammatory cytokine production. Nat. Commun., 2015, 6(1), 1-12.
[148]
Zolezzi, J.M.; Inestrosa, N.C. Wnt/TLR dialog in neuroinflammation, relevance in Alzheimer’s disease. Front. Immunol., 2017, 8, 187.
[http://dx.doi.org/10.3389/fimmu.2017.00187] [PMID: 28286503]
[149]
Zhang, H.; Hu, H.; Greeley, N.; Jin, J.; Matthews, A.J.; Ohashi, E.; Caetano, M.S.; Li, H.S.; Wu, X.; Mandal, P.K.; McMurray, J.S.; Moghaddam, S.J.; Sun, S.-C.; Watowich, S.S. STAT3 Restrains RANK- and TLR4-Mediated signalling by suppressing expression of the e2 ubiquitin-conjugating enzyme Ubc13. Nat. Commun, 2014, 5(1), 1-10.
[150]
Hillmer, E.J.; Zhang, H.; Li, H.S.; Watowich, S.S. STAT3 signaling in immunity. Cytokine Growth Factor Rev., 2016, 31, 1-15.
[http://dx.doi.org/10.1016/j.cytogfr.2016.05.001] [PMID: 27185365]
[151]
Beurel, E.; Jope, R.S. Differential regulation of STAT family members by glycogen synthase kinase-3. J. Biol. Chem., 2008, 283(32), 21934-21944.
[http://dx.doi.org/10.1074/jbc.M802481200] [PMID: 18550525]
[152]
Beurel, E.; Jope, R. S. Lipopolysaccharide-induced interleukin-6 production is controlled by glycogen synthase kinase-3 and stat3 in the brain. J. Neuroinflammation, 2009, 6(1), 1-11.
[153]
Tahmasebinia, F.; Pourgholaminejad, A. The role of Th17 cells in auto-inflammatory neurological disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2017, 79(Pt B), 408-416.
[http://dx.doi.org/10.1016/j.pnpbp.2017.07.023] [PMID: 28760387]
[154]
Beurel, E.; Lowell, J.A. Th17 cells in depression. Brain Behav. Immun., 2018, 69, 28-34.
[http://dx.doi.org/10.1016/j.bbi.2017.08.001] [PMID: 28779999]
[155]
Mishra, R.; Barthwal, M.K.; Sondarva, G.; Rana, B.; Wong, L.; Chatterjee, M.; Woodgett, J.R.; Rana, A. Glycogen synthase kinase-3β induces neuronal cell death via direct phosphorylation of mixed lineage kinase 3. J. Biol. Chem., 2007, 282(42), 30393-30405.
[http://dx.doi.org/10.1074/jbc.M705895200] [PMID: 17711861]
[156]
Yin, Y.; Wang, S.; Sun, Y.; Matt, Y.; Colburn, N.H.; Shu, Y.; Han, X. JNK/AP-1 pathway is involved in tumor necrosis factor-α induced expression of vascular endothelial growth factor in MCF7 cells. Biomed. Pharmacother., 2009, 63(6), 429-435.
[http://dx.doi.org/10.1016/j.biopha.2009.04.045] [PMID: 19553068]
[157]
Wang, M.J.; Huang, H.Y.; Chen, W.F.; Chang, H.F.; Kuo, J.S. Glycogen synthase kinase-3β inactivation inhibits tumor necrosis factor-α production in microglia by modulating nuclear factor κB and MLK3/JNK signaling cascades. J. Neuroinflammation, 2010, 7(1), 99.
[http://dx.doi.org/10.1186/1742-2094-7-99] [PMID: 21194439]
[158]
Mines, M.A.; Beurel, E.; Jope, R.S. Regulation of cell survival mechanisms in Alzheimer’s disease by glycogen synthase kinase-3. Int. J. Alzheimers Dis., 2011, 2011, 861072.
[http://dx.doi.org/10.4061/2011/861072] [PMID: 21629713]
[159]
Chen, L.; Cheng, L.; Wei, X.; Yuan, Z.; Wu, Y.; Wang, S.; Ren, Z.; Liu, X.; Liu, H. Tetramethylpyrazine analogue cxc195 protects against dopaminergic neuronal apoptosis via activation of pi3k/akt/gsk3β signaling pathway in 6-OHDA-induced Parkinson’s disease mice. Neurochem. Res., 2016, 42(4), 1141-1150.
[160]
Beurel, E.; Jope, R.S. The paradoxical pro- and anti-apoptotic actions of GSK3 in the intrinsic and extrinsic apoptosis signaling pathways. Prog. Neurobiol., 2006, 79(4), 173-189.
[http://dx.doi.org/10.1016/j.pneurobio.2006.07.006] [PMID: 16935409]
[161]
Ahn, S.W.; Kim, J.E.; Park, K.S.; Choi, W.J.; Hong, Y.H.; Kim, S.M.; Kim, S.H.; Lee, K.W.; Sung, J.J. The neuroprotective effect of the GSK-3β inhibitor and influence on the extrinsic apoptosis in the ALS transgenic mice. J. Neurol. Sci., 2012, 320(1-2), 1-5.
[http://dx.doi.org/10.1016/j.jns.2012.05.038] [PMID: 22698482]
[162]
Jeon, G.S.; Kim, J.E.; Ahn, S.W.; Park, K.S.; Hong, Y.H.; Ye, I.H.; Park, J.S.; Kim, S.H.; Lee, K.W.; Kim, S.M.; Sung, J.J. Effect of JGK-263 as a new glycogen synthase kinase-3β inhibitor on extrinsic apoptosis pathway in motor neuronal cells. Biochem. Biophys. Res. Commun., 2013, 439(2), 309-314.
[http://dx.doi.org/10.1016/j.bbrc.2013.07.080] [PMID: 23899525]
[163]
El-Abhar, H.; Abd El Fattah, M.A.; Wadie, W.; El-Tanbouly, D.M. Cilostazol disrupts TLR-4, Akt/GSK-3β/CREB, and IL-6/JAK-2/STAT-3/SOCS-3 crosstalk in a rat model of Huntington’s disease. PLoS One, 2018, 13(9), e0203837.
[http://dx.doi.org/10.1371/journal.pone.0203837] [PMID: 30260985]
[164]
Elmore, S. Apoptosis: a review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[165]
Linseman, D.A.; Butts, B.D.; Precht, T.A.; Phelps, R.A.; Le, S.S.; Laessig, T.A.; Bouchard, R.J.; Florez-McClure, M.L.; Heidenreich, K.A. Glycogen synthase kinase-3β phosphorylates Bax and promotes its mitochondrial localization during neuronal apoptosis. J. Neurosci., 2004, 24(44), 9993-10002.
[http://dx.doi.org/10.1523/JNEUROSCI.2057-04.2004] [PMID: 15525785]
[166]
Hongisto, V.; Smeds, N.; Brecht, S.; Herdegen, T.; Courtney, M.J.; Coffey, E.T. Lithium blocks the c-Jun stress response and protects neurons via its action on glycogen synthase kinase 3. Mol. Cell. Biol., 2003, 23(17), 6027-6036.
[http://dx.doi.org/10.1128/MCB.23.17.6027-6036.2003] [PMID: 12917327]
[167]
Pastorino, J.G.; Hoek, J.B.; Shulga, N. Activation of glycogen synthase kinase 3β disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage-dependent anion channel and potentiates chemotherapy-induced cytotoxicity. Cancer Res., 2005, 65(22), 10545-10554.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1925] [PMID: 16288047]
[168]
Maurer, U.; Charvet, C.; Wagman, A.S.; Dejardin, E.; Green, D.R. Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1. Mol. Cell, 2006, 21(6), 749-760.
[http://dx.doi.org/10.1016/j.molcel.2006.02.009] [PMID: 16543145]
[169]
Ngok-Ngam, P.; Watcharasit, P.; Thiantanawat, A.; Satayavivad, J. Pharmacological inhibition of GSK3 attenuates DNA damage-induced apoptosis via reduction of p53 mitochondrial translocation and Bax oligomerization in neuroblastoma SH-SY5Y cells. Cell. Mol. Biol. Lett., 2013, 18(1), 58-74.
[http://dx.doi.org/10.2478/s11658-012-0039-y] [PMID: 23161404]
[170]
Nuutinen, U.; Ropponen, A.; Suoranta, S.; Eeva, J.; Eray, M.; Pellinen, R.; Wahlfors, J.; Pelkonen, J. Dexamethasone-induced apoptosis and up-regulation of Bim is dependent on glycogen synthase kinase-3. Leuk. Res., 2009, 33(12), 1714-1717.
[http://dx.doi.org/10.1016/j.leukres.2009.06.004] [PMID: 19559478]
[171]
Tao, N.N.; Zhang, Z.Z.; Ren, J.H.; Zhang, J.; Zhou, Y.J.; Wai Wong, V.K.; Kwan Law, B.Y.; Cheng, S.T.; Zhou, H.Z.; Chen, W.X.; Xu, H.M.; Chen, J. Overexpression of ubiquitin-conjugating enzyme E2 L3 in hepatocellular carcinoma potentiates apoptosis evasion by inhibiting the GSK3β/p65 pathway. Cancer Lett., 2020, 481, 1-14.
[http://dx.doi.org/10.1016/j.canlet.2020.03.028] [PMID: 32268166]
[172]
Rahmani, M.; Aust, M.M.; Attkisson, E.; Williams, D.C., Jr; Ferreira-Gonzalez, A.; Grant, S. Dual inhibition of Bcl-2 and Bcl-xL strikingly enhances PI3K inhibition-induced apoptosis in human myeloid leukemia cells through a GSK3- and Bim-dependent mechanism. Cancer Res., 2013, 73(4), 1340-1351.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-1365] [PMID: 23243017]
[173]
Tan, J.; Zhuang, L.; Leong, H-S.; Iyer, N.G.; Liu, E.T.; Yu, Q. Pharmacologic modulation of glycogen synthase kinase-3β promotes p53-dependent apoptosis through a direct Bax-mediated mitochondrial pathway in colorectal cancer cells. Cancer Res., 2005, 65(19), 9012-9020.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1226] [PMID: 16204075]
[174]
Beurel, E.; Kornprobst, M.; Blivet-Van Eggelpoël, M.J.; Ruiz-Ruiz, C.; Cadoret, A.; Capeau, J.; Desbois-Mouthon, C. GSK-3β inhibition by lithium confers resistance to chemotherapy-induced apoptosis through the repression of CD95 (Fas/APO-1) expression. Exp. Cell Res., 2004, 300(2), 354-364.
[http://dx.doi.org/10.1016/j.yexcr.2004.08.001] [PMID: 15475000]
[175]
Xiang, H.; Wang, J.; Boxer, L.M. Role of the cyclic AMP response element in the bcl-2 promoter in the regulation of endogenous Bcl-2 expression and apoptosis in murine B cells. Mol. Cell. Biol., 2006, 26(22), 8599-8606.
[http://dx.doi.org/10.1128/MCB.01062-06] [PMID: 16982684]
[176]
Wilson, B.E.; Mochon, E.; Boxer, L.M. Induction of bcl-2 expression by phosphorylated CREB proteins during B- cell activation and rescue from apoptosis. Mol. Cell. Biol., 1996, 16(10), 5546-5556.
[http://dx.doi.org/10.1128/MCB.16.10.5546] [PMID: 8816467]
[177]
Watcharasit, P.; Bijur, G.N.; Song, L.; Zhu, J.; Chen, X.; Jope, R.S. Glycogen synthase kinase-3β (GSK3β) binds to and promotes the actions of p53. J. Biol. Chem., 2003, 278(49), 48872-48879.
[http://dx.doi.org/10.1074/jbc.M305870200] [PMID: 14523002]
[178]
Bijur, G.N.; Jope, R.S. Opposing actions of phosphatidylinositol 3-kinase and glycogen synthase kinase-3β in the regulation of HSF-1 activity. J. Neurochem., 2000, 75(6), 2401-2408.
[http://dx.doi.org/10.1046/j.1471-4159.2000.0752401.x] [PMID: 11080191]
[179]
Cho, J.H.; Johnson, G.V.W. Glycogen synthase kinase 3β phosphorylates tau at both primed and unprimed sites. Differential impact on microtubule binding. J. Biol. Chem., 2003, 278(1), 187-193.
[http://dx.doi.org/10.1074/jbc.M206236200] [PMID: 12409305]
[180]
Fanale, D.; Bronte, G.; Passiglia, F.; Calò, V.; Castiglia, M.; Di Piazza, F.; Barraco, N.; Cangemi, A.; Catarella, M. T.; Insalaco, L.; Listì, A.; Maragliano, R.; Massihnia, D.; Perez, A.; Toia, F.; Cicero, G.; Bazan, V. Stabilizing versus destabilizing the microtubules: a double-edge sword for an effective cancer treatment option? Anal. Cell. Pathol, 2015, 2015, 690916.
[http://dx.doi.org/10.1155/2015/690916]
[181]
Pap, M.; Cooper, G.M. Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-Kinase/Akt cell survival pathway. J. Biol. Chem., 1998, 273(32), 19929-19932.
[http://dx.doi.org/10.1074/jbc.273.32.19929] [PMID: 9685326]
[182]
Guicciardi, M.E.; Gores, G.J. Life and death by death receptors. FASEB J., 2009, 23(6), 1625-1637.
[http://dx.doi.org/10.1096/fj.08-111005] [PMID: 19141537]
[183]
Sun, M.; Song, L.; Li, Y.; Zhou, T.; Jope, R.S. Identification of an antiapoptotic protein complex at death receptors. Cell Death Differ., 2008, 15(12), 1887-1900.
[http://dx.doi.org/10.1038/cdd.2008.124] [PMID: 18846110]
[184]
Kensler, T. W.; Wakabayashi, N.; Biswal, S. Cell survival responses to environmental stresses via the keap1-nrf2-are pathway. Annu. Rev. Pharmacol. Toxicol., 2007, 47, 89-116.
[http://dx.doi.org/10.1146/annurev.pharmtox.46.120604.141046]
[185]
May-Simera, H.; Liu, C. Neuronal polarity and neurological disorders. J. Neurol. Transl. Neurosci., 2013, 2(1), 1026.
[186]
Yoshimura, T.; Kawano, Y.; Arimura, N.; Kawabata, S.; Kikuchi, A.; Kaibuchi, K. GSK-3β regulates phosphorylation of CRMP-2 and neuronal polarity. Cell, 2005, 120(1), 137-149.
[http://dx.doi.org/10.1016/j.cell.2004.11.012] [PMID: 15652488]
[187]
Kim, Y.T.; Hur, E-M.; Snider, W.D.; Zhou, F-Q. Role of GSK3 signaling in neuronal morphogenesis. Front. Mol. Neurosci., 2011, 4, 48.
[http://dx.doi.org/10.3389/fnmol.2011.00048] [PMID: 22131966]
[188]
Ahn, M.; Kim, J.; Park, C.; Cho, J.; Jee, Y.; Jung, K.; Moon, C.; Shin, T. Potential involvement of glycogen synthase kinase (GSK)-3β in a rat model of multiple sclerosis: evidenced by lithium treatment. Anat. Cell Biol., 2017, 50(1), 48-59.
[http://dx.doi.org/10.5115/acb.2017.50.1.48] [PMID: 28417055]
[189]
Wentling, M.; Lopez-Gomez, C.; Park, H.J.; Amatruda, M.; Ntranos, A.; Aramini, J.; Petracca, M.; Rusielewicz, T.; Chen, E.; Tolstikov, V.; Kiebish, M.; Fossati, V.; Inglese, M.; Quinzii, C.M.; Katz Sand, I.; Casaccia, P. A metabolic perspective on CSF-mediated neurodegeneration in multiple sclerosis. Brain, 2019, 142(9), 2756-2774.
[http://dx.doi.org/10.1093/brain/awz201] [PMID: 31305892]
[190]
Lassmann, H.; Brück, W.; Lucchinetti, C.F. The immunopathology of multiple sclerosis: an overview. Brain Pathol., 2007, 17(2), 210-218.
[http://dx.doi.org/10.1111/j.1750-3639.2007.00064.x] [PMID: 17388952]
[191]
Galimberti, D.; Macmurray, J.; Scalabrini, D.; Fenoglio, C.; De Riz, M.; Comi, C.; Comings, D.; Cortini, F.; Villa, C.; Serpente, M.; Cantoni, C.; Ridolfi, E.; Fardipoor, M.H.; Leone, M.; Monaco, F.; Bresolin, N.; Scarpini, E. GSK3β genetic variability in patients with Multiple Sclerosis. Neurosci. Lett., 2011, 497(1), 46-48.
[http://dx.doi.org/10.1016/j.neulet.2011.04.024] [PMID: 21527318]
[192]
Weller, J.; Budson, A. Current understanding of Alzheimer’s disease diagnosis and treatment. F1000 Res., 2018, 7, 1-9.
[http://dx.doi.org/10.12688/f1000research.14506.1] [PMID: 30135715]
[193]
Rios-Romenets, S.; Lopera, F.; Sink, K.M.; Hu, N.; Lian, Q.; Guthrie, H.; Smith, J.; Cho, W.; Mackey, H.; Langbaum, J.B.; Thomas, R.G.; Giraldo-Chica, M.; Tobon, C.; Acosta-Baena, N.; Muñoz, C.; Ospina, P.; Tirado, V.; Henao, E.; Bocanegra, Y.; Chen, K.; Su, Y.; Goradia, D.; Thiyyagura, P.; VanGilder, P.S.; Luo, J.; Ghisays, V.; Lee, W.; Malek-Ahmadi, M.H.; Protas, H.D.; Chen, Y.; Quiroz, Y.T.; Reiman, E.M.; Tariot, P.N. Baseline demographic, clinical, and cognitive characteristics of the Alzheimer’s prevention initiative (API) autosomal-dominant Alzheimer’s disease colombia trial. Alzheimers Dement., 2020, 16(7), 1023-1030.
[http://dx.doi.org/10.1002/alz.12109] [PMID: 32418361]
[194]
Blennow, K.; de Leon, M.J.; Zetterberg, H. Alzheimer’s disease. Lancet, 2006, 368(9533), 387-403.
[http://dx.doi.org/10.1016/S0140-6736(06)69113-7] [PMID: 16876668]
[195]
Scheff, S.W.; Price, D.A.; Schmitt, F.A.; DeKosky, S.T.; Mufson, E.J. Synaptic alterations in CA1 in mild Alzheimer's disease and mild cognitive impairment. Neurology, 2007, 68(18), 1501-1508.
[http://dx.doi.org/10.1212/01.wnl.0000260698.46517.8f] [PMID: 17470753]
[196]
Jaworski, T.; Banach-Kasper, E.; Gralec, K. GSK-3β at the intersection of neuronal plasticity and neurodegeneration. Neural Plast., 2019, 2019, 4209475.
[http://dx.doi.org/10.1155/2019/4209475] [PMID: 31191636]
[197]
Christian, Luscher; Robert, C. Malenka NMDA receptor-dependent Long-Term Potentiation and Long-Term Depression (LTP/LTD). Perspect. Biol., 2012, 4(1), 1-15.
[198]
Prieto, G.A.; Trieu, B.H.; Dang, C.T.; Bilousova, T.; Gylys, K.H.; Berchtold, N.C.; Lynch, G.; Cotman, C.W. Pharmacological rescue of long-term potentiation in Alzheimer's diseased synapses. J. Neurosci., 2017, 37(5), 1197-1212.
[http://dx.doi.org/10.1523/JNEUROSCI.2774-16.2016] [PMID: 27986924]
[199]
Chen, P.; Gu, Z.; Liu, W.; Yan, Z. Glycogen synthase kinase 3 regulates N-methyl-D-aspartate receptor channel trafficking and function in cortical neurons. Mol. Pharmacol., 2007, 72(1), 40-51.
[http://dx.doi.org/10.1124/mol.107.034942] [PMID: 17400762]
[200]
Zhu, L.Q.; Wang, S.H.; Liu, D.; Yin, Y.Y.; Tian, Q.; Wang, X.C.; Wang, Q.; Chen, J.G.; Wang, J.Z. Activation of glycogen synthase kinase-3 inhibits long-term potentiation with synapse-associated impairments. J. Neurosci., 2007, 27(45), 12211-12220.
[http://dx.doi.org/10.1523/JNEUROSCI.3321-07.2007] [PMID: 17989287]
[201]
Hooper, C.; Markevich, V.; Plattner, F.; Killick, R.; Schofield, E.; Engel, T.; Hernandez, F.; Anderton, B.; Rosenblum, K.; Bliss, T.; Cooke, S.F.; Avila, J.; Lucas, J.J.; Giese, K.P.; Stephenson, J.; Lovestone, S. Glycogen synthase kinase-3 inhibition is integral to long-term potentiation. Eur. J. Neurosci., 2007, 25(1), 81-86.
[http://dx.doi.org/10.1111/j.1460-9568.2006.05245.x] [PMID: 17241269]
[202]
Peineau, S.; Taghibiglou, C.; Bradley, C.; Wong, T.P.; Liu, L.; Lu, J.; Lo, E.; Wu, D.; Saule, E.; Bouschet, T.; Matthews, P.; Isaac, J.T.R.; Bortolotto, Z.A.A.; Wang, Y.T.; Collingridge, G.L. LTP inhibits LTD in the hippocampus via regulation of GSK3β. Neuron, 2007, 53(5), 703-717.
[http://dx.doi.org/10.1016/j.neuron.2007.01.029] [PMID: 17329210]
[203]
Hermida, M.A.; Dinesh Kumar, J.; Leslie, N.R. GSK3 and its interactions with the PI3K/AKT/mTOR signalling network. Adv. Biol. Regul., 2017, 65, 5-15.
[http://dx.doi.org/10.1016/j.jbior.2017.06.003] [PMID: 28712664]
[204]
Manning, B.D.; Toker, A. AKT/PKB signaling: navigating the network. Cell, 2017, 169(3), 381-405.
[http://dx.doi.org/10.1016/j.cell.2017.04.001] [PMID: 28431241]
[205]
Peineau, S.; Bradley, C.; Taghibiglou, C.; Doherty, A.; Bortolotto, Z.A.; Wang, Y.T.; Collingridge, G.L. The role of GSK-3 in synaptic plasticity. Br. J. Pharmacol., 2008, 153(Suppl. 1), S428-S437.
[http://dx.doi.org/10.1038/bjp.2008.2] [PMID: 18311157]
[206]
Mulkey, R.M.; Endo, S.; Shenolikar, S.; Malenka, R.C. Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature, 1994, 369(6480), 486-488.
[http://dx.doi.org/10.1038/369486a0] [PMID: 7515479]
[207]
Barage, S.H.; Sonawane, K.D. Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer’s disease. Neuropeptides, 2015, 52, 1-18.
[http://dx.doi.org/10.1016/j.npep.2015.06.008] [PMID: 26149638]
[208]
Lewis, J.; Dickson, D. W.; Lin, W. L.; Chisholm, L.; Corral, A.; Jones, G.; Yen, S. H.; Sahara, N.; Skipper, L.; Yager, D.; Eckman, C.; Hardy, J.; Hutton, M.; McGowan, E. Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and app. Science (80-.), 2001, 293(5534), 1487-1491.
[209]
Hurtado, D.E.; Molina-Porcel, L.; Iba, M.; Aboagye, A.K.; Paul, S.M.; Trojanowski, J.Q.; Lee, V.M.Y. Aβ accelerates the spatiotemporal progression of tau pathology and augments tau amyloidosis in an Alzheimer's mouse model. Am. J. Pathol., 2010, 177(4), 1977-1988.
[http://dx.doi.org/10.2353/ajpath.2010.100346] [PMID: 20802182]
[210]
Bloom, G.S. Amyloid-β and tau: The trigger and bullet in Alzheimer's disease pathogenesis. JAMA Neurol., 2014, 71(4), 505-508.
[http://dx.doi.org/10.1001/jamaneurol.2013.5847] [PMID: 24493463]
[211]
Rissman, R.A.; Poon, W.W.; Blurton-Jones, M.; Oddo, S.; Torp, R.; Vitek, M.P.; LaFerla, F.M.; Rohn, T.T.; Cotman, C.W. Caspase-cleavage of tau is an early event in Alzheimer's disease tangle pathology. J. Clin. Invest., 2004, 114(1), 121-130.
[http://dx.doi.org/10.1172/JCI200420640] [PMID: 15232619]
[212]
Reitz, C. Alzheimer’s disease and the amyloid cascade hypothesis: a critical review. Int. J. Alzheimer's Dis., 2012, 2012, 369808.
[http://dx.doi.org/10.1155/2012/369808] [PMID: 22506132]
[213]
Zhang, Y.; Thompson, R.; Zhang, H.; Xu, H. APP processing in Alzheimer’ s disease. Mol. Brain, 2011, 4(3), 1-13.
[214]
Takami, M.; Nagashima, Y.; Sano, Y.; Ishihara, S.; Morishima-Kawashima, M.; Funamoto, S.; Ihara, Y. γ-Secretase: successive tripeptide and tetrapeptide release from the transmembrane domain of β-carboxyl terminal fragment. J. Neurosci., 2009, 29(41), 13042-13052.
[http://dx.doi.org/10.1523/JNEUROSCI.2362-09.2009] [PMID: 19828817]
[215]
Chen, G.F.; Xu, T.H.; Yan, Y.; Zhou, Y.R.; Jiang, Y.; Melcher, K.; Xu, H.E. Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol. Sin., 2017, 38(9), 1205-1235.
[http://dx.doi.org/10.1038/aps.2017.28] [PMID: 28713158]
[216]
Ly, P.T.T.; Wu, Y.; Zou, H.; Wang, R.; Zhou, W.; Kinoshita, A.; Zhang, M.; Yang, Y.; Cai, F.; Woodgett, J.; Song, W. Inhibition of GSK3β-mediated BACE1 expression reduces Alzheimer-associated phenotypes. J. Clin. Invest., 2013, 123(1), 224-235.
[http://dx.doi.org/10.1172/JCI64516] [PMID: 23202730]
[217]
Sgourakis, N.G.; Yan, Y.; McCallum, S.A.; Wang, C.; Garcia, A.E. The Alzheimer’s peptides Abeta40 and 42 adopt distinct conformations in water: A combined MD / NMR study. J. Mol. Biol., 2007, 368(5), 1448-1457.
[http://dx.doi.org/10.1016/j.jmb.2007.02.093] [PMID: 17397862]
[218]
Kelleher, R.J., III; Shen, J. Presenilin-1 mutations and Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2017, 114(4), 629-631.
[http://dx.doi.org/10.1073/pnas.1619574114] [PMID: 28082723]
[219]
Maesako, M.; Uemura, K.; Kubota, M.; Hiyoshi, K.; Ando, K.; Kuzuya, A.; Kihara, T.; Asada, M.; Akiyama, H.; Kinoshita, A. Effect of glycogen synthase kinase 3 β-mediated presenilin 1 phosphorylation on amyloid β production is negatively regulated by insulin receptor cleavage. Neuroscience, 2011, 177, 298-307.
[http://dx.doi.org/10.1016/j.neuroscience.2010.12.017] [PMID: 21238544]
[220]
Tang, Y.; Liu, H.L.; Min, L.X.; Yuan, H.S.; Guo, L.; Han, P.B.; Lu, Y.X.; Zhong, J.F.; Wang, D.L. Serum and cerebrospinal fluid tau protein level as biomarkers for evaluating acute spinal cord injury severity and motor function outcome. Neural Regen. Res., 2019, 14(5), 896-902.
[http://dx.doi.org/10.4103/1673-5374.249238] [PMID: 30688276]
[221]
Avila, J.; Lucas, J.J.; Pérez, M.; Hernández, F. Role of tau protein in both physiological and pathological conditions. Physiol. Rev., 2004, 84(2), 361-384.
[http://dx.doi.org/10.1152/physrev.00024.2003] [PMID: 15044677]
[222]
Avila, J.; Jiménez, J.S.; Sayas, C.L.; Bolós, M.; Zabala, J.C.; Rivas, G.; Hernández, F. Tau structures. Front. Aging Neurosci., 2016, 8(262), 262.
[PMID: 27877124]
[223]
Hanger, D.P.; Anderton, B.H.; Noble, W. Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol. Med., 2009, 15(3), 112-119.
[http://dx.doi.org/10.1016/j.molmed.2009.01.003] [PMID: 19246243]
[224]
Llorens-Martín, M.; Jurado, J.; Hernández, F.; Ávila, J. GSK-3β, a pivotal kinase in Alzheimer's disease. Front. Mol. Neurosci., 2014, 7(46), 46.
[PMID: 24904272]
[225]
Leroy, K.; Yilmaz, Z.; Brion, J.P. Increased level of active GSK-3beta in Alzheimer’s disease and accumulation in argyrophilic grains and in neurones at different stages of neurofibrillary degeneration. Neuropathol. Appl. Neurobiol., 2007, 33(1), 43-55.
[http://dx.doi.org/10.1111/j.1365-2990.2006.00795.x] [PMID: 17239007]
[226]
Congdon, E.E.; Sigurdsson, E.M. Tau-targeting therapies for Alzheimer's disease. Nat. Rev. Neurol., 2018, 14(7), 399-415.
[http://dx.doi.org/10.1038/s41582-018-0013-z] [PMID: 29895964]
[227]
Luna-Viramontes, N.I.; Campa-Córdoba, B.B.; Ontiveros- Torres, M.A.; Harrington, C.R.; Villanueva-Fierro, I.; Guadarrama-Ortíz, P.; Garcés-Ramírez, L.; de la Cruz, F.; Hernandes-Alejandro, M.; Martínez-Robles, S.; González-Ballesteros, E.; Pacheco-Herrero, M.; Luna-Muñoz, J. PHF-core tau as the potential initiating event for tau pathology in Alzheimer’s disease. Front. Cell. Neurosci., 2020, 14(247), 247.
[http://dx.doi.org/10.3389/fncel.2020.00247] [PMID: 33132840]
[228]
Kimura, T.; Fukuda, T.; Sahara, N.; Yamashita, S.; Murayama, M.; Mizoroki, T.; Yoshiike, Y.; Lee, B.; Sotiropoulos, I.; Maeda, S.; Takashima, A. Aggregation of detergent-insoluble tau is involved in neuronal loss but not in synaptic loss. J. Biol. Chem., 2010, 285(49), 38692-38699.
[http://dx.doi.org/10.1074/jbc.M110.136630] [PMID: 20921222]
[229]
Neddens, J.; Temmel, M.; Flunkert, S.; Kerschbaumer, B.; Hoeller, C.; Loeffler, T.; Niederkofler, V.; Daum, G.; Attems, J.; Hutter-Paier, B. Phosphorylation of different tau sites during progression of Alzheimer’s disease. Acta Neuropathol. Commun., 2018, 6(1), 52.
[http://dx.doi.org/10.1186/s40478-018-0557-6] [PMID: 29958544]
[230]
Mukai, F.; Ishiguro, K.; Sano, Y.; Fujita, S.C. Alternative splicing isoform of tau protein kinase I/glycogen synthase kinase 3β. J. Neurochem., 2002, 81(5), 1073-1083.
[http://dx.doi.org/10.1046/j.1471-4159.2002.00918.x] [PMID: 12065620]
[231]
Liu, F.; Grundke-Iqbal, I.; Iqbal, K.; Gong, C.X. Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. Eur. J. Neurosci., 2005, 22(8), 1942-1950.
[http://dx.doi.org/10.1111/j.1460-9568.2005.04391.x] [PMID: 16262633]
[232]
Morfini, G.; Szebenyi, G.; Brown, H.; Pant, H.C.; Pigino, G.; DeBoer, S.; Beffert, U.; Brady, S.T. A novel CDK5-dependent pathway for regulating GSK3 activity and kinesin- driven motility in neurons. EMBO J., 2004, 23(11), 2235-2245.
[http://dx.doi.org/10.1038/sj.emboj.7600237] [PMID: 15152189]
[233]
Plattner, F.; Angelo, M.; Giese, K.P. The roles of cyclin-dependent kinase 5 and glycogen synthase kinase 3 in tau hyperphosphorylation. J. Biol. Chem., 2006, 281(35), 25457-25465.
[http://dx.doi.org/10.1074/jbc.M603469200] [PMID: 16803897]
[234]
Noble, W.; Hanger, D.P.; Miller, C.C.J.; Lovestone, S. The importance of tau phosphorylation for neurodegenerative diseases. Front. Neurol., 2013, 4(83), 83.
[http://dx.doi.org/10.3389/fneur.2013.00083] [PMID: 23847585]
[235]
Carmel, G.; Mager, E.M.; Binder, L.I.; Kuret, J. The structural basis of monoclonal antibody Alz50's selectivity for Alzheimer’s disease pathology. J. Biol. Chem., 1996, 271(51), 32789-32795.
[http://dx.doi.org/10.1074/jbc.271.51.32789] [PMID: 8955115]
[236]
Cho, J.H.; Johnson, G.V.W. Glycogen synthase kinase 3 β induces caspase-cleaved tau aggregation in situ. J. Biol. Chem., 2004, 279(52), 54716-54723.
[http://dx.doi.org/10.1074/jbc.M403364200] [PMID: 15494420]
[237]
Hernandez-Baltazar, D.; Mendoza-Garrido, M.E.; Martinez-Fong, D. Activation of GSK-3β and caspase-3 occurs in Nigral dopamine neurons during the development of apoptosis activated by a striatal injection of 6-hydroxydopamine. PLoS One, 2013, 8(8), e70951.
[http://dx.doi.org/10.1371/journal.pone.0070951] [PMID: 23940672]
[238]
Ciani, L.; Salinas, P.C. c-Jun N-terminal kinase (JNK) cooperates with Gsk3β to regulate Dishevelled-mediated microtubule stability. BMC Cell Biol., 2007, 8(27), 27.
[http://dx.doi.org/10.1186/1471-2121-8-27] [PMID: 17608927]
[239]
Timm, T.; Balusamy, K.; Li, X.; Biernat, J.; Mandelkow, E.; Mandelkow, E.M. Glycogen synthase kinase (GSK) 3β directly phosphorylates Serine 212 in the regulatory loop and inhibits microtubule affinity-regulating kinase (MARK) 2. J. Biol. Chem., 2008, 283(27), 18873-18882.
[http://dx.doi.org/10.1074/jbc.M706596200] [PMID: 18424437]
[240]
D’Mello, S.R. When good kinases go rogue: GSK3, p38 MAPK and CDKs as therapeutic targets for Alzheimer’s and Huntington’s disease. Int. J. Mol. Sci., 2021, 22(11), 1-39.
[http://dx.doi.org/10.3390/ijms22115911] [PMID: 34072862]
[241]
Kalia, L.V.; Lang, A.E.; Shulman, G. Parkinson’s disease. Lancet, 2015, 386(9996), 896-912.
[http://dx.doi.org/10.1016/S0140-6736(14)61393-3] [PMID: 25904081]
[242]
Tenreiro, S.; Eckermann, K.; Outeiro, T.F. Protein phosphorylation in neurodegeneration : Friend or foe?  Aggregation. Front. Mol. Neurosci., 2014, 7(42), 1-30.
[http://dx.doi.org/10.3389/fnmol.2014.00042]
[243]
Lotankar, S.; Prabhavalkar, K.S.; Bhatt, L.K. Biomarkers for parkinson’s disease: Recent advancement. Neurosci. Bull., 2017, 33(5), 585-597.
[http://dx.doi.org/10.1007/s12264-017-0183-5] [PMID: 28936761]
[244]
Li, D-W.; Liu, Z-Q.; Chen, W.; Yao, M.; Li, G-R. Association of glycogen synthase kinase-3β with Parkinson’s disease (review). Mol. Med. Rep., 2014, 9(6), 2043-2050.
[http://dx.doi.org/10.3892/mmr.2014.2080] [PMID: 24681994]
[245]
Stocchi, F.; Olanow, C.W. Neuroprotection in Parkinson’s disease: Clinical trials. Ann. Neurol., 2003, 53(Suppl. 3), S87-S97.
[http://dx.doi.org/10.1002/ana.10488] [PMID: 12666101]
[246]
Hisahara, S.; Shimohama, S. Dopamine receptors and Parkinson’s disease shin hisahara and shun shimohama. Int. J. Med. Chem., 2011, 2011, 1-16.
[247]
Bisaglia, M.; Greggio, E.; Beltramini, M.; Bubacco, L. Dysfunction of dopamine homeostasis: clues in the hunt for novel Parkinson’s disease therapies. FASEB J., 2013, 27(6), 2101-2110.
[http://dx.doi.org/10.1096/fj.12-226852] [PMID: 23463698]
[248]
Martín-Bastida, A.; Lao-Kaim, N.P.; Roussakis, A.A.; Searle, G.E.; Xing, Y.; Gunn, R.N.; Schwarz, S.T.; Barker, R.A.; Auer, D.P.; Piccini, P. Relationship between neuromelanin and dopamine terminals within the Parkinson’s nigrostriatal system. Brain, 2019, 142(7), 2023-2036.
[http://dx.doi.org/10.1093/brain/awz120] [PMID: 31056699]
[249]
Li, J.; Ma, S.; Chen, J.; Hu, K.; Li, Y.; Zhang, Z. GSK-3 β contributes to Parkinsonian dopaminergic neuron death: evidence from conditional knockout mice and tideglusib. Front. Mol. Neurosci., 2020, 13(81), 1-12.
[http://dx.doi.org/10.3389/fnmol.2020.00081]
[250]
Takaichi, Y.; Chambers, J.K.; Inoue, H.; Ano, Y.; Takashima, A.; Nakayama, H.; Uchida, K. Phosphorylation and oligomerization of α-synuclein associated with GSK-3β activation in the rTg4510 mouse model of tauopathy. Acta Neuropathol. Commun., 2020, 8(1), 86.
[http://dx.doi.org/10.1186/s40478-020-00969-8] [PMID: 32560668]
[251]
Credle, J.J.; George, J.L.; Wills, J.; Duka, V.; Shah, K.; Lee, Y.C.; Rodriguez, O.; Simkins, T.; Winter, M.; Moechars, D.; Steckler, T.; Goudreau, J.; Finkelstein, D.I.; Sidhu, A. GSK-3β dysregulation contributes to parkinson’s-like pathophysiology with associated region-specific phosphorylation and accumulation of tau and α-synuclein. Cell Death Differ., 2015, 22(5), 838-851.
[http://dx.doi.org/10.1038/cdd.2014.179] [PMID: 25394490]
[252]
DeWire, S.M.; Ahn, S.; Lefkowitz, R.J.; Shenoy, S.K. β-arrestins and cell signaling. Annu. Rev. Physiol., 2007, 69, 483-510.
[http://dx.doi.org/10.1146/annurev.physiol.69.022405.154749] [PMID: 17305471]
[253]
Hwang, W.J.; Yao, W.J.; Wey, S.P.; Shen, L.H.; Ting, G. Downregulation of striatal dopamine D2 receptors in advanced Parkinson’s disease contributes to the development of motor fluctuation. Eur. Neurol., 2002, 47(2), 113-117.
[http://dx.doi.org/10.1159/000047962] [PMID: 11844900]
[254]
Beaulieu, J-M.; Del’guidice, T.; Sotnikova, T.D.; Lemasson, M.; Gainetdinov, R.R. Beyond cAMP: the regulation of Akt and GSK3 by dopamine receptors. Front. Mol. Neurosci., 2011, 4(83), 38.
[http://dx.doi.org/10.3389/fnmol.2011.00038] [PMID: 22065948]
[255]
Beaulieu, J.M.; Gainetdinov, R.R.; Caron, M.G. The Akt-GSK-3 signaling cascade in the actions of dopamine. Trends Pharmacol. Sci., 2007, 28(4), 166-172.
[http://dx.doi.org/10.1016/j.tips.2007.02.006] [PMID: 17349698]
[256]
Golpich, M.; Amini, E.; Hemmati, F.; Ibrahim, N.M.; Rahmani, B.; Mohamed, Z.; Raymond, A.A.; Dargahi, L.; Ghasemi, R.; Ahmadiani, A. Glycogen synthase kinase-3 beta (GSK-3β) signaling: implications for Parkinson’s disease. Pharmacol. Res., 2015, 97, 16-26.
[http://dx.doi.org/10.1016/j.phrs.2015.03.010] [PMID: 25829335]
[257]
Bancher, C.; Braak, H.; Fischer, P.; Jellinger, K.A. Neuropathological staging of Alzheimer's lesions and intellectual status in Alzheimer’s and Parkinson’s disease patients. Neurosci. Lett., 1993, 162(1-2), 179-182.
[http://dx.doi.org/10.1016/0304-3940(93)90590-H] [PMID: 8121624]
[258]
Simón-Sánchez, J.; Schulte, C.; Bras, J.M.; Sharma, M.; Gibbs, J.R.; Berg, D.; Paisan-Ruiz, C.; Lichtner, P.; Scholz, S.W.; Hernandez, D.G.; Krüger, R.; Federoff, M.; Klein, C.; Goate, A.; Perlmutter, J.; Bonin, M.; Nalls, M.A.; Illig, T.; Gieger, C.; Houlden, H.; Steffens, M.; Okun, M.S.; Racette, B.A.; Cookson, M.R.; Foote, K.D.; Fernandez, H.H.; Traynor, B.J.; Schreiber, S.; Arepalli, S.; Zonozi, R.; Gwinn, K.; van der Brug, M.; Lopez, G.; Chanock, S.J.; Schatzkin, A.; Park, Y.; Hollenbeck, A.; Gao, J.; Huang, X.; Wood, N.W.; Lorenz, D.; Deuschl, G.; Chen, H.; Riess, O.; Hardy, J.A.; Singleton, A.B.; Gasser, T. Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat. Genet., 2009, 41(12), 1308-1312.
[http://dx.doi.org/10.1038/ng.487] [PMID: 19915575]
[259]
Devine, M.J.; Lewis, P.A. Emerging pathways in genetic Parkinson’s disease: tangles, Lewy bodies and LRRK2. FEBS J., 2008, 275(23), 5748-5757.
[http://dx.doi.org/10.1111/j.1742-4658.2008.06707.x] [PMID: 19021752]
[260]
Kozikowski, A.P.; Gaisina, I.N.; Petukhov, P.A.; Sridhar, J.; King, L.T.; Blond, S.Y.; Duka, T.; Rusnak, M.; Sidhu, A. Highly potent and specific GSK-3beta inhibitors that block tau phosphorylation and decrease alpha-synuclein protein expression in a cellular model of Parkinson’s disease. ChemMedChem., 2006, 1(2), 256-266.
[http://dx.doi.org/10.1002/cmdc.200500039] [PMID: 16892358]
[261]
Jo, M.; Lee, S.; Jeon, Y.M.; Kim, S.; Kwon, Y.; Kim, H.J. The role of TDP-43 propagation in neurodegenerative diseases: Integrating insights from clinical and experimental studies. Exp. Mol. Med., 2020, 52(10), 1652-1662.
[http://dx.doi.org/10.1038/s12276-020-00513-7] [PMID: 33051572]
[262]
Sreedharan, J.; Blair, I. P.; Tripathi, V. B.; Hu, X.; Vance, C.; Rogelj, B.; Ackerley, S.; Durnall, J. C.; Williams, K. L.; Buratti, E.; Baralle, F.; Belleroche, J.; De, ; Mitchell, J. D.; Leigh, P. N.; Al-chalabi, A.; Miller, C. C.; Nicholson, G.; Shaw, C. E. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science (80-.), 2008, 319(5870), 1668-1672.
[263]
Sidibé, H.; Khalfallah, Y.; Xiao, S.; Gómez, N. B.; Fakim, H.; Tank, E. M. H.; Tomasso, G.; Di, ; Bareke, E.; Aulas, A.; Paul, M.; Melamed, Z.; Destroimaisons, L.; Deshaies, J.; Parker, J. A.; Legault, P.; Tétreault, M.; Barmada, S. J.; Velde, C.; Vande, TDP-43 stabilizes G3BP1 MRNA : Relevance to amyotrophic lateral sclerosis/frontotemporal dementia. Bra, 2021, 144(11), 3461-3476.
[264]
Neumann, M.; Kwong, L. K.; Lee, E. B.; Kremmer, E.; Xu, Y.; Forman, M.; Troost, D.; Kretzschmar, H. A.; John, Q.; Lee, V. M. Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies Acta. Neuro. Pathol., 2010, 117(2), 137-149.
[265]
Ludolph, A.C.; Brettschneider, J. TDP-43 in amyotrophic lateral sclerosis - is it a prion disease? Eur. J. Neurol., 2015, 22(5), 753-761.
[http://dx.doi.org/10.1111/ene.12706] [PMID: 25846565]
[266]
Choi, H.J.; Cha, S.J.; Lee, J.W.; Kim, H.J.; Kim, K. Recent advances on the role of Gsk3β in the pathogenesis of amyotrophic lateral sclerosis. Brain Sci., 2020, 10(675), 1-15.
[http://dx.doi.org/10.3390/brainsci10100675]
[267]
Suk, T.R.; Rousseaux, M.W.C. The role of TDP-43 mislocalization in amyotrophic lateral sclerosis. Mol. Neurodegener., 2020, 15(1), 45.
[http://dx.doi.org/10.1186/s13024-020-00397-1] [PMID: 32799899]
[268]
Gasset-Rosa, F.; Lu, S.; Yu, H.; Chen, C.; Melamed, Z.; Guo, L.; Shorter, J.; Da Cruz, S.; Cleveland, D.W.; Chen, C.; Melamed, Z.; Guo, L.; Shorter, J. Cytoplasmic TDP-43 de-mixing independent of stress granules drives inhibition of nuclear import, loss of nuclear TDP-43, and cell death. Neuron, 2019, 102(2), 339-357.e7.
[http://dx.doi.org/10.1016/j.neuron.2019.02.038] [PMID: 30853299]
[269]
Fernandes, N.; Nero, L.; Lyons, S. M.; Ivanov, P.; Mittelmeier, T. M.; Bolger, T. A.; Buchan, J. R. Stress granule assembly can facilitate but is not required for tdp-43 cytoplasmic aggregation. Biomolecules, 2020, 10(1367), 1-20.
[http://dx.doi.org/10.3390/biom10101367]
[270]
Chen, Y.; Cohen, T.J. Aggregation of the nucleic acid-binding protein TDP-43 occurs via distinct routes that are coordinated with stress granule formation. J. Biol. Chem., 2019, 294(10), 3696-3706.
[http://dx.doi.org/10.1074/jbc.RA118.006351] [PMID: 30630951]
[271]
Neumann, M.; Sampathu, D. M.; Kwong, L. K.; Truax, A. C.; Micsenyi, M. C.; Chou, T. T.; Bruce, J.; Schuck, T.; Grossman, M.; Clark, C. M.; McCluskey, L. F.; Miller, B. L.; Masliah, E.; Mackenzie, I. R.; Fieldman, H.; Feiden, W.; Kretzschmar, H. A.; Trojanowski, J. Q.; Lee, V. M.-Y. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science (80-.), 2006, 314(5796), 130-133.
[272]
Herhaus, L.; Dikic, I. Expanding the ubiquitin code through post-translational modification. EMBO Rep., 2015, 16(9), 1071-1083.
[http://dx.doi.org/10.15252/embr.201540891] [PMID: 26268526]
[273]
Dong, Y.; Chen, Y. The role of ubiquitinated TDP-43 in amyotrophic lateral sclerosis. Neuroimmunol. Neuroinflamm., 2018, 5(2), 5.
[http://dx.doi.org/10.20517/2347-8659.2017.47]
[274]
Okamoto, K.; Fujita, Y.; Mizuno, Y. Pathology of protein synthesis and degradation systems in ALS. Neuropathology, 2010, 30(2), 189-193.
[http://dx.doi.org/10.1111/j.1440-1789.2009.01088.x] [PMID: 20102523]
[275]
Fornai, F.; Longone, P.; Ferrucci, M.; Lenzi, P.; Isidoro, C.; Ruggieri, S.; Paparelli, A. Autophagy and amyotrophic lateral sclerosis: The multiple roles of lithium. Autophagy, 2008, 4(4), 527-530.
[http://dx.doi.org/10.4161/auto.5923] [PMID: 18367867]
[276]
Sarkar, S.; Rubinsztein, D.C. Inositol and IP3 levels regulate autophagy: Biology and therapeutic speculations. Autophagy, 2006, 2(2), 132-134.
[http://dx.doi.org/10.4161/auto.2387] [PMID: 16874097]
[277]
Hans, F.; Glasebach, H.; Kahle, P.J. Multiple distinct pathways lead to hyperubiquitylated insoluble TDP-43 protein independent of its translocation into stress granules. J. Biol. Chem., 2020, 295(3), 673-689.
[http://dx.doi.org/10.1016/S0021-9258(17)49926-1] [PMID: 31780563]
[278]
Ambegaokar, S.S.; Jackson, G.R. Functional genomic screen and network analysis reveal novel modifiers of tauopathy dissociated from tau phosphorylation. Hum. Mol. Genet., 2011, 20(24), 4947-4977.
[http://dx.doi.org/10.1093/hmg/ddr432] [PMID: 21949350]
[279]
Cai, Y.; Arikkath, J.; Yang, L.; Guo, M.L.; Periyasamy, P.; Buch, S. Interplay of endoplasmic reticulum stress and autophagy in neurodegenerative disorders. Autophagy, 2016, 12(2), 225-244.
[http://dx.doi.org/10.1080/15548627.2015.1121360] [PMID: 26902584]
[280]
Lau, D.H.W.; Hartopp, N.; Welsh, N.J.; Mueller, S.; Glennon, E.B.; Mórotz, G.M.; Annibali, A.; Gomez-Suaga, P.; Stoica, R.; Paillusson, S.; Miller, C.C.J. Disruption of ER-mitochondria signalling in fronto-temporal dementia and related amyotrophic lateral sclerosis. Cell Death Dis., 2018, 9(3), 327.
[http://dx.doi.org/10.1038/s41419-017-0022-7] [PMID: 29491392]
[281]
Bilsland, L.G.; Sahai, E.; Kelly, G.; Golding, M.; Greensmith, L.; Schiavo, G. Deficits in axonal transport precede ALS symptoms in vivo. Proc. Natl. Acad. Sci. USA, 2010, 107(47), 20523-20528.
[http://dx.doi.org/10.1073/pnas.1006869107] [PMID: 21059924]
[282]
Malhotra, J.D.; Kaufman, R.J. ER stress and its functional link to mitochondria: Role in cell survival and death. Cold Spring Harb. Perspect. Biol., 2011, 3(9), a004424.
[http://dx.doi.org/10.1101/cshperspect.a004424] [PMID: 21813400]
[283]
Zhou, R.; Yazdi, A.S.; Menu, P.; Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature, 2011, 469(7329), 221-225.
[http://dx.doi.org/10.1038/nature09663] [PMID: 21124315]
[284]
Stoica, R.; Paillusson, S.; Gomez-Suaga, P.; Mitchell, J.C.; Lau, D.H.; Gray, E.H.; Sancho, R.M.; Vizcay-Barrena, G.; De Vos, K.J.; Shaw, C.E.; Hanger, D.P.; Noble, W.; Miller, C.C. ALS/FTD-associated FUS activates GSK-3β to disrupt the VAPB-PTPIP51 interaction and ER-mitochondria associations. EMBO Rep., 2016, 17(9), 1326-1342.
[http://dx.doi.org/10.15252/embr.201541726] [PMID: 27418313]
[285]
McKhann, G.M.; Albert, M.S.; Grossman, M.; Miller, B.; Dickson, D.; Trojanowski, J.Q. Clinical and pathological diagnosis of frontotemporal dementia: Report of the work group on frontotemporal dementia and Pick’s disease. Arch. Neurol., 2001, 58(11), 1803-1809.
[http://dx.doi.org/10.1001/archneur.58.11.1803] [PMID: 11708987]
[286]
Ito, D.; Hatano, M.; Suzuki, N. RNA binding proteins and the pathological cascade in ALS/FTD neurodegeneration. Sci. Transl. Med., 2017, 9(415), 1-11.
[http://dx.doi.org/10.1126/scitranslmed.aah5436] [PMID: 29118263]
[287]
Schaffer, B.A.J.; Bertram, L.; Miller, B.L.; Mullin, K.; Weintraub, S.; Johnson, N.; Bigio, E.H.; Mesulam, M.; Wiedau-Pazos, M.; Jackson, G.R.; Cummings, J.L.; Cantor, R.M.; Levey, A.I.; Tanzi, R.E.; Geschwind, D.H. Association of GSK3B with Alzheimer's disease and frontotemporal dementia. Arch. Neurol., 2008, 65(10), 1368-1374.
[http://dx.doi.org/10.1001/archneur.65.10.1368] [PMID: 18852354]
[288]
Sun, Y.M.; Zhang, Y.B.; Wu, Z.Y. Huntington’s disease: Relationship between phenotype and genotype. Mol. Neurobiol., 2017, 54(1), 342-348.
[http://dx.doi.org/10.1007/s12035-015-9662-8] [PMID: 26742514]
[289]
Bates, G.P.; Dorsey, R.; Gusella, J.F.; Hayden, M.R.; Kay, C.; Leavitt, B.R.; Nance, M.; Ross, C.A.; Scahill, R.I.; Wetzel, R.; Wild, E.J.; Tabrizi, S.J. Huntington's disease. Nat. Rev. Dis. Primers, 2015, 1, 15005.
[http://dx.doi.org/10.1038/nrdp.2015.5] [PMID: 27188817]
[290]
Andrade, M.A.; Bork, P. HEAT repeats in the Huntington’s disease protein. Nat. Genet., 1995, 11(2), 115-116.
[http://dx.doi.org/10.1038/ng1095-115] [PMID: 7550332]
[291]
Arrasate, M.; Finkbeiner, S. Protein aggregates in Huntington’s disease. Exp. Neurol., 2012, 238(1), 1-11.
[http://dx.doi.org/10.1016/j.expneurol.2011.12.013] [PMID: 22200539]
[292]
Gines, S.; Ivanova, E.; Seong, I.S.; Saura, C.A.; MacDonald, M.E. Enhanced Akt signaling is an early pro-survival response that reflects N-methyl-D-aspartate receptor activation in Huntington’s disease knock-in striatal cells. J. Biol. Chem., 2003, 278(50), 50514-50522.
[http://dx.doi.org/10.1074/jbc.M309348200] [PMID: 14522959]
[293]
Wei, Y.; Zhou, J.; Yu, H.; Jin, X. AKT phosphorylation sites of Ser473 and Thr308 regulate AKT degradation. Biosci. Biotechnol. Biochem., 2019, 83(3), 429-435.
[http://dx.doi.org/10.1080/09168451.2018.1549974] [PMID: 30488766]
[294]
Fernández-Nogales, M.; Hernández, F.; Miguez, A.; Alberch, J.; Ginés, S.; Pérez-Navarro, E.; Lucas, J.J. Decreased glycogen synthase kinase-3 levels and activity contribute to Huntington’s disease. Hum. Mol. Genet., 2015, 24(17), 5040-5052.
[http://dx.doi.org/10.1093/hmg/ddv224] [PMID: 26082469]
[295]
Humbert, S.; Bryson, E.A.; Cordelières, F.P.; Connors, N.C.; Datta, S.R.; Finkbeiner, S.; Greenberg, M.E.; Saudou, F. The IGF-1/Akt pathway is neuroprotective in Huntington’s disease and involves Huntingtin phosphorylation by Akt. Dev. Cell, 2002, 2(6), 831-837.
[http://dx.doi.org/10.1016/S1534-5807(02)00188-0] [PMID: 12062094]
[296]
Chu, J.; Lauretti, E.; Praticò, D. Caspase-3-dependent cleavage of Akt modulates tau phosphorylation via GSK3β kinase: implications for Alzheimer’s disease. Mol. Psychiatry, 2017, 22(7), 1002-1008.
[http://dx.doi.org/10.1038/mp.2016.214] [PMID: 28138159]
[297]
Gratuze, M.; Noël, A.; Julien, C.; Cisbani, G.; Milot-Rousseau, P.; Morin, F.; Dickler, M.; Goupil, C.; Bezeau, F.; Poitras, I.; Bissonnette, S.; Whittington, R.A.; Hébert, S.S.; Cicchetti, F.; Parker, J.A.; Samadi, P.; Planel, E. Tau hyperphosphorylation and deregulation of calcineurin in mouse models of Huntington’s disease. Hum. Mol. Genet., 2015, 24(1), 86-99.
[http://dx.doi.org/10.1093/hmg/ddu456] [PMID: 25205109]
[298]
Episcopo, F.L.; Tirolo, C.; Pulvirenti, A.; Giugno, R.; Testa, N.; Caniglia, S.; Serapide, M.F.; Cisbani, G.; Barker, R.A. GSK-3 β-induced tau pathology drives hippocampal neuronal cell death in Huntington’s disease: Involvement of astrocyte – neuron interactions. Cell Death Dis., 2016, 7, 1-14.
[299]
Martin, D.D.O.; Ladha, S.; Ehrnhoefer, D.E.; Hayden, M.R. Autophagy in Huntington's disease and huntingtin in autophagy. Trends Neurosci., 2015, 38(1), 26-35.
[http://dx.doi.org/10.1016/j.tins.2014.09.003] [PMID: 25282404]
[300]
Valencia, A.; Reeves, P.B.; Sapp, E.; Li, X.; Alexander, J.; Kegel, K.B.; Chase, K.; Aronin, N.; DiFiglia, M. Mutant huntingtin and glycogen synthase kinase 3-beta accumulate in neuronal lipid rafts of a presymptomatic knock-in mouse model of Huntington’s disease. J. Neurosci. Res., 2010, 88(1), 179-190.
[http://dx.doi.org/10.1002/jnr.22184] [PMID: 19642201]
[301]
Sameni, S.; Malacrida, L.; Tan, Z.; Digman, M.A. Alteration in fluidity of cell plasma membrane in Huntington's disease revealed by spectral phasor analysis. Sci. Rep., 2018, 8(734), 1-10.
[302]
Karasinska, J.M.; Hayden, M.R. Cholesterol metabolism in Huntington's disease. Nat. Rev. Neurol., 2011, 7(10), 561-572.
[http://dx.doi.org/10.1038/nrneurol.2011.132] [PMID: 21894212]
[303]
Sui, Z.; Kovács, A.D.; Maggirwar, S.B. Recruitment of active glycogen synthase kinase-3 into neuronal lipid rafts. Biochem. Biophys. Res. Commun., 2006, 345(4), 1643-1648.
[http://dx.doi.org/10.1016/j.bbrc.2006.05.087] [PMID: 16735023]
[304]
Buée Scherrer, V.; Hof, P.R.; Buée, L.; Leveugle, B.; Vermersch, P.; Perl, D.P.; Olanow, C.W.; Delacourte, A. Hyperphosphorylated tau proteins differentiate corticobasal degeneration and Pick’s disease. Acta Neuropathol., 1996, 91(4), 351-359.
[http://dx.doi.org/10.1007/s004010050436] [PMID: 8928611]
[305]
Vermersch, P.; Robitaille, Y.; Bernier, L.; Wattez, A.; Gauvreau, D.; Delacourte, A. Biochemical mapping of neurofibrillary degeneration in a case of progressive supranuclear palsy: evidence for general cortical involvement. Acta Neuropathol., 1994, 87(6), 572-577.
[http://dx.doi.org/10.1007/BF00293317] [PMID: 8091949]
[306]
Walls, K.C.; Klocke, B.J.; Saftig, P.; Shibata, M.; Uchiyama, Y.; Roth, K.A.; Shacka, J.J. Altered regulation of phosphatidylinositol 3-kinase signaling in cathepsin D-deficient brain. Autophagy, 2007, 3(3), 222-229.
[http://dx.doi.org/10.4161/auto.3822] [PMID: 17297299]
[307]
Simon, D.; Herva, M.E.; Benitez, M.J.; Garrido, J.J.; Rojo, A.I.; Cuadrado, A.; Torres, J.M.; Wandosell, F. Dysfunction of the PI3K-Akt-GSK-3 pathway is a common feature in cell culture and in vivo models of prion disease. Neuropathol. Appl. Neurobiol., 2014, 40(3), 311-326.
[http://dx.doi.org/10.1111/nan.12066] [PMID: 23741998]
[308]
Georgievska, B.; Sandin, J.; Doherty, J.; Mörtberg, A.; Neelissen, J.; Andersson, A.; Gruber, S.; Nilsson, Y.; Schött, P.; Arvidsson, P.I.; Hellberg, S.; Osswald, G.; Berg, S.; Fälting, J.; Bhat, R.V. AZD1080, a novel GSK3 inhibitor, rescues synaptic plasticity deficits in rodent brain and exhibits peripheral target engagement in humans. J. Neurochem., 2013, 125(3), 446-456.
[http://dx.doi.org/10.1111/jnc.12203] [PMID: 23410232]
[309]
Bhat, R.V.; Andersson, U.; Andersson, S.; Knerr, L.; Bauer, U.; Sundgren-Andersson, A.K. The conundrum of GSK3 inhibitors: Is it the dawn of a new beginning? J. Alzheimer's Dis., 2018, 64(s1), S547-S554.
[http://dx.doi.org/10.3233/JAD-179934] [PMID: 29758944]
[310]
US National Library of Medicine. A study of LY2090314 in patients with advanced or metastatic cancer. Available from: https://clinicaltrials.gov/show/NCT01287520 (Accessed on: 30th July 2021).
[311]
US National Library of Medicine. Phosphoproteomic profiling identifies aberrant activation of integrin signaling in aggressive non-type bladder carcinoma. 2012. Available from: https://clinicaltrials.gov/show/NCT0163230 (Accessed on: 30th July 2021).
[312]
US National Library of Medicine. A study in participants with acute leukemia. 2010. Available from: https://clinicaltrials.gov/show/NCT01214603 (Accessed on: 30th July 2021).
[313]
Rizzieri, D.A.; Cooley, S.; Odenike, O.; Moonan, L.; Chow, K.H.; Jackson, K.; Wang, X.; Brail, L.; Borthakur, G. An open-label phase 2 study of glycogen synthase kinase-3 inhibitor LY2090314 in patients with acute leukemia. Leuk. Lymphoma, 2016, 57(8), 1800-1806.
[http://dx.doi.org/10.3109/10428194.2015.1122781] [PMID: 26735141]
[314]
Martinez, A.; Alonso, M.; Castro, A.; Pérez, C.; Moreno, F.J. First non-ATP competitive glycogen synthase kinase 3 β (GSK-3β) inhibitors: thiadiazolidinones (TDZD) as potential drugs for the treatment of Alzheimer’s disease. J. Med. Chem., 2002, 45(6), 1292-1299.
[http://dx.doi.org/10.1021/jm011020u] [PMID: 11881998]
[315]
Palomo, V.; Martinez, A. Glycogen Synthase Kinase 3 (GSK-3) inhibitors: A patent update (2014-2015). Exp. Opin. Therap. Pat., 2016, 27(6), 657-666.
[316]
Domínguez, J.M.; Fuertes, A.; Orozco, L.; del Monte-Millán, M.; Delgado, E.; Medina, M. Evidence for irreversible inhibition of glycogen synthase kinase-3β by tideglusib. J. Biol. Chem., 2012, 287(2), 893-904.
[http://dx.doi.org/10.1074/jbc.M111.306472] [PMID: 22102280]
[317]
Eldar-Finkelman, H.; Martinez, A. GSK-3 inhibitors: preclinical and clinical focus on CNS. Front. Mol. Neurosci., 2011, 4, 32.
[http://dx.doi.org/10.3389/fnmol.2011.00032] [PMID: 22065134]
[318]
Luna-Medina, R.; Cortes-Canteli, M.; Sanchez-Galiano, S.; Morales-Garcia, J.A.; Martinez, A.; Santos, A.; Perez- Castillo, A. NP031112, a thiadiazolidinone compound, prevents inflammation and neurodegeneration under excitotoxic conditions: Potential therapeutic role in brain disorders. J. Neurosci., 2007, 27(21), 5766-5776.
[http://dx.doi.org/10.1523/JNEUROSCI.1004-07.2007] [PMID: 17522320]
[319]
Neves, V.C.M.; Babb, R.; Chandrasekaran, D.; Sharpe, P.T. Promotion of natural tooth repair by small molecule GSK3 antagonists. Sci. Rep., 2017, 7, 39654.
[http://dx.doi.org/10.1038/srep39654] [PMID: 28067250]
[320]
Zaugg, L.K.; Banu, A.; Walther, A.R.; Chandrasekaran, D.; Babb, R.C.; Salzlechner, C.; Hedegaard, M.A.B.; Gentleman, E.; Sharpe, P.T. Translation approach for dentine regeneration using GSK-3 antagonists. J. Dent. Res., 2020, 99(5), 544-551.
[http://dx.doi.org/10.1177/0022034520908593] [PMID: 32156176]
[321]
US National Library of Medicine. Safety study of a Glycogen Synthase Kinase 3 (GSK3) inhibitor in patients with Alzheimer´s disease. 2009. Available from: https://clinicaltrials.gov/show/NCT00948259 (Accessed on: 30th July 2021).
[322]
US National Library of Medicine. Tideglusib vs. placebo in the Treatment of Adolescents With Autism Spectrum Disorders (TIDE). 2015. Available from: https://clinicaltrials.gov/show/NCT02586935 (Accessed on: 30th July 2021).
[323]
del Ser, T.; Steinwachs, K.C.; Gertz, H.J.; Andrés, M.V.; Gómez-Carrillo, B.; Medina, M.; Vericat, J.A.; Redondo, P.; Fleet, D.; León, T. Treatment of Alzheimer’s disease with the GSK-3 inhibitor tideglusib: a pilot study. J. Alzheimers Dis., 2013, 33(1), 205-215.
[http://dx.doi.org/10.3233/JAD-2012-120805] [PMID: 22936007]
[324]
US National Library of Medicine. Efficacy, safety and tolerability of Tideglusib to treat mild-to-moderate Alzheimer's disease patients (ARGO). 2011. Available from: https://clinicaltrials.gov/show/NCT01350362 (Accessed on: 30th July 2021).
[325]
Lovestone, S.; Boada, M.; Dubois, B.; Hüll, M.; Rinne, J.O.; Huppertz, H.J.; Calero, M.; Andrés, M.V.; Gómez- Carrillo, B.; León, T.; del Ser, T. A phase II trial of tideglusib in Alzheimer’s disease. J. Alzheimers Dis., 2015, 45(1), 75-88.
[http://dx.doi.org/10.3233/JAD-141959] [PMID: 25537011]
[326]
US National Library of Medicine. Safety, tolerability, and efficacy of two different oral doses of NP031112 versus placebo in the treatment of patients with mild-to-moderate progressive supranuclear palsy (Tauros). 2012.2012. Available from: https://clinicaltrials.gov/show/NCT01049399 (Accessed on: 30th July 2021).
[327]
Tolosa, E.; Litvan, I.; Höglinger, G.U.; Burn, D.; Lees, A.; Andrés, M.V.; Gómez-Carrillo, B.; León, T.; Del Ser, T.; Gómez, J.C.; Tijero, B.; Berganzo, K.; García de Yebenes, J.; Lopez Sendón, J.L.; Garcia, G.; Tolosa, E.; Buongiorno, M.T.; Bargalló, N.; Burguera, J.A.; Martinez, I.; Ruiz-Martínez, J.; Narrativel, I.; Vivancos, F.; Ybot, I.; Aguilar, M.; Quilez, P.; Boada, M.; Lafuente, A.; Hernandez, I.; López-Lozano, J.J.; Mata, M.; Kupsch, A.; Lipp, A.; Ebersbach, G.; Schmidt, T.; Hahn, K.; Höglinger, G.; Höllerhage, M.; Oertel, W.H.; Respondek, G.; Stamelou, M.; Reichmann, H.; Wolz, M.; Schneider, C.; Klingelhöfer, L.; Berg, D.; Maetzler, W.; Srulijes, K.K.; Ludolph, A.; Kassubek, J.; Steiger, M.; Tyler, K.; Morris, L.; Lees, A.; Ling, H.; Hauser, R.; McClain, T.; Truong, D.; Jenkins, S.; Litvan, I.; Houghton, D.; Ferrara, J.; Bordelon, Y.; Gratiano, A.; Golbe, L.; Mark, M.; Uitti, R.; Ven Gerpen, J. A phase 2 trial of the GSK-3 inhibitor tideglusib in progressive supranuclear palsy. Mov. Disord., 2014, 29(4), 470-478.
[http://dx.doi.org/10.1002/mds.25824] [PMID: 24532007]
[328]
US National Library of Medicine. Study of Tideglusib in adolescent and adult patients with myotonic dystrophy. 2016. Available from: https://clinicaltrials.gov/show/NCT02858908 (Accessed on: 30th July 2021).
[329]
Horrigan, J.; Gomes, T.B.; Snape, M.; Nikolenko, N.; McMorn, A.; Evans, S.; Yaroshinsky, A.; Della Pasqua, O.; Oosterholt, S.; Lochmüller, H. A phase 2 study of AMO-02 (Tideglusib) in congenital and childhood-onset myotonic dystrophy type 1 (DM1). Pediatr. Neurol., 2020, 112, 84-93.
[http://dx.doi.org/10.1016/j.pediatrneurol.2020.08.001] [PMID: 32942085]
[330]
US National Library of Medicine. Efficacy and safety of Tideglusib in congenital myotonic dystrophy. 2018. Available from: https://clinicaltrials.gov/show/NCT03692312 (Accessed on: 30th July 2021).
[331]
Gaisina, I.N.; Gallier, F.; Ougolkov, A.V.; Kim, K.H.; Kurome, T.; Guo, S.; Holzle, D.; Luchini, D.N.; Blond, S.Y.; Billadeau, D.D.; Kozikowski, A.P. From a natural product lead to the identification of potent and selective benzofuran-3-yl-(indol-3-yl)maleimides as glycogen synthase kinase 3β inhibitors that suppress proliferation and survival of pancreatic cancer cells. J. Med. Chem., 2009, 52(7), 1853-1863.
[http://dx.doi.org/10.1021/jm801317h] [PMID: 19338355]
[332]
Ugolkov, A.V.; Bondarenko, G.I.; Dubrovskyi, O.; Berbegall, A.P.; Navarro, S.; Noguera, R.; O’Halloran, T.V.; Hendrix, M.J.; Giles, F.J.; Mazar, A.P. 9-ING-41, a small-molecule glycogen synthase kinase-3 inhibitor, is active in neuroblastoma. Anticancer Drugs, 2018, 29(8), 717-724.
[http://dx.doi.org/10.1097/CAD.0000000000000652] [PMID: 29846250]
[333]
Ugolkov, A.; Qiang, W.; Bondarenko, G.; Procissi, D.; Gaisina, I.; James, C.D.; Chandler, J.; Kozikowski, A.; Gunosewoyo, H.; O’Halloran, T.; Raizer, J.; Mazar, A.P. Combination treatment with the GSK-3 Inhibitor 9-ING-41 and CCNU cures orthotopic chemoresistant glioblastoma in patient-derived xenograft models. Transl. Oncol., 2017, 10(4), 669-678.
[http://dx.doi.org/10.1016/j.tranon.2017.06.003] [PMID: 28672195]
[334]
Ugolkov, A.; Gaisina, I.; Zhang, J.S.; Billadeau, D.D.; White, K.; Kozikowski, A.; Jain, S.; Cristofanilli, M.; Giles, F.; O’Halloran, T.; Cryns, V.L.; Mazar, A.P. GSK-3 inhibition overcomes chemoresistance in human breast cancer. Cancer Lett., 2016, 380(2), 384-392.
[http://dx.doi.org/10.1016/j.canlet.2016.07.006] [PMID: 27424289]
[335]
Hilliard, T.S.; Gaisina, I.N.; Muehlbauer, A.G.; Gaisin, A.M.; Gallier, F.; Burdette, J.E. Glycogen synthase kinase 3β inhibitors induce apoptosis in ovarian cancer cells and inhibit in vivo tumor growth. Anticancer Drugs, 2011, 22(10), 978-985.
[http://dx.doi.org/10.1097/CAD.0b013e32834ac8fc] [PMID: 21878813]
[336]
Karmali, R.; Chukkapalli, V.; Gordon, L.I.; Borgia, J.A.; Ugolkov, A.; Mazar, A.P.; Giles, F.J. GSK-3β inhibitor, 9-ING-41, reduces cell viability and halts proliferation of B- cell lymphoma cell lines as a single agent and in combination with novel agents. Oncotarget, 2017, 8(70), 114924-114934.
[http://dx.doi.org/10.18632/oncotarget.22414] [PMID: 29383130]
[337]
Kuroki, H.; Anraku, T.; Kazama, A.; Bilim, V.; Tasaki, M.; Schmitt, D.; Mazar, A.P.; Giles, F.J.; Ugolkov, A.; Tomita, Y. 9-ING-41, a small molecule inhibitor of GSK-3beta, potentiates the effects of anticancer therapeutics in bladder cancer. Sci. Rep., 2019, 9(1), 19977.
[http://dx.doi.org/10.1038/s41598-019-56461-4] [PMID: 31882719]
[338]
Pal, K.; Cao, Y.; Gaisina, I.N.; Bhattacharya, S.; Dutta, S.K.; Wang, E.; Gunosewoyo, H.; Kozikowski, A.P.; Billadeau, D.D.; Mukhopadhyay, D. Inhibition of GSK-3 induces differentiation and impaired glucose metabolism in renal cancer. Mol. Cancer Ther., 2014, 13(2), 285-296.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0681] [PMID: 24327518]
[339]
Anraku, T.; Kuroki, H.; Kazama, A.; Bilim, V.; Tasaki, M.; Schmitt, D.; Mazar, A.; Giles, F.J.; Ugolkov, A.; Tomita, Y. Clinically relevant GSK-3β inhibitor 9-ING-41 is active as a single agent and in combination with other antitumor therapies in human renal cancer. Int. J. Mol. Med., 2020, 45(2), 315-323.
[PMID: 31894292]
[340]
Jeffers, A.; Qin, W.; Owens, S.; Koenig, K.B.; Komatsu, S.; Giles, F.J.; Schmitt, D.M.; Idell, S.; Tucker, T.A. Glycogen synthase kinase-3β inhibition with 9-ING-41 attenuates the progression of pulmonary fibrosis. Sci. Rep., 2019, 9(1), 1-13.
[http://dx.doi.org/10.1038/s41598-019-55176-w] [PMID: 30626917]
[341]
US National Library of Medicine. 9-ING-41 in pediatric patients with refractory malignancies. 2020. Available from: https://clinicaltrials.gov/show/NCT04239092 (Accessed on: 30th July 2021).
[342]
US National Library of Medicine. 9-ING-41 in patients with advanced cancers. 2018. Available from: https://clinicaltrials.gov/show/NCT03678883 (Accessed on: 30th July 2021).
[343]
Ding, S.; Wu, T.Y.H.; Brinker, A.; Peters, E.C.; Hur, W.; Gray, N.S.; Schultz, P.G. Synthetic small molecules that control stem cell fate. Proc. Natl. Acad. Sci. USA, 2003, 100(13), 7632-7637.
[http://dx.doi.org/10.1073/pnas.0732087100] [PMID: 12794184]
[344]
Gattinoni, L.; Zhong, X.S.; Palmer, D.C.; Ji, Y.; Hinrichs, C.S.; Yu, Z.; Wrzesinski, C.; Boni, A.; Cassard, L.; Garvin, L.M.; Paulos, C.M.; Muranski, P.; Restifo, N.P. Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat. Med., 2009, 15(7), 808-813.
[http://dx.doi.org/10.1038/nm.1982] [PMID: 19525962]
[345]
Sabatino, M.; Hu, J.; Sommariva, M.; Gautam, S.; Fellowes, V.; Hocker, J.D.; Dougherty, S.; Qin, H.; Klebanoff, C.A.; Fry, T.J.; Gress, R.E.; Kochenderfer, J.N.; Stroncek, D.F.; Ji, Y.; Gattinoni, L. Generation of clinical- grade CD19-specific CAR-modified CD8+ memory stem cells for the treatment of human B-cell malignancies. Blood, 2016, 128(4), 519-528.
[http://dx.doi.org/10.1182/blood-2015-11-683847] [PMID: 27226436]
[346]
US National Library of Medicine. Administration of Anti-CD19-chimeric-antigen-receptor-transduced T cells from the original transplant donor to patients with recurrent or persistent B-cell malignancies after allogeneic stem cell transplantation. 2010. Available from: https://clinicaltrials.gov/show/NCT01087294 (Accessed on: 30th July 2021).
[347]
Wang, W.; Li, M.; Wang, Y.; Wang, Z.; Zhang, W.; Guan, F.; Chen, Q.; Wang, J. GSK-3β as a target for protection against transient cerebral ischemia. Int. J. Med. Sci., 2017, 14(4), 333-339.
[http://dx.doi.org/10.7150/ijms.17514] [PMID: 28553165]
[348]
Chen, Y.; Yu, J.; Ke, Q.; Gao, Y.; Zhang, C.; Guo, Y. Bioinspired fabrication of carbonated hydroxyapatite/chitosan nanohybrid scaffolds loaded with TWS119 for bone regeneration. Chem. Eng. J., 2018, 341, 112-125.
[http://dx.doi.org/10.1016/j.cej.2018.02.010]
[349]
Zhang, F.; Phiel, C.J.; Spece, L.; Gurvich, N.; Klein, P.S. Inhibitory phosphorylation of glycogen synthase kinase-3 (GSK-3) in response to lithium. Evidence for autoregulation of GSK-3. J. Biol. Chem., 2003, 278(35), 33067-33077.
[http://dx.doi.org/10.1074/jbc.M212635200] [PMID: 12796505]
[350]
Cade, J.F.J. Lithium salts in the treatment of psychotic excitement. Med. J. Aust., 1949, 2(10), 349-352.
[http://dx.doi.org/10.5694/j.1326-5377.1949.tb36912.x] [PMID: 18142718]
[351]
O’Brien, W.T.; Klein, P.S. Validating GSK3 as an in vivo target of lithium action. Biochem. Soc. Trans., 2009, 37(Pt 5), 1133-1138.
[http://dx.doi.org/10.1042/BST0371133] [PMID: 19754466]
[352]
Thompson, S.L.; Dulawa, S.C. Dissecting the roles of β-arrestin2 and GSK-3 signaling in 5-HT1BR-mediated perseverative behavior and prepulse inhibition deficits in mice. PLoS One, 2019, 14(2), e0211239.
[http://dx.doi.org/10.1371/journal.pone.0211239] [PMID: 30721232]
[353]
Forlenza, O.V.; De-Paula, V.J.R.; Diniz, B.S.O. Neuroprotective effects of lithium: implications for the treatment of Alzheimer’s disease and related neurodegenerative disorders. ACS Chem. Neurosci., 2014, 5(6), 443-450.
[http://dx.doi.org/10.1021/cn5000309] [PMID: 24766396]
[354]
Forlenza, O.V.; Diniz, B.S.; Radanovic, M.; Santos, F.S.; Talib, L.L.; Gattaz, W.F. Disease-modifying properties of long-term lithium treatment for amnestic mild cognitive impairment: randomised controlled trial. Br. J. Psychiatry, 2011, 198(5), 351-356.
[http://dx.doi.org/10.1192/bjp.bp.110.080044] [PMID: 21525519]
[355]
Nunes, M.A.; Viel, T.A.; Buck, H.S. Microdose lithium treatment stabilized cognitive impairment in patients with Alzheimer’s disease. Curr. Alzheimer's Res., 2013, 10(1), 104-107.
[PMID: 22746245]
[356]
Duthie, A.; van Aalten, L.; MacDonald, C.; McNeilly, A.; Gallagher, J.; Geddes, J.; Lovestone, S.; Sutherland, C. Recruitment, retainment, and biomarkers of response; a pilot trial of lithium in humans with mild cognitive impairment. Front. Mol. Neurosci., 2019, 12, 163.
[http://dx.doi.org/10.3389/fnmol.2019.00163] [PMID: 31316348]
[357]
US National Library of Medicine. Lithium as a treatment to prevent impairment of cognition in elders (LATTICE). 2017. Available from: https://clinicaltrials.gov/show/NCT03185208 (Accessed on: 30th July 2021).
[358]
US National Library of Medicine. Effects of lithium therapy on blood-based therapeutic targets in Parkinson's Disease. 2020. Available from: https://clinicaltrials.gov/show/NCT04273932 (Accessed on: 30th July 2021).
[359]
Ilouz, R.; Kaidanovich, O.; Gurwitz, D.; Eldar-Finkelman, H. Inhibition of glycogen synthase kinase-3β by bivalent zinc ions: insight into the insulin-mimetic action of zinc. Biochem. Biophys. Res. Commun., 2002, 295(1), 102-106.
[http://dx.doi.org/10.1016/S0006-291X(02)00636-8] [PMID: 12083774]
[360]
Ryves, W.J.; Dajani, R.; Pearl, L.; Harwood, A.J. Glycogen synthase kinase-3 inhibition by lithium and beryllium suggests the presence of two magnesium binding sites. Biochem. Biophys. Res. Commun., 2002, 290(3), 967-972.
[http://dx.doi.org/10.1006/bbrc.2001.6305] [PMID: 11798168]
[361]
Kroczka, B.; Branski, P.; Palucha, A.; Pilc, A.; Nowak, G. Antidepressant-like properties of zinc in rodent forced swim test. Brain Res. Bull., 2001, 55(2), 297-300.
[http://dx.doi.org/10.1016/S0361-9230(01)00473-7] [PMID: 11470330]
[362]
Tassabehji, N.M.; Corniola, R.S.; Alshingiti, A.; Levenson, C.W. Zinc deficiency induces depression-like symptoms in adult rats. Physiol. Behav., 2008, 95(3), 365-369.
[http://dx.doi.org/10.1016/j.physbeh.2008.06.017] [PMID: 18655800]
[363]
Bodnar, L.M.; Wisner, K.L. Nutrition and depression: implications for improving mental health among childbearing-aged women. Biol. Psychiatry, 2005, 58(9), 679-685.
[http://dx.doi.org/10.1016/j.biopsych.2005.05.009] [PMID: 16040007]
[364]
Nowak, G.; Szewczyk, B.; Pilc, A. Zinc and depression. An update. Pharmacol. Rep., 2005, 57(6), 713-718.
[PMID: 16382189]
[365]
Vougogiannopoulou, K.; Ferandin, Y.; Bettayeb, K.; Myrianthopoulos, V.; Lozach, O.; Fan, Y.; Johnson, C.H.; Magiatis, P.; Skaltsounis, A.L.; Mikros, E.; Meijer, L. Soluble 3′,6-substituted indirubins with enhanced selectivity toward glycogen synthase kinase -3 alter circadian period. J. Med. Chem., 2008, 51(20), 6421-6431.
[http://dx.doi.org/10.1021/jm800648y] [PMID: 18816110]
[366]
Li, W.; Sun, W.; Zhang, Y.; Wei, W.; Ambasudhan, R.; Xia, P.; Talantova, M.; Lin, T.; Kim, J.; Wang, X.; Kim, W.R.; Lipton, S.A.; Zhang, K.; Ding, S. Rapid induction and long-term self-renewal of primitive neural precursors from human embryonic stem cells by small molecule inhibitors. Proc. Natl. Acad. Sci. USA, 2011, 108(20), 8299-8304.
[http://dx.doi.org/10.1073/pnas.1014041108] [PMID: 21525408]
[367]
Sato, N.; Meijer, L.; Skaltsounis, L.; Greengard, P.; Brivanlou, A.H. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat. Med., 2004, 10(1), 55-63.
[http://dx.doi.org/10.1038/nm979] [PMID: 14702635]
[368]
Park, J.Y.; Jeon, S.H.; Choung, P.H. Efficacy of periodontal stem cell transplantation in the treatment of advanced periodontitis. Cell Transplant., 2011, 20(2), 271-285.
[http://dx.doi.org/10.3727/096368910X519292] [PMID: 20719084]
[369]
Shen, S.; Zhang, Y.; Zhang, S.; Wang, B.; Shang, L.; Shao, J.; Lin, M.; Cui, Y.; Sun, S.; Ge, S. 6-bromoindirubin-3′-oxime promotes osteogenic differentiation of periodontal ligament stem cells and facilitates bone regeneration in a mouse periodontitis model. ACS Biomater. Sci. Eng., 2021, 7(1), 232-241.
[http://dx.doi.org/10.1021/acsbiomaterials.0c01078] [PMID: 33320531]
[370]
Sklirou, A.D.; Gaboriaud-Kolar, N.; Papassideri, I.; Skaltsounis, A.L.; Trougakos, I.P. 6-bromo-indirubin-3′-Oxime (6BIO), a glycogen synthase kinase-3β inhibitor, activates cytoprotective cellular modules and suppresses cellular senescence-mediated biomolecular damage in human fibroblasts. Sci. Rep., 2017, 7(1), 1-13.
[http://dx.doi.org/10.1038/s41598-017-11662-7] [PMID: 28127051]
[371]
Guo, D.; Cheng, L.; Shen, Y.; Li, W.; Li, Q.; Zhong, Y.; Miao, Y. 6-Bromoindirubin-3′-oxime (6BIO) prevents myocardium from aging by inducing autophagy. Aging (Albany NY), 2020, 12(24), 26047-26062.
[http://dx.doi.org/10.18632/aging.202253] [PMID: 33401248]
[372]
Aourz, N.; Serruys, A.K.; Chabwine, J.N.; Balegamire, P.B.; Afrikanova, T.; Edrada-Ebel, R.; Grey, A.I.; Kamuhabwa, A.R.; Walrave, L.; Esguerra, C.V.; van Leuven, F.; de Witte, P.A.M.; Smolders, I.; Crawford, A.D. Identification of GSK-3 as a potential therapeutic entry point for epilepsy. ACS Chem. Neurosci., 2019, 10(4), 1992-2003.
[http://dx.doi.org/10.1021/acschemneuro.8b00281] [PMID: 30351911]
[373]
Duffy, D.J.; Krstic, A.; Schwarzl, T.; Higgins, D.G.; Kolch, W. GSK3 inhibitors regulate MYCN mRNA levels and reduce neuroblastoma cell viability through multiple mechanisms, including p53 and Wnt signaling. Mol. Cancer Ther., 2014, 13(2), 454-467.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0560-T] [PMID: 24282277]
[374]
Martin, L.; Magnaudeix, A.; Wilson, C.M.; Yardin, C.; Terro, F. The new indirubin derivative inhibitors of glycogen synthase kinase-3, 6-BIDECO and 6-BIMYEO, prevent tau phosphorylation and apoptosis induced by the inhibition of protein phosphatase-2A by okadaic acid in cultured neurons. J. Neurosci. Res., 2011, 89(11), 1802-1811.
[http://dx.doi.org/10.1002/jnr.22723] [PMID: 21826701]
[375]
Czapka, A.; König, S.; Pergola, C.; Grune, C.; Vougogiannopoulou, K.; Skaltsounis, A.L.; Fischer, D.; Werz, O. The indirubin derivative 6-bromoindirubin-3′-glycerol-oxime ether (6BIGOE) potently modulates inflammatory cytokine and prostaglandin release from human monocytes through GSK-3 interference. Biochem. Pharmacol., 2020, 180, 114170.
[http://dx.doi.org/10.1016/j.bcp.2020.114170] [PMID: 32710971]
[376]
Ding, Y.; Qiao, A.; Fan, G.H. Indirubin-3′-monoxime rescues spatial memory deficits and attenuates β-amyloid-associated neuropathology in a mouse model of Alzheimer’s disease. Neurobiol. Dis., 2010, 39(2), 156-168.
[http://dx.doi.org/10.1016/j.nbd.2010.03.022] [PMID: 20381617]
[377]
Reinhardt, L.; Kordes, S.; Reinhardt, P.; Glatza, M.; Baumann, M.; Drexler, H.C.A.; Menninger, S.; Zischinsky, G.; Eickhoff, J.; Fröb, C.; Bhattarai, P.; Arulmozhivarman, G.; Marrone, L.; Janosch, A.; Adachi, K.; Stehling, M.; Anderson, E.N.; Abo-Rady, M.; Bickle, M.; Pandey, U.B.; Reimer, M.M.; Kizil, C.; Schöler, H.R.; Nussbaumer, P.; Klebl, B.; Sterneckert, J.L. Dual inhibition of GSK3β and CDK5 protects the cytoskeleton of neurons from neuroinflammatory-mediated degeneration in vitro and in vivo. Stem Cell Reports, 2019, 12(3), 502-517.
[http://dx.doi.org/10.1016/j.stemcr.2019.01.015] [PMID: 30773488]
[378]
Lozinskaya, N.A.; Babkov, D.A.; Zaryanova, E.V.; Bezsonova, E.N.; Efremov, A.M.; Tsymlyakov, M.D.; Anikina, L.V.; Zakharyascheva, O.Y.; Borisov, A.V.; Perfilova, V.N.; Tyurenkov, I.N.; Proskurnina, M.V.; Spasov, A.A. Synthesis and biological evaluation of 3-substituted 2-oxindole derivatives as new glycogen synthase kinase 3β inhibitors. Bioorg. Med. Chem., 2019, 27(9), 1804-1817.
[http://dx.doi.org/10.1016/j.bmc.2019.03.028] [PMID: 30902399]
[379]
Wang, Y.; Wach, J.Y.; Sheehan, P.; Zhong, C.; Zhan, C.; Harris, R.; Almo, S.C.; Bishop, J.; Haggarty, S.J.; Ramek, A.; Berry, K.N.; O’Herin, C.; Koehler, A.N.; Hung, A.W.; Young, D.W. Diversity-oriented synthesis as a strategy for fragment evolution against GSK3β. ACS Med. Chem. Lett., 2016, 7(9), 852-856.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00230] [PMID: 27660690]
[380]
Meijer, L.; Thunnissen, A.M.W.H.; White, A.W.; Garnier, M.; Nikolic, M.; Tsai, L.H.; Walter, J.; Cleverley, K.E.; Salinas, P.C.; Wu, Y.Z.; Biernat, J.; Mandelkow, E.M.; Kim, S.H.; Pettit, G.R. Inhibition of cyclin-dependent kinases, GSK-3β and CK1 by hymenialdisine, a marine sponge constituent. Chem. Biol., 2000, 7(1), 51-63.
[http://dx.doi.org/10.1016/S1074-5521(00)00063-6] [PMID: 10662688]
[381]
Wan, Y.; Hur, W.; Cho, C.Y.; Liu, Y.; Adrian, F.J.; Lozach, O.; Bach, S.; Mayer, T.; Fabbro, D.; Meijer, L.; Gray, N.S. Synthesis and target identification of hymenialdisine analogs. Chem. Biol., 2004, 11(2), 247-259.
[http://dx.doi.org/10.1016/j.chembiol.2004.01.015] [PMID: 15123286]
[382]
Akunuri, R.; Vadakattu, M.; Bujji, S.; Veerareddy, V.; Madhavi, Y. V; Nanduri, S. Fused-azepinones: emerging scaffolds of medicinal importance. European J. Med. Chem., 2021, 220(5), 113445.
[383]
Zhang, N.; Zhong, R.; Yan, H.; Jiang, Y. Structural features underlying selective inhibition of GSK3β by dibromocantharelline: Implications for rational drug design. Chem. Biol. Drug Des., 2011, 77(3), 199-205.
[http://dx.doi.org/10.1111/j.1747-0285.2010.01069.x] [PMID: 21244636]
[384]
Kramer, T.; Schmidt, B.; Lo Monte, F. Small-molecule inhibitors of GSK-3: structural insights and their application to Alzheimer’s disease models. Int. J. Alzheimers Dis., 2012, 2012, 381029.
[http://dx.doi.org/10.1155/2012/381029] [PMID: 22888461]
[385]
Zhang, L.; Carroll, P.; Meggers, E. Ruthenium complexes as protein kinase inhibitors. Org. Lett., 2004, 6(4), 521-523.
[http://dx.doi.org/10.1021/ol036283s] [PMID: 14961613]
[386]
Maikoo, S.; Makayane, D.; Booysen, I. N.; Ngubane, P.; Khathi, A. Ruthenium compounds as potential therapeutic agents for type 2 diabetes mellitus. European J. Med. Chem., 2021, 213, 113064.
[387]
Johnson, J.L.; Rupasinghe, S.G.; Stefani, F.; Schuler, M.A.; Gonzalez de Mejia, E. Citrus flavonoids luteolin, apigenin, and quercetin inhibit glycogen synthase kinase-3β enzymatic activity by lowering the interaction energy within the binding cavity. J. Med. Food, 2011, 14(4), 325-333.
[http://dx.doi.org/10.1089/jmf.2010.0310] [PMID: 21443429]
[388]
Rezai-Zadeh, K.; Douglas Shytle, R.; Bai, Y.; Tian, J.; Hou, H.; Mori, T.; Zeng, J.; Obregon, D.; Town, T.; Tan, J. Flavonoid-mediated presenilin-1 phosphorylation reduces Alzheimer’s disease β-amyloid production. J. Cell. Mol. Med., 2009, 13(3), 574-588.
[http://dx.doi.org/10.1111/j.1582-4934.2008.00344.x] [PMID: 18410522]
[389]
Gompel, M.; Leost, M.; De Kier Joffe, E.B.; Puricelli, L.; Franco, L.H.; Palermo, J.; Meijer, L. Meridianins, a new family of protein kinase inhibitors isolated from the ascidian Aplidium meridianum. Bioorg. Med. Chem. Lett., 2004, 14(7), 1703-1707.
[http://dx.doi.org/10.1016/j.bmcl.2004.01.050] [PMID: 15026054]
[390]
Bharate, S.B.; Sawant, S.D.; Singh, P.P.; Vishwakarma, R.A. Kinase inhibitors of marine origin. Chem. Rev., 2013, 113(8), 6761-6815.
[http://dx.doi.org/10.1021/cr300410v] [PMID: 23679846]
[391]
Han, S.; Zhuang, C.; Zhou, W.; Chen, F. Structural-based optimizations of the marine-originated meridianin C as glucose uptake agents by inhibiting GSK-3β. Mar. Drugs, 2021, 19(3), 149.
[http://dx.doi.org/10.3390/md19030149] [PMID: 33809065]
[392]
Debdab, M.; Renault, S.; Lozach, O.; Meijer, L.; Paquin, L.; Carreaux, F.; Bazureau, J.P. Synthesis and preliminary biological evaluation of new derivatives of the marine alkaloid leucettamine B as kinase inhibitors. Eur. J. Med. Chem., 2010, 45(2), 805-810.
[http://dx.doi.org/10.1016/j.ejmech.2009.10.009] [PMID: 19879673]
[393]
Debdab, M.; Carreaux, F.; Renault, S.; Soundararajan, M.; Fedorov, O.; Filippakopoulos, P.; Lozach, O.; Babault, L.; Tahtouh, T.; Baratte, B.; Ogawa, Y.; Hagiwara, M.; Eisenreich, A.; Rauch, U.; Knapp, S.; Meijer, L.; Bazureau, J.P. Leucettines, a class of potent inhibitors of cdc2-like kinases and dual specificity, tyrosine phosphorylation regulated kinases derived from the marine sponge leucettamine B: modulation of alternative pre-RNA splicing. J. Med. Chem., 2011, 54(12), 4172-4186.
[http://dx.doi.org/10.1021/jm200274d] [PMID: 21615147]
[394]
Giridharan, V.V.; Thandavarayan, R.A.; Arumugam, S.; Mizuno, M.; Nawa, H.; Suzuki, K.; Ko, K.M.; Krishnamurthy, P.; Watanabe, K.; Konishi, T.D.; Schisandrin, B. Ameliorates ICV-infused amyloid β induced oxidative stress and neuronal dysfunction through inhibiting RAGE/NF-KB/MAPK and up-regulating HSP/beclin expression. PLoS One, 2015, 10(11), 1-17.
[http://dx.doi.org/10.1371/journal.pone.0142483] [PMID: 26556721]
[395]
Choi, Y.W.; Takamatsu, S.; Khan, S.I.; Srinivas, P.V.; Ferreira, D.; Zhao, J.; Khan, I.A. Schisandrene, a dibenzocyclooctadiene lignan from Schisandra chinensis: Structure-antioxidant activity relationships of dibenzocyclooctadiene lignans. J. Nat. Prod., 2006, 69(3), 356-359.
[http://dx.doi.org/10.1021/np0503707] [PMID: 16562834]
[396]
Guo, L.Y.; Hung, T.M.; Bae, K.H.; Shin, E.M.; Zhou, H.Y.; Hong, Y.N.; Kang, S.S.; Kim, H.P.; Kim, Y.S. Anti-inflammatory effects of schisandrin isolated from the fruit of Schisandra chinensis Baill. Eur. J. Pharmacol., 2008, 591(1-3), 293-299.
[http://dx.doi.org/10.1016/j.ejphar.2008.06.074] [PMID: 18625216]
[397]
Kim, S.R.; Lee, M.K.; Koo, K.A.; Kim, S.H.; Sung, S.H.; Lee, N.G.; Markelonis, G.J.; Oh, T.H.; Yang, J.H.; Kim, Y.C. Dibenzocyclooctadiene lignans from Schisandra chinensis protect primary cultures of rat cortical cells from glutamate-induced toxicity. J. Neurosci. Res., 2004, 76(3), 397-405.
[http://dx.doi.org/10.1002/jnr.20089] [PMID: 15079869]
[398]
Li, X.J.; Zhao, B.L.; Liu, G.T.; Xin, W.J. Scavenging effects on active oxygen radicals by schizandrins with different structures and configurations. Free Radic. Biol. Med., 1990, 9(2), 99-104.
[http://dx.doi.org/10.1016/0891-5849(90)90111-U] [PMID: 2172101]
[399]
Hu, X.; Guo, C.; Hou, J.Q.; Feng, J.H.; Zhang, X.Q.; Xiong, F.; Ye, W.C.; Wang, H. Stereoisomers of schisandrin B are potent ATP competitive GSK-3β inhibitors with neuroprotective effects against alzheimer’s disease: Stereochemistry and biological activity. ACS Chem. Neurosci., 2019, 10(2), 996-1007.
[400]
Paull, K.D.; Lin, C.M.; Malspeis, L.; Hamel, E. Identification of novel antimitotic agents acting at the tubulin level by computer-assisted evaluation of differential cytotoxicity data. Cancer Res., 1992, 52(14), 3892-3900.
[PMID: 1617665]
[401]
Zaharevitz, D.W.; Gussio, R.; Leost, M.; Senderowicz, A.M.; Lahusen, T.; Kunick, C.; Meijer, L.; Sausville, E.A. Advances in brief discovery and initial characterization of the paullones , a novel class of small- molecule inhibitors of cyclin-dependent kinases 1. Cancer Res., 1999, 2566-2569.
[402]
Knockaert, M.; Wieking, K.; Schmitt, S.; Leost, M.; Grant, K.M.; Mottram, J.C.; Kunick, C.; Meijer, L. Intracellular targets of paullones. Identification following affinity purification on immobilized inhibitor. J. Biol. Chem., 2002, 277(28), 25493-25501.
[http://dx.doi.org/10.1074/jbc.M202651200] [PMID: 11964410]
[403]
Phiel, C.J.; Wilson, C.A.; Lee, V.M.; Klein, P.S. GSK-3α regulates production of Alzheimer’s disease amyloid-beta peptides. Nature, 2003, 423(6938), 435-439.
[http://dx.doi.org/10.1038/nature01640] [PMID: 12761548]
[404]
Castelo-Branco, G.; Rawal, N.; Arenas, E. GSK-3β inhibition/β-catenin stabilization in ventral midbrain precursors increases differentiation into dopamine neurons. J. Cell Sci., 2004, 117(Pt 24), 5731-5737.
[http://dx.doi.org/10.1242/jcs.01505] [PMID: 15522889]
[405]
Leost, M.; Schultz, C.; Link, A.; Wu, Y.Z.; Biernat, J.; Mandelkow, E.M.; Bibb, J.A.; Snyder, G.L.; Greengard, P.; Zaharevitz, D.W.; Gussio, R.; Senderowicz, A.M.; Sausville, E.A.; Kunick, C.; Meijer, L. Paullones are potent inhibitors of glycogen synthase kinase-3β and cyclin-dependent kinase 5/p25. Eur. J. Biochem., 2000, 267(19), 5983-5994.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01673.x] [PMID: 10998059]
[406]
Selenica, M.L.; Jensen, H.S.; Larsen, A.K.; Pedersen, M.L.; Helboe, L.; Leist, M.; Lotharius, J. Efficacy of small-molecule glycogen synthase kinase-3 inhibitors in the postnatal rat model of tau hyperphosphorylation. Br. J. Pharmacol., 2007, 152(6), 959-979.
[http://dx.doi.org/10.1038/sj.bjp.0707471] [PMID: 17906685]
[407]
Peineau, S.; Nicolas, C.S.; Bortolotto, Z.A.; Bhat, R.V.; Ryves, W.J.; Harwood, A.J.; Dournaud, P.; Fitzjohn, S.M.; Collingridge, G.L. A systematic investigation of the protein kinases involved in NMDA receptor-dependent LTD: Evidence for a role of GSK-3 but not other serine/threonine kinases. Mol. Brain, 2009, 2(1), 22.
[http://dx.doi.org/10.1186/1756-6606-2-22] [PMID: 19583853]
[408]
Makhortova, N.R.; Hayhurst, M.; Cerqueira, A.; Sinor-Anderson, A.D.; Zhao, W.N.; Heiser, P.W.; Arvanites, A.C.; Davidow, L.S.; Waldon, Z.O.; Steen, J.A.; Lam, K.; Ngo, H.D.; Rubin, L.L. A screen for regulators of survival of motor neuron protein levels. Nat. Chem. Biol., 2011, 7(8), 544-552.
[http://dx.doi.org/10.1038/nchembio.595] [PMID: 21685895]
[409]
Stukenbrock, H.; Mussmann, R.; Geese, M.; Ferandin, Y.; Lozach, O.; Lemcke, T.; Kegel, S.; Lomow, A.; Burk, U.; Dohrmann, C.; Meijer, L.; Austen, M.; Kunick, C. 9- cyano-1-azapaullone (cazpaullone), a glycogen synthase kinase-3 (GSK-3) inhibitor activating pancreatic β cell protection and replication. J. Med. Chem., 2008, 51(7), 2196-2207.
[http://dx.doi.org/10.1021/jm701582f] [PMID: 18345612]
[410]
Ring, D.B.; Johnson, K.W.; Henriksen, E.J.; Nuss, J.M.; Goff, D.; Kinnick, T.R.; Ma, S.T.; Reeder, J.W.; Samuels, I.; Slabiak, T.; Wagman, A.S.; Hammond, M.E.W.; Harrison, S.D. Selective glycogen synthase kinase 3 inhibitors potentiate insulin activation of glucose transport and utilization in vitro and in vivo. Diabetes, 2003, 52(3), 588-595.
[http://dx.doi.org/10.2337/diabetes.52.3.588] [PMID: 12606497]
[411]
Wagman, A.S.; Johnson, K.W.; Bussiere, D.E. Discovery and development of GSK3 inhibitors for the treatment of type 2 diabetes. Curr. Pharm. Des., 2004, 10(10), 1105-1137.
[http://dx.doi.org/10.2174/1381612043452668] [PMID: 15078145]
[412]
Naujok, O.; Lentes, J.; Diekmann, U.; Davenport, C.; Lenzen, S. Cytotoxicity and activation of the Wnt/beta- catenin pathway in mouse embryonic stem cells treated with four GSK3 inhibitors. BMC Res. Notes, 2014, 7(1), 273.
[http://dx.doi.org/10.1186/1756-0500-7-273] [PMID: 24779365]
[413]
Wraith, D.; Hill, E. Tolerisation-inducing composition. WO2013150284, 2013.
[414]
Lian, X.; Zhang, J.; Azarin, S.M.; Zhu, K.; Hazeltine, L.B.; Bao, X.; Hsiao, C.; Kamp, T.J.; Palecek, S.P. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat. Protoc., 2013, 8(1), 162-175.
[http://dx.doi.org/10.1038/nprot.2012.150] [PMID: 23257984]
[415]
Reya, T.; Clevers, H. Wnt signalling in stem cells and cancer. Nature, 2005, 434(7035), 843-850.
[http://dx.doi.org/10.1038/nature03319] [PMID: 15829953]
[416]
Pellicano, F.; Simara, P.; Sinclair, A.; Helgason, G.V.; Copland, M.; Grant, S.; Holyoake, T.L. The MEK inhibitor PD184352 enhances BMS-214662-induced apoptosis in CD34+ CML stem/progenitor cells. Leukemia, 2011, 25(7), 1159-1167.
[http://dx.doi.org/10.1038/leu.2011.67] [PMID: 21483442]
[417]
Liao, S.; Gan, L.; Qin, W.; Liu, C.; Mei, Z. Inhibition of GSK3 and MEK induced cancer stem cell generation via the Wnt and MEK signaling pathways. Oncol. Rep., 2018, 40(4), 2005-2013.
[http://dx.doi.org/10.3892/or.2018.6600] [PMID: 30066938]
[418]
O’Flaherty, L.; Tavaré, J.M.; Seckl, M.J.; Pardo, O.E.R. Therapy. Patent WO2018083483, 2018.
[419]
Fukunaga, K.; Uehara, F.; Aritomo, K.; Shoda, A.; Hiki, S.; Okuyama, M.; Usui, Y.; Watanabe, K.; Yamakoshi, K.; Kohara, T.; Hanano, T.; Tanaka, H.; Tsuchiya, S.; Sunada, S.; Saito, K.; Eguchi, J.; Yuki, S.; Asano, S.; Tanaka, S.; Mori, A.; Yamagami, K.; Baba, H.; Horikawa, T.; Fujimura, M. 2-(2-Phenylmorpholin-4-yl)pyrimidin-4(3H)-ones; a new class of potent, selective and orally active glycogen synthase kinase-3β inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(24), 6933-6937.
[http://dx.doi.org/10.1016/j.bmcl.2013.09.020] [PMID: 24176395]
[420]
Fukunaga, K.; Sakai, D.; Watanabe, K.; Nakayama, K.; Kohara, T.; Tanaka, H.; Sunada, S.; Nabeno, M.; Okamoto, M.; Saito, K.; Eguchi, J.; Mori, A.; Tanaka, S.; Inazawa, K.; Horikawa, T. Discovery of novel 2-(alkylmorpholin-4-yl)-6-(3-fluoropyridin-4-yl)-pyrimidin-4(3H)-ones as orally-active GSK-3β inhibitors for Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2015, 25(5), 1086-1091.
[http://dx.doi.org/10.1016/j.bmcl.2015.01.005] [PMID: 25655721]
[421]
Smith, D.G.; Buffet, M.; Fenwick, A.E.; Haigh, D.; Ife, R.J.; Saunders, M.; Slingsby, B.P.; Stacey, R.; Ward, R.W. 3-Anilino-4-arylmaleimides: potent and selective inhibitors of glycogen synthase kinase-3 (GSK-3). Bioorg. Med. Chem. Lett., 2001, 11(5), 635-639.
[http://dx.doi.org/10.1016/S0960-894X(00)00721-6] [PMID: 11266159]
[422]
Rudd, C. Use of GSK-3 inhibitors or activators which modulate PD-1 or T-Bet expression to modulate T cell immunity. Patent WO2015155738, 2015.
[423]
Thotala, D.K.; Hallahan, D.E.; Yazlovitskaya, E.M. Glycogen synthase kinase 3β inhibitors protect hippocampal neurons from radiation-induced apoptosis by regulating MDM2-p53 pathway. Cell Death Differ., 2012, 19(3), 387-396.
[http://dx.doi.org/10.1038/cdd.2011.94] [PMID: 21738215]
[424]
Wang, M.; Gao, M.; Miller, K.D.; Sledge, G.W.; Hutchins, G.D.; Zheng, Q.H. The first synthesis of [(11)C]SB-216763, a new potential PET agent for imaging of glycogen synthase kinase-3 (GSK-3). Bioorg. Med. Chem. Lett., 2011, 21(1), 245-249.
[http://dx.doi.org/10.1016/j.bmcl.2010.11.026] [PMID: 21115250]
[425]
Zou, H.; Zhou, L.; Li, Y.; Cui, Y.; Zhong, H.; Pan, Z.; Yang, Z.; Quan, J. Benzo[e]isoindole-1,3-diones as potential inhibitors of glycogen synthase kinase-3 (GSK-3). Synthesis, kinase inhibitory activity, zebrafish phenotype, and modeling of binding mode. J. Med. Chem., 2010, 53(3), 994-1003.
[http://dx.doi.org/10.1021/jm9013373] [PMID: 20030405]
[426]
Meijer, L.; Flajolet, M.; Greengard, P. Pharmacological inhibitors of glycogen synthase kinase 3. Trends Pharmacol. Sci., 2004, 25(9), 471-480.
[http://dx.doi.org/10.1016/j.tips.2004.07.006] [PMID: 15559249]
[427]
Zhang, J.; Lai, Z.P.; Chen, P.; Ying, Y.; Zhuang, J.; Yu, K.M. Glycogen synthase kinase-3β inhibitor SB216763 promotes DNA repair in ischemic retinal neurons. Neural Regen. Res., 2021, 16(2), 394-400.
[http://dx.doi.org/10.4103/1673-5374.290913] [PMID: 32859805]
[428]
Engler, T.A.; Henry, J.R.; Malhotra, S.; Cunningham, B.; Furness, K.; Brozinick, J.; Burkholder, T.P.; Clay, M.P.; Clayton, J.; Diefenbacher, C.; Hawkins, E.; Iversen, P.W.; Li, Y.; Lindstrom, T.D.; Marquart, A.L.; McLean, J.; Mendel, D.; Misener, E.; Briere, D.; O’Toole, J.C.; Porter, W.J.; Queener, S.; Reel, J.K.; Owens, R.A.; Brier, R.A.; Eessalu, T.E.; Wagner, J.R.; Campbell, R.M.; Vaughn, R. Substituted 3-imidazo[1,2-a]pyridin-3-yl- 4-(1,2,3,4-tetrahydro-[1,4]diazepino-[6,7,1-hi]indol-7-yl)pyrrole-2,5- diones as highly selective and potent inhibitors of glycogen synthase kinase-3. J. Med. Chem., 2004, 47(16), 3934-3937.
[http://dx.doi.org/10.1021/jm049768a] [PMID: 15267232]
[429]
Engler, T.A.; Malhotra, S.; Burkholder, T.P.; Henry, J.R.; Mendel, D.; Porter, W.J.; Furness, K.; Diefenbacher, C.; Marquart, A.; Reel, J.K.; Li, Y.; Clayton, J.; Cunningham, B.; McLean, J.; O’toole, J.C.; Brozinick, J.; Hawkins, E.; Misener, E.; Briere, D.; Brier, R.A.; Wagner, J.R.; Campbell, R.M.; Anderson, B.D.; Vaughn, R.; Bennett, D.B.; Meier, T.I.; Cook, J.A. The development of potent and selective bisarylmaleimide GSK3 inhibitors. Bioorg. Med. Chem. Lett., 2005, 15(4), 899-903.
[http://dx.doi.org/10.1016/j.bmcl.2004.12.063] [PMID: 15686883]
[430]
Kuo, G.H.; Prouty, C.; DeAngelis, A.; Shen, L.; O’Neill, D.J.; Shah, C.; Connolly, P.J.; Murray, W.V.; Conway, B.R.; Cheung, P.; Westover, L.; Xu, J.Z.; Look, R.A.; Demarest, K.T.; Emanuel, S.; Middleton, S.A.; Jolliffe, L.; Beavers, M.P.; Chen, X. Synthesis and discovery of macrocyclic polyoxygenated bis-7-azaindolylmaleimides as a novel series of potent and highly selective glycogen synthase kinase-3β inhibitors. J. Med. Chem., 2003, 46(19), 4021-4031.
[http://dx.doi.org/10.1021/jm030115o] [PMID: 12954055]
[431]
Bone, H.K.; Damiano, T.; Bartlett, S.; Perry, A.; Letchford, J.; Ripoll, Y.S.; Nelson, A.S.; Welham, M.J. Involvement of GSK-3 in regulation of murine embryonic stem cell self-renewal revealed by a series of bisindolylmaleimides. Chem. Biol., 2009, 16(1), 15-27.
[http://dx.doi.org/10.1016/j.chembiol.2008.11.003] [PMID: 19171302]
[432]
Liu, J.G.; Zhao, D.; Gong, Q.; Bao, F.; Chen, W.W.; Zhang, H.; Xu, M.H. Development of bisindole-substituted aminopyrazoles as novel GSK-3β inhibitors with suppressive effects against microglial inflammation and oxidative neurotoxicity. ACS Chem. Neurosci., 2020, 11(20), 3398-3408.
[http://dx.doi.org/10.1021/acschemneuro.0c00520] [PMID: 32960565]
[433]
Ye, Q.; Shen, Y.; Zhou, Y.; Lv, D.; Gao, J.; Li, J.; Hu, Y. Design, synthesis and evaluation of 7-azaindazolyl-indolyl-maleimides as glycogen synthase kinase-3β (GSK-3β) inhibitors. Eur. J. Med. Chem., 2013, 68, 361-371.
[http://dx.doi.org/10.1016/j.ejmech.2013.07.046] [PMID: 23994329]
[434]
Ye, Q.; Mao, W.; Zhou, Y.; Xu, L.; Li, Q.; Gao, Y.; Wang, J.; Li, C.; Xu, Y.; Xu, Y.; Liao, H.; Zhang, L.; Gao, J.; Li, J.; Pang, T. Synthesis and biological evaluation of 3-([1,2,4]triazolo[4,3-a]pyridin-3-yl)-4-(indol-3-yl)- maleimides as potent, selective GSK-3β inhibitors and neuroprotective agents. Bioorg. Med. Chem., 2015, 23(5), 1179-1188.
[http://dx.doi.org/10.1016/j.bmc.2014.12.026] [PMID: 25662701]
[435]
Gunosewoyo, H.; Midzak, A.; Gaisina, I.N.; Sabath, E.V.; Fedolak, A.; Hanania, T.; Brunner, D.; Papadopoulos, V.; Kozikowski, A.P. Characterization of maleimide-based glycogen synthase kinase-3 (GSK-3) inhibitors as stimulators of steroidogenesis. J. Med. Chem., 2013, 56(12), 5115-5129.
[http://dx.doi.org/10.1021/jm400511s] [PMID: 23725591]
[436]
Hu, K.; Patnaik, D.; Collier, T.L.; Lee, K.N.; Gao, H.; Swoyer, M.R.; Rotstein, B.H.; Krishnan, H.S.; Liang, S.H.; Wang, J.; Yan, Z.; Hooker, J.M.; Vasdev, N.; Haggarty, S.J.; Ngai, M.Y. Development of [18F]Maleimide-Based Glycogen Synthase Kinase-3β ligands for positron emission tomography imaging. ACS Med. Chem. Lett., 2017, 8(3), 287-292.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00405] [PMID: 28337318]
[437]
Monte, F.L.; Kramer, T.; Boländer, A.; Plotkin, B.; Eldar-Finkelman, H.; Fuertes, A.; Dominguez, J.; Schmidt, B. Synthesis and biological evaluation of glycogen synthase kinase 3 (GSK-3) inhibitors: an fast and atom efficient access to 1-aryl-3-benzylureas. Bioorg. Med. Chem. Lett., 2011, 21(18), 5610-5615.
[http://dx.doi.org/10.1016/j.bmcl.2011.06.131] [PMID: 21807510]
[438]
Venter, J.; Perez, C.; van Otterlo, W.A.L.; Martínez, A.; Blackie, M.A.L. 1-Aryl-3-(4-methoxybenzyl)ureas as potentially irreversible glycogen synthase kinase 3 inhibitors: Synthesis and biological evaluation. Bioorg. Med. Chem. Lett., 2019, 29(13), 1597-1600.
[http://dx.doi.org/10.1016/j.bmcl.2019.04.049] [PMID: 31054862]
[439]
Onishi, T.; Iwashita, H.; Uno, Y.; Kunitomo, J.; Saitoh, M.; Kimura, E.; Fujita, H.; Uchiyama, N.; Kori, M.; Takizawa, M. A novel glycogen synthase kinase-3 inhibitor 2-methyl-5-(3-{4-[(S)-methylsulfinyl]phenyl}-1-benzofuran-5-yl)-1,3,4-oxadiazole decreases tau phosphorylation and ameliorates cognitive deficits in a transgenic model of Alzheimer’s disease. J. Neurochem., 2011, 119(6), 1330-1340.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07532.x] [PMID: 21992552]
[440]
Tantray, M.A.; Khan, I.; Hamid, H.; Alam, M.S.; Dhulap, A.; Kalam, A. Synthesis of benzimidazole-based 1,3,4-oxadiazole-1,2,3-triazole conjugates as glycogen synthase kinase-3β inhibitors with antidepressant activity in: In vivo models. RSC Advances, 2016, 6(49), 43345-43355.
[http://dx.doi.org/10.1039/C6RA07273A]
[441]
Hu, S.; Ueda, M.; Stetson, L.; Ignatz-Hoover, J.; Moreton, S.; Chakrabarti, A.; Xia, Z.; Karan, G.; de Lima, M.; Agrawal, M.K.; Wald, D.N. A novel glycogen synthase kinase-3 inhibitor optimized for acute myeloid leukemia differentiation activity. Mol. Cancer Ther., 2016, 15(7), 1485-1494.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0566] [PMID: 27196775]
[442]
Koryakova, A.G.; Ivanenkov, Y.A.; Ryzhova, E.A.; Bulanova, E.A.; Karapetian, R.N.; Mikitas, O.V.; Katrukha, E.A.; Kazey, V.I.; Okun, I.; Kravchenko, D.V.; Lavrovsky, Y.V.; Korzinov, O.M.; Ivachtchenko, A.V. Novel aryl and heteroaryl substituted N-[3-(4-phenylpiperazin-1-yl)propyl]-1,2,4-oxadiazole-5-carboxamides as selective GSK-3 inhibitors. Bioorg. Med. Chem. Lett., 2008, 18(12), 3661-3666.
[http://dx.doi.org/10.1016/j.bmcl.2007.11.121] [PMID: 18502121]
[443]
Kohara, T.; Fukunaga, K.; Fujimura, M.; Hanano, T.; Okabe, H. Dihydropyrazolopyridine compounds and pharmaceutical use thereof. Patent WO02062795, 2002.
[444]
Kohara, T.; Fukunaga, K.; Hanano, T. Dihydropyrazolopyridine compounds. Patent WO2004014910, 2004.
[445]
Watanabe, K.; Uehara, F.; Hiki, S.; Kohara, T. 2-Morpholino-4-pyrimidone compound. Patent WO2006028290, 2006.
[446]
Griebel, G.; Stemmelin, J.; Lopez-Grancha, M.; Boulay, D.; Boquet, G.; Slowinski, F.; Pichat, P.; Beeské, S.; Tanaka, S.; Mori, A.; Fujimura, M.; Eguchi, J. The selective GSK3 inhibitor, SAR502250, displays neuroprotective activity and attenuates behavioral impairments in models of neuropsychiatric symptoms of Alzheimer’s disease in rodents. Sci. Rep., 2019, 9(1), 18045.
[http://dx.doi.org/10.1038/s41598-019-54557-5] [PMID: 31792284]
[447]
Usui, Y.; Uehara, F.; Hiki, S.; Watanabe, K.; Tanaka, H.; Shouda, A.; Yokoshima, S.; Aritomo, K.; Adachi, T.; Fukunaga, K.; Sunada, S.; Nabeno, M.; Saito, K.I.; Eguchi, J.I.; Yamagami, K.; Asano, S.; Tanaka, S.; Yuki, S.; Yoshii, N.; Fujimura, M.; Horikawa, T. Discovery of novel 2-(3-phenylpiperazin-1-yl)-pyrimidin-4-ones as glycogen synthase kinase-3β inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(16), 3726-3732.
[http://dx.doi.org/10.1016/j.bmcl.2017.06.078] [PMID: 28712708]
[448]
Kohara, T.; Nakayama, K.; Watanabe, K.; Kusaka, S.I.; Sakai, D.; Tanaka, H.; Fukunaga, K.; Sunada, S.; Nabeno, M.; Saito, K.I.; Eguchi, J.I.; Mori, A.; Tanaka, S.; Bessho, T.; Takiguchi-Hayashi, K.; Horikawa, T. Discovery of novel 2-(4-aryl-2-methylpiperazin-1-yl)-pyrimidin-4-ones as glycogen synthase kinase-3β inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(16), 3733-3738.
[http://dx.doi.org/10.1016/j.bmcl.2017.06.077] [PMID: 28712706]
[449]
Davies, M.P.; Benitez, R.; Perez, C.; Jakupovic, S.; Welsby, P.; Rzepecka, K.; Alder, J.; Davidson, C.; Martinez, A.; Hayes, J.M. Structure-based design of potent selective nanomolar type-II inhibitors of glycogen synthase kinase-3β. J. Med. Chem., 2021, 64(3), 1497-1509.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01568] [PMID: 33499592]
[450]
Chun, K.; Park, J.S.; Lee, H.C.; Kim, Y.H.; Ye, I.H.; Kim, K.J.; Ku, I.W.; Noh, M.Y.; Cho, G.W.; Kim, H.; Kim, S.H.; Kim, J. Synthesis and evaluation of 8-amino-[1,2,4]triazolo[4,3-a]pyridin-3(2H)-one derivatives as glycogen synthase kinase-3 (GSK-3) inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(13), 3983-3987.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.119] [PMID: 23683591]
[451]
Miyazaki, Y.; Maeda, Y.; Sato, H.; Nakano, M.; Mellor, G.W. Rational design of 4-amino-5,6-diaryl- furo[2,3-d]pyrimidines as potent glycogen synthase kinase-3 inhibitors. Bioorg. Med. Chem. Lett., 2008, 18(6), 1967-1971.
[http://dx.doi.org/10.1016/j.bmcl.2008.01.113] [PMID: 18280153]
[452]
Peat, A.J.; Garrido, D.; Boucheron, J.A.; Schweiker, S.L.; Dickerson, S.H.; Wilson, J.R.; Wang, T.Y.; Thomson, S.A. Novel GSK-3 inhibitors with improved cellular activity. Bioorg. Med. Chem. Lett., 2004, 14(9), 2127-2130.
[http://dx.doi.org/10.1016/j.bmcl.2004.02.037] [PMID: 15080993]
[453]
Ibrahim, N.; Mouawad, L.; Legraverend, M. Novel 8-arylated purines as inhibitors of glycogen synthase kinase. Eur. J. Med. Chem., 2010, 45(8), 3389-3393.
[http://dx.doi.org/10.1016/j.ejmech.2010.04.026] [PMID: 20472330]
[454]
Furlotti, G.; Alisi, M.A.; Cazzolla, N.; Dragone, P.; Durando, L.; Magarò, G.; Mancini, F.; Mangano, G.; Ombrato, R.; Vitiello, M.; Armirotti, A.; Capurro, V.; Lanfranco, M.; Ottonello, G.; Summa, M.; Reggiani, A. Hit optimization of 5-substituted-N-(piperidin-4-ylmethyl)-1H-indazole-3-carboxamides: potent glycogen Synthase Kinase-3 (GSK-3) inhibitors with in vivo activity in model of mood disorders. J. Med. Chem., 2015, 58(22), 8920-8937.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01208] [PMID: 26486317]
[455]
Andreev, S.; Pantsar, T.; El-Gokha, A.; Ansideri, F.; Kudolo, M.; Anton, D.B.; Sita, G.; Romasco, J.; Geibel, C.; Lämmerhofer, M.; Goettert, M.I.; Tarozzi, A.; Laufer, S.A.; Koch, P. Discovery and evaluation of enantiopure 9H-pyrimido[4,5-b]indoles as nanomolar GSK-3β inhibitors with improved metabolic stability. Int. J. Mol. Sci., 2020, 21(21), 1-42.
[http://dx.doi.org/10.3390/ijms21217823] [PMID: 33105671]
[456]
Khan, I.; Tantray, M.A.; Hamid, H.; Alam, M.S.; Kalam, A.; Dhulap, A. Synthesis of benzimidazole based thiadiazole and carbohydrazide conjugates as glycogen synthase kinase-3β inhibitors with anti-depressant activity. Bioorg. Med. Chem. Lett., 2016, 26(16), 4020-4024.
[http://dx.doi.org/10.1016/j.bmcl.2016.06.084] [PMID: 27406796]
[457]
Park, H.; Shin, Y.; Kim, J.; Hong, S. Application of fragment-based de novo design to the discovery of selective picomolar inhibitors of glycogen synthase kinase-3 beta. J. Med. Chem., 2016, 59(19), 9018-9034.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00944] [PMID: 27676184]
[458]
Kim, J.; Moon, Y.; Hong, S. Identification of lead small molecule inhibitors of glycogen synthase kinase-3 beta using a fragment-linking strategy. Bioorg. Med. Chem. Lett., 2016, 26(23), 5669-5673.
[http://dx.doi.org/10.1016/j.bmcl.2016.10.060] [PMID: 27815120]
[459]
Cociorva, O.M.; Li, B.; Nomanbhoy, T.; Li, Q.; Nakamura, A.; Nakamura, K.; Nomura, M.; Okada, K.; Seto, S.; Yumoto, K.; Liyanage, M.; Zhang, M.C.; Aban, A.; Leen, B.; Szardenings, A.K.; Rosenblum, J.S.; Kozarich, J.W.; Kohno, Y.; Shreder, K.R. Synthesis and structure-activity relationship of 4-quinolone-3-carboxylic acid based inhibitors of glycogen synthase kinase-3β. Bioorg. Med. Chem. Lett., 2011, 21(19), 5948-5951.
[http://dx.doi.org/10.1016/j.bmcl.2011.07.073] [PMID: 21873061]
[460]
Heider, F.; Ansideri, F.; Tesch, R.; Pantsar, T.; Haun, U.; Döring, E.; Kudolo, M.; Poso, A.; Albrecht, W.; Laufer, S.A.; Koch, P. Pyridinylimidazoles as dual glycogen synthase kinase 3β/p38α mitogen-activated protein kinase inhibitors. Eur. J. Med. Chem., 2019, 175, 309-329.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.035] [PMID: 31096153]
[461]
Hensley, K.; Floyd, R.A.; Zheng, N.Y.; Nael, R.; Robinson, K.A.; Nguyen, X.; Pye, Q.N.; Stewart, C.A.; Geddes, J.; Markesbery, W.R.; Patel, E.; Johnson, G.V.W.; Bing, G. p38 kinase is activated in the Alzheimer’s disease brain. J. Neurochem., 1999, 72(5), 2053-2058.
[http://dx.doi.org/10.1046/j.1471-4159.1999.0722053.x] [PMID: 10217284]
[462]
Maphis, N.; Jiang, S.; Xu, G.; Kokiko-Cochran, O.N.; Roy, S.M.; Van Eldik, L.J.; Watterson, D.M.; Lamb, B.T.; Bhaskar, K. Selective suppression of the α isoform of p38 MAPK rescues late-stage tau pathology. Alzheimers Res. Ther., 2016, 8(1), 54.
[http://dx.doi.org/10.1186/s13195-016-0221-y] [PMID: 27974048]
[463]
Heider, F.; Pantsar, T.; Kudolo, M.; Ansideri, F.; De Simone, A.; Pruccoli, L.; Schneider, T.; Goettert, M.I.; Tarozzi, A.; Andrisano, V.; Laufer, S.A.; Koch, P. Pyridinylimidazoles as GSK3β inhibitors: The impact of tautomerism on compound activity via water networks. ACS Med. Chem. Lett., 2019, 10(10), 1407-1414.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00177] [PMID: 31620226]
[464]
Ismail, M.I.; Mohamady, S.; Samir, N.; Abouzid, K.A.M. Design, synthesis, and biological evaluation of novel 7H-[1,2,4]Triazolo[3,4-b][1,3,4]thiadiazine inhibitors as antitumor agents. ACS Omega, 2020, 5(32), 20170-20186.
[http://dx.doi.org/10.1021/acsomega.0c01829] [PMID: 32832771]
[465]
Joshi, P.; Gupta, M.; Vishwakarma, R.A.; Kumar, A.; Bharate, S.B. (Z)-2-(3-Chlorobenzylidene)-3,4-dihydro-N-(2-methoxyethyl)-3-oxo-2H-benzo[b][1,4]oxazine-6-carboxamide as GSK-3β inhibitor: Identification by virtual screening and its validation in enzyme- and cell-based assay. Chem. Biol. Drug Des., 2017, 89(6), 964-971.
[http://dx.doi.org/10.1111/cbdd.12913] [PMID: 27896926]
[466]
Lassagne, F.; Duguépéroux, C.; Roca, C.; Perez, C.; Martinez, A.; Baratte, B.; Robert, T.; Ruchaud, S.; Bach, S.; Erb, W.; Roisnel, T.; Mongin, F. From simple quinoxalines to potent oxazolo[5,4-f]quinoxaline inhibitors of glycogen-synthase kinase 3 (GSK3). Org. Biomol. Chem., 2019, 18(1), 154-162.
[http://dx.doi.org/10.1039/C9OB02002K] [PMID: 31803883]
[467]
Liu, W.; Liu, X.; Tian, L.; Gao, Y.; Liu, W.; Chen, H.; Jiang, X.; Xu, Z.; Ding, H.; Zhao, Q. Design, synthesis and biological evaluation of harmine derivatives as potent GSK-3β/DYRK1A dual inhibitors for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2021, 222, 113554.
[http://dx.doi.org/10.1016/j.ejmech.2021.113554]
[468]
Anastassiadis, T.; Deacon, S.W.; Devarajan, K.; Ma, H.; Peterson, J.R. Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity. Nat. Biotechnol., 2011, 29(11), 1039-1045.
[http://dx.doi.org/10.1038/nbt.2017] [PMID: 22037377]
[469]
Bain, J.; Plater, L.; Elliott, M.; Shpiro, N.; Hastie, C.J.; McLauchlan, H.; Klevernic, I.; Arthur, J.S.C.; Alessi, D.R.; Cohen, P. The selectivity of protein kinase inhibitors: a further update. Biochem. J., 2007, 408(3), 297-315.
[http://dx.doi.org/10.1042/BJ20070797] [PMID: 17850214]
[470]
Maqbool, M.; Mobashir, M.; Hoda, N. Pivotal role of glycogen synthase kinase-3: A therapeutic target for Alzheimer’s disease. Eur. J. Med. Chem., 2016, 107, 63-81.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.018] [PMID: 26562543]
[471]
Palomo, V.; Soteras, I.; Perez, D.I.; Perez, C.; Gil, C.; Campillo, N.E.; Martinez, A. Exploring the binding sites of glycogen synthase kinase 3. Identification and characterization of allosteric modulation cavities. J. Med. Chem., 2011, 54(24), 8461-8470.
[http://dx.doi.org/10.1021/jm200996g] [PMID: 22050263]
[472]
Liu, Q.; Sabnis, Y.; Zhao, Z.; Zhang, T.; Buhrlage, S.J.; Jones, L.H.; Gray, N.S. Developing irreversible inhibitors of the protein kinase cysteinome. Chem. Biol., 2013, 20(2), 146-159.
[http://dx.doi.org/10.1016/j.chembiol.2012.12.006] [PMID: 23438744]
[473]
Rao, K.V.; Donia, M.S.; Peng, J.; Garcia-Palomero, E.; Alonso, D.; Martinez, A.; Medina, M.; Franzblau, S.G.; Tekwani, B.L.; Khan, S.I.; Wahyuono, S.; Willett, K.L.; Hamann, M.T. Manzamine B and E and ircinal A related alkaloids from an Indonesian Acanthostrongylophora sponge and their activity against infectious, tropical parasitic, and Alzheimer’s diseases. J. Nat. Prod., 2006, 69(7), 1034-1040.
[http://dx.doi.org/10.1021/np0601399] [PMID: 16872140]
[474]
Bidon-Chanal, A.; Fuertes, A.; Alonso, D.; Pérez, D.I.; Martínez, A.; Luque, F.J.; Medina, M. Evidence for a new binding mode to GSK-3: Allosteric regulation by the marine compound palinurin. Eur. J. Med. Chem., 2013, 60, 479-489.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.014] [PMID: 23354070]
[475]
Hamann, M.; Alonso, D.; Martín-Aparicio, E.; Fuertes, A.; Pérez-Puerto, M.J.; Castro, A.; Morales, S.; Navarro, M.L.; Del Monte-Millán, M.; Medina, M.; Pennaka, H.; Balaiah, A.; Peng, J.; Cook, J.; Wahyuono, S.; Martínez, A. Glycogen synthase kinase-3 (GSK-3) inhibitory activity and structure-activity relationship (SAR) studies of the manzamine alkaloids. Potential for Alzheimer’s disease. J. Nat. Prod., 2007, 70(9), 1397-1405.
[http://dx.doi.org/10.1021/np060092r] [PMID: 17708655]
[476]
Peng, J.; Kudrimoti, S.; Prasanna, S.; Odde, S.; Doerksen, R.J.; Pennaka, H.K.; Choo, Y.M.; Rao, K.V.; Tekwani, B.L.; Madgula, V.; Khan, S.I.; Wang, B.; Mayer, A.M.S.; Jacob, M.R.; Tu, L.C.; Gertsch, J.; Hamann, M.T. Structure-activity relationship and mechanism of action studies of manzamine analogues for the control of neuroinflammation and cerebral infections. J. Med. Chem., 2010, 53(1), 61-76.
[http://dx.doi.org/10.1021/jm900672t] [PMID: 20017491]
[477]
Martinez Gil, A.; Medina Padilla, M.; Alonso Cascon, M.; Fuertes Huerta, A.; Jose Perez Puerto, M.; Morera, A. C.; Aparicio, E. M. GSK-3 Inhibitors. US8686042, 2014.
[478]
Balasubramaniam, M.; Mainali, N.; Bowroju, S.K.; Atluri, P.; Penthala, N.R.; Ayyadevera, S.; Crooks, P.A.; Shmookler Reis, R.J. Structural modeling of GSK3β implicates the inactive (DFG-out) conformation as the target bound by TDZD analogs. Sci. Rep., 2020, 10(1), 1-13.
[http://dx.doi.org/10.1038/s41598-020-75020-w] [PMID: 31913322]
[479]
Koehler, D.; Shah, Z.A.; Williams, F.E. The GSK3β inhibitor, TDZD-8, rescues cognition in a zebrafish model of okadaic acid-induced Alzheimer’s disease. Neurochem. Int., 2019, 122(122), 31-37.
[http://dx.doi.org/10.1016/j.neuint.2018.10.022] [PMID: 30392874]
[480]
Cuzzocrea, S.; Genovese, T.; Mazzon, E.; Crisafulli, C.; Di Paola, R.; Muià, C.; Collin, M.; Esposito, E.; Bramanti, P.; Thiemermann, C. Glycogen synthase kinase-3 β inhibition reduces secondary damage in experimental spinal cord trauma. J. Pharmacol. Exp. Ther., 2006, 318(1), 79-89.
[http://dx.doi.org/10.1124/jpet.106.102863] [PMID: 16601144]
[481]
Lei, F.; He, W.; Tian, X.; Zhou, Q.; Zheng, L.; Kang, J.; Song, Y.; Feng, D. GSK-3 inhibitor promotes neuronal cell regeneration and functional recovery in a rat model of spinal cord injury. Biomed Res. Int., 2019, 2019, 9628065.
[482]
Cuzzocrea, S.; Mazzon, E.; Di Paola, R.; Muià, C.; Crisafulli, C.; Dugo, L.; Collin, M.; Britti, D.; Caputi, A.P.; Thiemermann, C. Glycogen synthase kinase-3β inhibition attenuates the degree of arthritis caused by type II collagen in the mouse. Clin. Immunol., 2006, 120(1), 57-67.
[http://dx.doi.org/10.1016/j.clim.2006.03.005] [PMID: 16631408]
[483]
Whittle, B.J.R.; Varga, C.; Pósa, A.; Molnár, A.; Collin, M.; Thiemermann, C. Reduction of experimental colitis in the rat by inhibitors of glycogen synthase kinase-3β. Br. J. Pharmacol., 2006, 147(5), 575-582.
[http://dx.doi.org/10.1038/sj.bjp.0706509] [PMID: 16314851]
[484]
Aguilar-Morante, D.; Morales-Garcia, J.A.; Sanz-SanCristobal, M.; Garcia-Cabezas, M.A.; Santos, A.; Perez-Castillo, A. Inhibition of glioblastoma growth by the thiadiazolidinone compound TDZD-8. PLoS One, 2010, 5(11), e13879.
[http://dx.doi.org/10.1371/journal.pone.0013879] [PMID: 21079728]
[485]
Zhu, Q.; Yang, J.; Han, S.; Liu, J.; Holzbeierlein, J.; Thrasher, J.B.; Li, B. Suppression of glycogen synthase kinase 3 activity reduces tumor growth of prostate cancer in vivo. Prostate, 2011, 71(8), 835-845.
[http://dx.doi.org/10.1002/pros.21300] [PMID: 21456066]
[486]
Noori, M.S.; Bhatt, P.M.; Courreges, M.C.; Ghazanfari, D.; Cuckler, C.; Orac, C.M.; McMills, M.C.; Schwartz, F.L.; Deosarkar, S.P.; Bergmeier, S.C.; McCall, K.D.; Goetz, D.J. Identification of a novel selective and potent inhibitor of glycogen synthase kinase-3. Am. J. Physiol. Cell Physiol., 2019, 317(6), C1289-C1303.
[http://dx.doi.org/10.1152/ajpcell.00061.2019] [PMID: 31553649]
[487]
Ghazanfari, D.; Noori, M.S.; Bergmeier, S.C.; Hines, J.V.; McCall, K.D.; Goetz, D.J. A novel GSK-3 inhibitor binds to GSK-3β via a reversible, time and Cys-199-dependent mechanism. Bioorg. Med. Chem., 2021, 40(March), 116179.
[http://dx.doi.org/10.1016/j.bmc.2021.116179] [PMID: 33991821]
[488]
Perez, D.I.; Conde, S.; Pérez, C.; Gil, C.; Simon, D.; Wandosell, F.; Moreno, F.J.; Gelpí, J.L.; Luque, F.J.; Martínez, A. Thienylhalomethylketones: Irreversible glycogen synthase kinase 3 inhibitors as useful pharmacological tools. Bioorg. Med. Chem., 2009, 17(19), 6914-6925.
[http://dx.doi.org/10.1016/j.bmc.2009.08.042] [PMID: 19747834]
[489]
Perez, D.I.; Palomo, V.; Pérez, C.; Gil, C.; Dans, P.D.; Luque, F.J.; Conde, S.; Martínez, A. Switching reversibility to irreversibility in glycogen synthase kinase 3 inhibitors: Clues for specific design of new compounds. J. Med. Chem., 2011, 54(12), 4042-4056.
[http://dx.doi.org/10.1021/jm1016279] [PMID: 21500862]
[490]
Yang, Z.; Liu, H.; Pan, B.; He, F.; Pan, Z. Design and synthesis of (aza)indolyl maleimide-based covalent inhibitors of glycogen synthase kinase 3β. Org. Biomol. Chem., 2018, 16(22), 4127-4140.
[http://dx.doi.org/10.1039/C8OB00642C] [PMID: 29781013]
[491]
Palomo, V.; Perez, D.I.; Roca, C.; Anderson, C.; Rodríguez-Muela, N.; Perez, C.; Morales-Garcia, J.A.; Reyes, J.A.; Campillo, N.E.; Perez-Castillo, A.M.; Rubin, L.L.; Timchenko, L.; Gil, C.; Martinez, A. Subtly Modulating Glycogen Synthase Kinase 3 β: allosteric inhibitor development and their potential for the treatment of chronic diseases. J. Med. Chem., 2017, 60(12), 4983-5001.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00395] [PMID: 28548834]
[492]
Martinez, A.; Perez, D.I.; Gil, C. Lessons learnt from glycogen synthase kinase 3 inhibitors development for Alzheimer’s disease. Curr. Top. Med. Chem., 2013, 13(15), 1808-1819.
[http://dx.doi.org/10.2174/15680266113139990138] [PMID: 23931441]
[493]
Zhang, P.; Li, S.; Gao, Y.; Lu, W.; Huang, K.; Ye, D.; Li, X.; Chu, Y. Novel benzothiazinones (BTOs) as allosteric modulator or substrate competitive inhibitor of glycogen synthase kinase 3β (GSK-3β) with cellular activity of promoting glucose uptake. Bioorg. Med. Chem. Lett., 2014, 24(24), 5639-5643.
[http://dx.doi.org/10.1016/j.bmcl.2014.10.078] [PMID: 25467150]
[494]
Licht-Murava, A.; Paz, R.; Vaks, L.; Avrahami, L.; Plotkin, B.; Eisenstein, M.; Eldar-Finkelman, H. A unique type of GSK-3 inhibitor brings new opportunities to the clinic. Sci. Signal., 2016, 9(454), ra110.
[http://dx.doi.org/10.1126/scisignal.aah7102] [PMID: 27902447]
[495]
Hedgepeth, C.M.; Deardorff, M.A.; Rankin, K.; Klein, P.S. Regulation of glycogen synthase kinase 3β and downstream Wnt signaling by axin. Mol. Cell. Biol., 1999, 19(10), 7147-7157.
[http://dx.doi.org/10.1128/MCB.19.10.7147] [PMID: 10490650]
[496]
Saundh, S.L.; Patnaik, D.; Gagné, S.; Bishop, J.A.; Lipsit, S.; Amat, S.; Pujari, N.; Nambisan, A.K.; Bigsby, R.; Murphy, M.; Tsai, L.H.; Haggarty, S.J.; Leung, A.K.W. Identification and mechanistic characterization of a peptide inhibitor of Glycogen Synthase Kinase (GSK3β) derived from the disrupted in schizophrenia 1 (DISC1) protein. ACS Chem. Neurosci., 2020, 11(24), 4128-4138.
[http://dx.doi.org/10.1021/acschemneuro.0c00380] [PMID: 33253521]
[497]
Pérez, D.I.; Pistolozzi, M.; Palomo, V.; Redondo, M.; Fortugno, C.; Gil, C.; Felix, G.; Martinez, A.; Bertucci, C. 5-Imino-1,2-4-thiadiazoles and quinazolines derivatives as glycogen synthase kinase 3β (GSK-3β) and phosphodiesterase 7 (PDE7) inhibitors: determination of blood-brain barrier penetration and binding to human serum albumin. Eur. J. Pharm. Sci., 2012, 45(5), 677-684.
[http://dx.doi.org/10.1016/j.ejps.2012.01.007] [PMID: 22306656]
[498]
Palomo, V.; Perez, D.I.; Perez, C.; Morales-Garcia, J.A.; Soteras, I.; Alonso-Gil, S.; Encinas, A.; Castro, A.; Campillo, N.E.; Perez-Castillo, A.; Gil, C.; Martinez, A. 5-imino-1,2,4-thiadiazoles: first small molecules as substrate competitive inhibitors of glycogen synthase kinase 3. J. Med. Chem., 2012, 55(4), 1645-1661.
[http://dx.doi.org/10.1021/jm201463v] [PMID: 22257026]
[499]
Tan, X.; Liang, Z.; Li, Y.; Zhi, Y.; Yi, L.; Bai, S.; Forest, K.H.; Nichols, R.A.; Dong, Y.; Li, Q.X. Isoorientin, a GSK-3β inhibitor, rescues synaptic dysfunction, spatial memory deficits and attenuates pathological progression in APP/PS1 model mice. Behav. Brain Res., 2020, 2021, 398.
[PMID: 33069740]
[500]
Ma, L.; Zhang, B.; Liu, J.; Qiao, C.; Liu, Y.; Li, S.; Lv, H. Isoorientin exerts a protective effect against 6-OHDA-induced neurotoxicity by activating the AMPK/AKT/Nrf2 signalling pathway. Food Funct., 2020, 11(12), 10774-10785.
[http://dx.doi.org/10.1039/D0FO02165B] [PMID: 33232417]
[501]
Liang, Z.; Li, Q.X. Discovery of selective, substrate-competitive, and passive membrane permeable glycogen synthase kinase-3β inhibitors: Synthesis, biological evaluation, and molecular modeling of new C-glycosylflavones. ACS Chem. Neurosci., 2018, 9(5), 1166-1183.
[http://dx.doi.org/10.1021/acschemneuro.8b00010] [PMID: 29381861]
[502]
Ilouz, R.; Kowalsman, N.; Eisenstein, M.; Eldar-Finkelman, H. Identification of novel glycogen synthase kinase-3β substrate-interacting residues suggests a common mechanism for substrate recognition. J. Biol. Chem., 2006, 281(41), 30621-30630.
[http://dx.doi.org/10.1074/jbc.M604633200] [PMID: 16893889]
[503]
Albertini, C.; Salerno, A.; de Sena Murteira Pinheiro, P.; Bolognesi, M.L. From combinations to multitarget-directed ligands: A continuum in Alzheimer’s disease polypharmacology. Med. Res. Rev., 2020, 41(5), 2606-2633.
[PMID: 32557696]
[504]
Jankowska, A.; Wesołowska, A.; Pawłowski, M.; Chłoń-Rzepa, G. Multifunctional ligands targeting phosphodiesterase as the future strategy for the symptomatic and disease-modifying treatment of Alzheimer’s disease. Curr. Med. Chem., 2020, 27(32), 5351-5373.
[http://dx.doi.org/10.2174/0929867326666190620095623] [PMID: 31250747]
[505]
León, R.; Garcia, A.G.; Marco-Contelles, J. Recent advances in the multitarget-directed ligands approach for the treatment of Alzheimer’s disease. Med. Res. Rev., 2013, 33(1), 139-189.
[http://dx.doi.org/10.1002/med.20248] [PMID: 21793014]
[506]
Pérez, D.I.; Martínez, A.; Gil, C.; Campillo, N.E. From bitopic inhibitors to multitarget drugs for the future treatment of Alzheimer’s disease. Curr. Med. Chem., 2015, 22(33), 3789-3806.
[http://dx.doi.org/10.2174/0929867322666150812145825] [PMID: 26264921]
[507]
Zagórska, A.; Jaromin, A. Perspectives for new and more efficient multifunctional ligands for Alzheimer’s disease therapy. Molecules, 2020, 25(15), 25.
[http://dx.doi.org/10.3390/molecules25153337] [PMID: 32717806]
[508]
Zhang, P.; Xu, S.; Zhu, Z.; Xu, J. Multi-target design strategies for the improved treatment of Alzheimer’s disease. European J. Med. Chem., 2019, 176, 228-247.
[509]
Reddy, P.H. Amyloid beta-induced glycogen synthase kinase 3β phosphorylated VDAC1 in Alzheimer’s disease: Implications for synaptic dysfunction and neuronal damage. Biochim. Biophys. Acta, 2013, 1832(12), 1913-1921.
[510]
Hooper, C.; Killick, R.; Lovestone, S. The GSK3 hypothesis of Alzheimer’s disease. J. Neurochem., 2008, 104(6), 1433-1439.
[http://dx.doi.org/10.1111/j.1471-4159.2007.05194.x] [PMID: 18088381]
[511]
Salcedo-Tello, P.; Ortiz-Matamoros, A.; Arias, C. GSK3 function in the brain during development, neuronal plasticity, and neurodegeneration. Int. J. Alzheimers Dis., 2011, 2011, 189728.
[http://dx.doi.org/10.4061/2011/189728] [PMID: 21660241]
[512]
De Simone, A.; Tumiatti, V.; Andrisano, V.; Milelli, A. Glycogen synthase kinase 3β: a new gold rush in anti-Alzheimer’s disease multitarget drug discovery? J. Med. Chem., 2021, 64(1), 26-41.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00931] [PMID: 33346659]
[513]
Rampa, A.; Gobbi, S.; Concetta Di Martino, R.M.; Belluti, F.; Bisi, A. Dual BACE-1/GSK-3β inhibitors to combat Alzheimer’s disease: A focused review. Curr. Top. Med. Chem., 2017, 17(31), 3361-3369.
[http://dx.doi.org/10.2174/1568026618666180112161406] [PMID: 29332582]
[514]
Studer, F.E.; Fedele, D.E.; Marowsky, A.; Schwerdel, C.; Wernli, K.; Vogt, K.; Fritschy, J.M.; Boison, D. Shift of adenosine kinase expression from neurons to astrocytes during postnatal development suggests dual functionality of the enzyme. Neuroscience, 2006, 142(1), 125-137.
[http://dx.doi.org/10.1016/j.neuroscience.2006.06.016] [PMID: 16859834]
[515]
Ning, C.; Wang, H.M.D.; Gao, R.; Chang, Y.C.; Hu, F.; Meng, X.; Huang, S.Y. Marine-derived protein kinase inhibitors for neuroinflammatory diseases. biomedical engineering online. BioMed Central, 2018, 46(17), 1-14.
[516]
Brogi, S.; Ramunno, A.; Savi, L.; Chemi, G.; Alfano, G.; Pecorelli, A.; Pambianchi, E.; Galatello, P.; Compagnoni, G.; Focher, F.; Biamonti, G.; Valacchi, G.; Butini, S.; Gemma, S.; Campiani, G.; Brindisi, M. First dual AK/GSK-3β inhibitors endowed with antioxidant properties as multifunctional, potential neuroprotective agents. Eur. J. Med. Chem., 2017, 138, 438-457.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.017] [PMID: 28689095]
[517]
Yang, S. shuang; Zhang, R.; Wang, G.; fang, F. The development prospection of HDAC inhibitors as a potential therapeutic direction in Alzheimer’s disease. Trans. Neurodegener Transl., 2018, 17, 46.
[518]
Rabal, O.; Sánchez-Arias, J.A.; Cuadrado-Tejedor, M.; de Miguel, I.; Pérez-González, M.; García-Barroso, C.; Ugarte, A.; Estella-Hermoso de Mendoza, A.; Sáez, E.; Espelosin, M.; Ursua, S.; Haizhong, T.; Wei, W.; Musheng, X.; Garcia-Osta, A.; Oyarzabal, J. Design, synthesis, biological evaluation and in vivo testing of dual phosphodiesterase 5 (PDE5) and histone deacetylase 6 (HDAC6)-selective inhibitors for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2018, 150, 506-524.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.005] [PMID: 29549837]
[519]
Kleandrova, V.V.; Speck-Planche, A. PTML modeling for alzheimer’s disease: design and prediction of virtual multi-target inhibitors of GSK3B, HDAC1, and HDAC6. Curr. Top. Med. Chem., 2020, 20(19), 1661-1676.
[http://dx.doi.org/10.2174/1568026620666200607190951] [PMID: 32515311]
[520]
De Simone, A.; La Pietra, V.; Betari, N.; Petragnani, N.; Conte, M.; Daniele, S.; Pietrobono, D.; Martini, C.; Petralla, S.; Casadei, R.; Davani, L.; Frabetti, F.; Russomanno, P.; Novellino, E.; Montanari, S.; Tumiatti, V.; Ballerini, P.; Sarno, F.; Nebbioso, A.; Altucci, L.; Monti, B.; Andrisano, V.; Milelli, A. Discovery of the first-in-class GSK-3β/HDAC dual inhibitor as disease-modifying agent to combat Alzheimer’s disease. ACS Med. Chem. Lett., 2019, 10(4), 469-474.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00507] [PMID: 30996781]
[521]
Jadhav, S.; Avila, J.; Schöll, M.; Kovacs, G.G.; Kövari, E.; Skrabana, R.; Evans, L.D.; Kontsekova, E.; Malawska, B.; de Silva, R.; Buee, L.; Zilka, N. A walk through tau therapeutic strategies. Acta Neuropathol. Commun., 2019, 7(1), 22.
[http://dx.doi.org/10.1186/s40478-019-0664-z] [PMID: 30767766]
[522]
Gandini, A.; Bartolini, M.; Tedesco, D.; Martinez-Gonzalez, L.; Roca, C.; Campillo, N.E.; Zaldivar-Diez, J.; Perez, C.; Zuccheri, G.; Miti, A.; Feoli, A.; Castellano, S.; Petralla, S.; Monti, B.; Rossi, M.; Moda, F.; Legname, G.; Martinez, A.; Bolognesi, M.L. Tau-centric multitarget approach for Alzheimer’s disease: Development of first-in- class dual glycogen synthase kinase 3β and tau-aggregation inhibitors. J. Med. Chem., 2018, 61(17), 7640-7656.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00610] [PMID: 30078314]
[523]
Bahn, G.; Jo, D.G. Therapeutic approaches to Alzheimer’s disease through modulation of NRF2. Neuro Mol. Med., 2019, 21(1), 1-11.
[524]
Tian, Y.; Wang, W.; Xu, L.; Li, H.; Wei, Y.; Wu, Q.; Jia, J. Activation of Nrf2/ARE pathway alleviates the cognitive deficits in PS1V97L-Tg mouse model of Alzheimer’s disease through modulation of oxidative stress. J. Neurosci. Res., 2019, 97(4), 492-505.
[http://dx.doi.org/10.1002/jnr.24357] [PMID: 30461032]
[525]
Kim, H.V.; Kim, H.Y.; Ehrlich, H.Y.; Choi, S.Y.; Kim, D.J.; Kim, Y. Amelioration of Alzheimer’s disease by neuroprotective effect of sulforaphane in animal model. Amyloid, 2013, 20(1), 7-12.
[http://dx.doi.org/10.3109/13506129.2012.751367] [PMID: 23253046]
[526]
Fischer, W.; Currais, A.; Liang, Z.; Pinto, A.; Maher, P. Old age-associated phenotypic screening for Alzheimer’s disease drug candidates identifies sterubin as a potent neuroprotective compound from yerba santa. Redox Biol., 2018, 2019, 21.
[PMID: 30594901]
[527]
Gameiro, I.; Michalska, P.; Tenti, G.; Cores, Á.; Buendia, I.; Rojo, A.I.; Georgakopoulos, N.D.; Hernández-Guijo, J.M.; Teresa Ramos, M.; Wells, G.; López, M.G.; Cuadrado, A.; Menéndez, J.C.; León, R. Discovery of the first dual GSK3β Inhibitor/Nrf2 Inducer. A new multitarget therapeutic strategy for Alzheimer’s disease. Sci. Rep., 2016, 2017(7), 1-15.
[528]
Di Martino, R.M.C.; Pruccoli, L.; Bisi, A.; Gobbi, S.; Rampa, A.; Martinez, A.; Pérez, C.; Martinez-Gonzalez, L.; Paglione, M.; Di Schiavi, E.; Seghetti, F.; Tarozzi, A.; Belluti, F. Novel curcumin-diethyl fumarate hybrid as a dualistic GSK-3β inhibitor/Nrf2 inducer for the treatment of parkinson’s disease. ACS Chem. Neurosci., 2020, 11(17), 2728-2740.
[http://dx.doi.org/10.1021/acschemneuro.0c00363] [PMID: 32663009]
[529]
Shi, X.L.; Wu, J.D.; Liu, P.; Liu, Z.P. Synthesis and evaluation of novel GSK-3β inhibitors as multifunctional agents against Alzheimer’s disease. Eur. J. Med. Chem., 2019, 167, 211-225.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.001] [PMID: 30772605]
[530]
Ding, Y.; Wang, X.; Ji, J.; Zhang, X.; Chen, M.; Li, S.; Zhang, Q.; Liu, P. ((E)-N-(4-(((2-Amino-5-phenylpyridin-3-yl)imino)methyl)pyridin-2-yl)cyclopropanecarboxamide) Ameliorated Aβ1-42-induced Alzheimer’s disease in SD rats by inhibiting oxidative stress and apoptosis. ACS Chem. Neurosci., 2021, 12(4), 640-650.
[http://dx.doi.org/10.1021/acschemneuro.0c00655] [PMID: 33517657]
[531]
Susín, C.; Morales-Garcia, J.A.; Aguilar-Morante, D.; Palomo, V.; Sanz-Sancristobal, M.; Alonso-Gil, S.; Gil, C.; Santos, A.; Martinez, A.; Perez-Castillo, A. The new iminothiadiazole derivative VP1.14 ameliorates hippocampal damage after an excitotoxic injury. J. Neurochem., 2012, 122(6), 1193-1202.
[http://dx.doi.org/10.1111/j.1471-4159.2012.07866.x] [PMID: 22774807]
[532]
Sekhar, D.; Shwetha, B.; Haimavathi, B.; Vikram, P. The effect of calcium channel blockers against scopolamine induced cognitive impairment and oxidative stress. Int. J. Basic Clin. Pharmacol., 2016, 5(5), 2199-2211.
[http://dx.doi.org/10.18203/2319-2003.ijbcp20163262]
[533]
Bisi, A.; Arribas, R.L.; Micucci, M.; Budriesi, R.; Feoli, A.; Castellano, S.; Belluti, F.; Gobbi, S.; de Los Rios, C.; Rampa, A. Polycyclic maleimide-based derivatives as first dual modulators of neuronal calcium channels and GSK-3β for Alzheimer’s disease treatment. Eur. J. Med. Chem., 2019, 163, 394-402.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.003] [PMID: 30530190]
[534]
Rådmark, O.; Werz, O.; Steinhilber, D.; Samuelsson, B. 5-Lipoxygenase: regulation of expression and enzyme activity. Trends Biochem. Sci., 2007, 32(7), 332-341.
[http://dx.doi.org/10.1016/j.tibs.2007.06.002] [PMID: 17576065]
[535]
Peters-Golden, M.; Henderson, W.R., Jr. Leukotrienes. N. Engl. J. Med., 2007, 357(18), 1841-1854.
[http://dx.doi.org/10.1056/NEJMra071371] [PMID: 17978293]
[536]
Di Gennaro, A.; Haeggström, J.Z. Targeting leukotriene B4 in inflammation. Expert Opin. Ther. Targets, 2014, 18(1), 79-93.
[http://dx.doi.org/10.1517/14728222.2013.843671] [PMID: 24090264]
[537]
Chen, W.W.; Zhang, X.; Huang, W.J. Role of neuroinflammation in neurodegenerative diseases (Review). Mol. Med. Rep., 2016, 13(4), 3391-3396.
[http://dx.doi.org/10.3892/mmr.2016.4948] [PMID: 26935478]
[538]
Pergola, C.; Gaboriaud-Kolar, N.; Jestädt, N.; König, S.; Kritsanida, M.; Schaible, A.M.; Li, H.; Garscha, U.; Weinigel, C.; Barz, D.; Albring, K.F.; Huber, O.; Skaltsounis, A.L.; Werz, O. Indirubin core structure of glycogen synthase kinase-3 inhibitors as novel chemotype for intervention with 5-lipoxygenase. J. Med. Chem., 2014, 57(9), 3715-3723.
[http://dx.doi.org/10.1021/jm401740w] [PMID: 24697244]
[539]
Panza, F.; Lozupone, M.; Solfrizzi, V.; Sardone, R.; Piccininni, C.; Dibello, V.; Stallone, R.; Giannelli, G.; Bellomo, A.; Greco, A.; Daniele, A.; Seripa, D.; Logroscino, G.; Imbimbo, B.P. BACE inhibitors in clinical development for the treatment of Alzheimer’s disease. Expert Rev. Neurother., 2018, 18(11), 847-857.
[540]
Prati, F.; De Simone, A.; Armirotti, A.; Summa, M.; Pizzirani, D.; Scarpelli, R.; Bertozzi, S.M.; Perez, D.I.; Andrisano, V.; Perez-Castillo, A.; Monti, B.; Massenzio, F.; Polito, L.; Racchi, M.; Sabatino, P.; Bottegoni, G.; Martinez, A.; Cavalli, A.; Bolognesi, M.L. 3,4-Dihydro-1,3,5-triazin-2(1H)-ones as the first dual BACE-1/GSK-3β fragment hits against Alzheimer’s disease. ACS Chem. Neurosci., 2015, 6(10), 1665-1682.
[http://dx.doi.org/10.1021/acschemneuro.5b00121] [PMID: 26171616]
[541]
Prati, F.; De Simone, A.; Bisignano, P.; Armirotti, A.; Summa, M.; Pizzirani, D.; Scarpelli, R.; Perez, D.I.; Andrisano, V.; Perez-Castillo, A.; Monti, B.; Massenzio, F.; Polito, L.; Racchi, M.; Favia, A.D.; Bottegoni, G.; Martinez, A.; Bolognesi, M.L.; Cavalli, A. Multitarget drug discovery for Alzheimer’s disease: Triazinones as BACE-1 and GSK-3β inhibitors. Angew. Chem., 2015, 127(5), 1598-1602.
[http://dx.doi.org/10.1002/ange.201410456]
[542]
Di Martino, R.M.C.; De Simone, A.; Andrisano, V.; Bisignano, P.; Bisi, A.; Gobbi, S.; Rampa, A.; Fato, R.; Bergamini, C.; Perez, D.I.; Martinez, A.; Bottegoni, G.; Cavalli, A.; Belluti, F. Versatility of the curcumin scaffold: discovery of potent and balanced dual BACE-1 and GSK-3β Inhibitors. J. Med. Chem., 2016, 59(2), 531-544.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00894] [PMID: 26696252]
[543]
Esquivias-Pérez, M.; Maalej, E.; Romero, A.; Chabchoub, F.; Samadi, A.; Marco-Contelles, J.; Oset-Gasque, M.J. Nontoxic and neuroprotective β-naphthotacrines for Alzheimer’s disease. Chem. Res. Toxicol., 2013, 26(6), 986-992.
[http://dx.doi.org/10.1021/tx400138s] [PMID: 23676090]
[544]
Inestrosa, N.C.; Dinamarca, M.C.; Alvarez, A. Amyloid- cholinesterase interactions. Implications for Alzheimer’s disease. FEBS J., 2008, 275(4), 625-632.
[http://dx.doi.org/10.1111/j.1742-4658.2007.06238.x] [PMID: 18205831]
[545]
Nitsch, R. M.; Slack, B. E.; Wurtman, R. J.; Growdon, J. H. Release of Alzheimer's amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. Science (80-.), 1992, 258(5080), 304-307.
[546]
Jiang, X.Y.; Chen, T.K.; Zhou, J.T.; He, S.Y.; Yang, H.Y.; Chen, Y.; Qu, W.; Feng, F.; Sun, H.P. Dual GSK-3β/AChE inhibitors as a new strategy for multitargeting anti-Alzheimer’s disease drug discovery. ACS Med. Chem. Lett., 2018, 9(3), 171-176.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00463] [PMID: 29541355]
[547]
Jiang, X.; Zhou, J.; Wang, Y.; Chen, L.; Duan, Y.; Huang, J.; Liu, C.; Chen, Y.; Liu, W.; Sun, H.; Feng, F.; Qu, W. Rational design and biological evaluation of a new class of thiazolopyridyl tetrahydroacridines as cholinesterase and GSK-3 dual inhibitors for Alzheimer’s disease. Eur. J. Med. Chem., 2020, 207, 112751.
[http://dx.doi.org/10.1016/j.ejmech.2020.112751] [PMID: 32950908]
[548]
Jiang, X.; Wang, Y.; Liu, C.; Xing, C.; Wang, Y.; Lyu, W.; Wang, S.; Li, Q.; Chen, T.; Chen, Y.; Feng, F.; Liu, W.; Sun, H. Discovery of potent glycogen synthase kinase 3/cholinesterase inhibitors with neuroprotection as potential therapeutic agent for Alzheimer’s disease. Bioorg. Med. Chem., 2021, 30(30), 115940.
[http://dx.doi.org/10.1016/j.bmc.2020.115940] [PMID: 33340937]
[549]
Oukoloff, K.; Coquelle, N.; Bartolini, M.; Naldi, M.; Le Guevel, R.; Bach, S.; Josselin, B.; Ruchaud, S.; Catto, M.; Pisani, L.; Denora, N.; Iacobazzi, R.M.; Silman, I.; Sussman, J.L.; Buron, F.; Colletier, J.P.; Jean, L.; Routier, S.; Renard, P.Y. Design, biological evaluation and X-ray crystallography of nanomolar multifunctional ligands targeting simultaneously acetylcholinesterase and glycogen synthase kinase-3. Eur. J. Med. Chem., 2019, 168, 58-77.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.063] [PMID: 30798053]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy