Generic placeholder image

Current Hypertension Reviews

Editor-in-Chief

ISSN (Print): 1573-4021
ISSN (Online): 1875-6506

Review Article

Hormone-Dependent Regulation of Renin and Effects on Prorenin Receptor Signaling in the Collecting Duct

Author(s): Lucienne S. Lara, Alexis A. Gonzalez, Matthew T. Hennrikus and Minolfa C. Prieto*

Volume 18, Issue 2, 2022

Published on: 29 September, 2022

Page: [91 - 100] Pages: 10

DOI: 10.2174/1573402118666220216105357

Price: $65

Abstract

The production of renin by the principal cells of the collecting duct has widened our understanding of the regulation of intrarenal angiotensin II (Ang II) generation and blood pressure. In the collecting duct, Ang II increases the synthesis and secretion of renin by mechanisms involving the activation of Ang II type 1 receptor (AT1R) via stimulation of the PKCα, Ca2+, and cAMP/PKA/CREB pathways. Additionally, paracrine mediators, including vasopressin (AVP), prostaglandins, bradykinin (BK), and atrial natriuretic peptide (ANP), regulate renin in principal cells. During Ang II-dependent hypertension, despite plasma renin activity suppression, renin and prorenin receptor (RPR) are upregulated in the collecting duct and promote de novo formation of intratubular Ang II. Furthermore, activation of PRR by its natural agonists, prorenin and renin, may contribute to the stimulation of profibrotic factors independent of Ang II. Thus, the interactions of RAS components with paracrine hormones within the collecting duct enable tubular compartmentalization of the RAS to orchestrate complex mechanisms that increase intrarenal Ang II, Na+ reabsorption, and blood pressure.

Keywords: Intrarenal angiotensin II, vasopressin, bradykinin, prostaglandins, protein kinase, nitric oxide.

Graphical Abstract
[1]
Wong MKS. Subchapter 29A - Renin.In: Handbook of Hormones. Academic Press 2016; p. 255-e29A-2.
[2]
Campbell DJ. The renin-angiotensin and the kallikrein-kinin systems. Int J Biochem Cell Biol 2003; 35(6): 784-91.
[http://dx.doi.org/10.1016/S1357-2725(02)00262-5] [PMID: 12676165]
[3]
Kurtz A. Control of renin synthesis and secretion. Am J Hypertens 2012; 25(8): 839-47.
[http://dx.doi.org/10.1038/ajh.2011.246] [PMID: 22237158]
[4]
Friis UG, Madsen K, Stubbe J, et al. Regulation of renin secretion by renal juxtaglomerular cells. Pflugers Arch 2013; 465(1): 25-37.
[http://dx.doi.org/10.1007/s00424-012-1126-7] [PMID: 22733355]
[5]
Schnermann J, Briggs JP. Synthesis and secretion of renin in mice with induced genetic mutations. Kidney Int 2012; 81(6): 529-38.
[http://dx.doi.org/10.1038/ki.2011.451] [PMID: 22258323]
[6]
Pratt RE, Flynn JA, Hobart PM, Paul M, Dzau VJ. Different secretory pathways of renin from mouse cells transfected with the human renin gene. J Biol Chem 1988; 263(7): 3137-41.
[http://dx.doi.org/10.1016/S0021-9258(18)69046-5] [PMID: 2893797]
[7]
Pratt RE, Carleton JE, Richie JP, Heusser C, Dzau VJ. Human renin biosynthesis and secretion in normal and ischemic kidneys. Proc Natl Acad Sci USA 1987; 84(22): 7837-40.
[http://dx.doi.org/10.1073/pnas.84.22.7837] [PMID: 3317396]
[8]
Yokosawa H, Holladay LA, Inagami T, Haas E, Murakami K. Human renal renin. Complete purification and characterization. J Biol Chem 1980; 255(8): 3498-502.
[http://dx.doi.org/10.1016/S0021-9258(19)85727-7] [PMID: 6767720]
[9]
Kirchheim HR, Finke R, Hackenthal E, Löwe W, Persson P. Baroreflex sympathetic activation increases threshold pressure for the pressure-dependent renin release in conscious dogs. Pflugers Arch 1985; 405(2): 127-35.
[http://dx.doi.org/10.1007/BF00584533] [PMID: 3903653]
[10]
Zschiedrich H, Hofbauer KG, Baron GD, Hackenthal E, Gross F. Relationship between perfusion pressure and renin release in the isolated rat kidney. Pflugers Arch 1975; 360(3): 255-66.
[http://dx.doi.org/10.1007/BF00583720] [PMID: 1237878]
[11]
Castrop H, Höcherl K, Kurtz A, Schweda F, Todorov V, Wagner C. Physiology of kidney renin. Physiol Rev 2010; 90(2): 607-73.
[http://dx.doi.org/10.1152/physrev.00011.2009] [PMID: 20393195]
[12]
Chen L, Kim SM, Oppermann M, et al. Regulation of renin in mice with Cre recombinase-mediated deletion of G protein Gsalpha in juxtaglomerular cells. Am J Physiol Renal Physiol 2007; 292(1): F27-37.
[http://dx.doi.org/10.1152/ajprenal.00193.2006] [PMID: 16822937]
[13]
DiBona GF. Neural control of the kidney: Functionally specific renal sympathetic nerve fibers. Am J Physiol Regul Integr Comp Physiol 2000; 279(5): R1517-24.
[http://dx.doi.org/10.1152/ajpregu.2000.279.5.R1517] [PMID: 11049831]
[14]
Persson PB. Renin: Origin, secretion and synthesis. J Physiol 2003; 552(Pt 3): 667-71.
[http://dx.doi.org/10.1113/jphysiol.2003.049890] [PMID: 12949225]
[15]
Kim SM, Briggs JP, Schnermann J. Convergence of major physiological stimuli for renin release on the Gs-alpha/cyclic adenosine monophosphate signaling pathway. Clin Exp Nephrol 2012; 16(1): 17-24.
[http://dx.doi.org/10.1007/s10157-011-0494-1] [PMID: 22124804]
[16]
Beierwaltes WH. The role of calcium in the regulation of renin secretion. Am J Physiol Renal Physiol 2010; 298(1): F1-F11.
[http://dx.doi.org/10.1152/ajprenal.00143.2009] [PMID: 19640903]
[17]
Skov J, Persson F, Frøkiær J, Christiansen JS. Tissue reninangiotensin systems: a unifying hypothesis of metabolic disease. front endocrinol (Lausanne) 2014; 5: 23.
[http://dx.doi.org/10.3389/fendo.2014.00023] [PMID: 24592256]
[18]
Nehme A, Cerutti C, Dhaouadi N, et al. Atlas of tissue renin-angiotensin-aldosterone system in human: A transcriptomic meta-analysis. Sci Rep 2015; 5(1): 10035.
[http://dx.doi.org/10.1038/srep10035] [PMID: 25992767]
[19]
Gonzalez-Villalobos R, Klassen RB, Allen PL, Navar LG, Hammond TG. Megalin binds and internalizes angiotensin II. Am J Physiol Renal Physiol 2005; 288(2): F420-7.
[http://dx.doi.org/10.1152/ajprenal.00243.2004] [PMID: 15467006]
[20]
Kobori H, Nishyama A, Harrison-Bernard LM, Navar LG. Urinary angiotensinogen as an indicator of intra-renal angiotensin status in hypertension. Hypertension 2003; 4: 41-9.
[21]
Nishiyama A, Seth DM, Navar LG. Angiotensin II type 1 receptor-mediated augmentation of renal interstitial fluid angiotensin II in angiotensin II-induced hypertension. J Hypertens 2003; 21(10): 1897-903.
[http://dx.doi.org/10.1097/00004872-200310000-00017] [PMID: 14508196]
[22]
Wang C-T, Navar LG, Mitchell KD. Proximal tubular fluid angiotensin II levels in angiotensin II-induced hypertensive rats. J Hypertens 2003; 21(2): 353-60.
[http://dx.doi.org/10.1097/00004872-200302000-00027] [PMID: 12569266]
[23]
Cervenka L, Wang C-T, Mitchell KD, Navar LG. Proximal tubular angiotensin II levels and renal functional responses to AT1 receptor blockade in nonclipped kidneys of Goldblatt hypertensive rats. Hypertension 1999; 33(1): 102-7.
[http://dx.doi.org/10.1161/01.HYP.33.1.102] [PMID: 9931089]
[24]
Mitchell KD, Jacinto SM, Mullins JJ. Proximal tubular fluid, kidney, and plasma levels of angiotensin II in hypertensive ren-2 transgenic rats. Am J Physiol 1997; 273(2 Pt 2): F246-53.
[PMID: 9277585]
[25]
Kobori H, Harrison-Bernard LM, Navar LG. Enhancement of angiotensinogen expression in angiotensin II-dependent hypertension. Hypertension 2001; 37(5): 1329-35.
[http://dx.doi.org/10.1161/01.HYP.37.5.1329] [PMID: 11358949]
[26]
Prieto MC, González-Villalobos RA, Botros FT, et al. Reciprocal changes in renal ACE/ANG II and ACE2/ANG 1-7 are associated with enhanced collecting duct renin in Goldblatt hypertensive rats. Am J Physiol Renal Physiol 2011; 300(3): F749-55.
[http://dx.doi.org/10.1152/ajprenal.00383.2009] [PMID: 21209009]
[27]
Prieto-Carrasquero MC, Botros FT, Kobori H, Navar LG. Collecting duct renin: A major player in angiotensin II-dependent hypertension. J Am Soc Hypertens 2009; 3(2): 96-104.
[http://dx.doi.org/10.1016/j.jash.2008.11.003] [PMID: 20046983]
[28]
Prieto MC, Reverte V, Mamenko M, et al. Collecting duct prorenin receptor knockout reduces renal function, increases sodium excretion, and mitigates renal responses in ANG II-induced hypertensive mice. Am J Physiol Renal Physiol 2017; 313(6): F1243-53.
[http://dx.doi.org/10.1152/ajprenal.00152.2017] [PMID: 28814438]
[29]
Patel VB, Zhong J-C, Grant MB, Oudit GY. Role of the ACE2/angiotensin 1-7 axis of the renin-angiotensin system in heart failure. Circ Res 2016; 118(8): 1313-26.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.307708] [PMID: 27081112]
[30]
Liu L, Gonzalez AA, McCormack M, et al. Increased renin excretion is associated with augmented urinary angiotensin II levels in chronic angiotensin II-infused hypertensive rats. Am J Physiol Renal Physiol 2011; 301(6): F1195-201.
[http://dx.doi.org/10.1152/ajprenal.00339.2011] [PMID: 21865264]
[31]
Ramkumar N, Stuart D, Rees S, Hoek AV, Sigmund CD, Kohan DE. Collecting duct-specific knockout of renin attenuates angiotensin II-induced hypertension. Am J Physiol Renal Physiol 2014; 307(8): F931-8.
[http://dx.doi.org/10.1152/ajprenal.00367.2014] [PMID: 25122048]
[32]
Ramkumar N, Ying J, Stuart D, Kohan DE. Overexpression of Renin in the collecting duct causes elevated blood pressure. Am J Hypertens 2013; 26(8): 965-72.
[http://dx.doi.org/10.1093/ajh/hpt071] [PMID: 23702969]
[33]
Prieto MC, Gonzalez AA, Visniauskas B, Navar LG. The evolving complexity of the collecting duct renin-angiotensin system in hypertension. Nat Rev Nephrol 2021; 17(7): 481-92.
[http://dx.doi.org/10.1038/s41581-021-00414-6] [PMID: 33824491]
[34]
Prieto-Carrasquero MC, Harrison-Bernard LM, Kobori H, et al. Enhancement of collecting duct renin in angiotensin II-dependent hypertensive rats. Hypertension 2004; 44(2): 223-9.
[http://dx.doi.org/10.1161/01.HYP.0000135678.20725.54] [PMID: 15226276]
[35]
Prieto-Carrasquero MC, Kobori H, Ozawa Y, Gutiérrez A, Seth D, Navar LG. AT1 receptor-mediated enhancement of collecting duct renin in angiotensin II-dependent hypertensive rats. Am J Physiol Renal Physiol 2005; 289(3): F632-7.
[http://dx.doi.org/10.1152/ajprenal.00462.2004] [PMID: 15870381]
[36]
Moe OW, Ujiie K, Star RA, et al. Renin expression in renal proximal tubule. J Clin Invest 1993; 91(3): 774-9.
[http://dx.doi.org/10.1172/JCI116296] [PMID: 7680667]
[37]
Rohrwasser A, Morgan T, Dillon HF, et al. Elements of a paracrine tubular renin-angiotensin system along the entire nephron. Hypertension 1999; 34(6): 1265-74.
[http://dx.doi.org/10.1161/01.HYP.34.6.1265] [PMID: 10601129]
[38]
Navar LG, Harrison-Bernard LM, Nishiyama A, Kobori H. Regulation of intrarenal angiotensin II in hypertension. Hypertension 2002; 39(2 Pt 2): 316-22.
[http://dx.doi.org/10.1161/hy0202.103821] [PMID: 11882566]
[39]
Shao W, Seth DM, Navar LG. Angiotensin II type 1 receptor-mediated augmentation of urinary excretion of endogenous angiotensin II in Val5-angiotensin II-infused rats. Hypertension 2010; 56(3): 378-83.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.110.153106] [PMID: 20625079]
[40]
Kobori H, Prieto-Carrasquero MC, Ozawa Y, Navar LG. AT1 receptor mediated augmentation of intrarenal angiotensinogen in angiotensin II-dependent hypertension. Hypertension 2004; 43(5): 1126-32.
[http://dx.doi.org/10.1161/01.HYP.0000122875.91100.28] [PMID: 15037565]
[41]
Gonzalez AA, Liu L, Lara LS, Seth DM, Navar LG, Prieto MC. Angiotensin II stimulates renin in inner medullary collecting duct cells via protein kinase C and independent of epithelial sodium channel and mineralocorticoid receptor activity. Hypertension 2011; 57(3): 594-9.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.110.165902] [PMID: 21282553]
[42]
Gonzalez AA, Liu L, Lara LS, et al. PKC-α-dependent augmentation of cAMP and CREB phosphorylation mediates the angiotensin II stimulation of renin in the collecting duct. Am J Physiol Renal Physiol 2015; 309(10): F880-8.
[http://dx.doi.org/10.1152/ajprenal.00155.2015] [PMID: 26268270]
[43]
Gonzalez AA, Cifuentes-Araneda F, Ibaceta-Gonzalez C, et al. Vasopressin/V2 receptor stimulates renin synthesis in the collecting duct. Am J Physiol Renal Physiol 2016; 310(4): F284-93.
[http://dx.doi.org/10.1152/ajprenal.00360.2015] [PMID: 26608789]
[44]
Rozengurt E, Murray M, Zachary I, Collins M. Protein kinase C activation enhances cAMP accumulation in Swiss 3T3 cells: Inhibition by pertussis toxin. Proc Natl Acad Sci USA 1987; 84(8): 2282-6.
[http://dx.doi.org/10.1073/pnas.84.8.2282] [PMID: 3031676]
[45]
Beazely MA, Watts VJ. Galphaq-coupled receptor signaling enhances adenylate cyclase type 6 activation. Biochem Pharmacol 2005; 70(1): 113-20.
[http://dx.doi.org/10.1016/j.bcp.2005.04.007] [PMID: 15885660]
[46]
Breyer MD, Jacobson HR, Breyer RM. Functional and molecular aspects of renal prostaglandin receptors. J Am Soc Nephrol 1996; 7(1): 8-17.
[http://dx.doi.org/10.1681/ASN.V718] [PMID: 8808104]
[47]
Breyer MD, Breyer RM. Prostaglandin E receptors and the kidney. Am J Physiol Renal Physiol 2000; 279(1): F12-23.
[http://dx.doi.org/10.1152/ajprenal.2000.279.1.F12] [PMID: 10894784]
[48]
Breyer MD, Breyer RM. Prostaglandin receptors: Their role in regulating renal function. Curr Opin Nephrol Hypertens 2000; 9(1): 23-9.
[http://dx.doi.org/10.1097/00041552-200001000-00005] [PMID: 10654821]
[49]
Gonzalez AA, Green T, Luffman C, Bourgeois CR, Gabriel Navar L, Prieto MC. Renal medullary cyclooxygenase-2 and (pro)renin receptor expression during angiotensin II-dependent hypertension. Am J Physiol Renal Physiol 2014; 307(8): F962-70.
[http://dx.doi.org/10.1152/ajprenal.00267.2014] [PMID: 25143455]
[50]
Pandey KN. Biology of natriuretic peptides and their receptors. Peptides 2005; 26(6): 901-32.
[http://dx.doi.org/10.1016/j.peptides.2004.09.024] [PMID: 15911062]
[51]
de Bold AJ. Atrial natriuretic factor: A hormone produced by the heart. Science 1985; 230(4727): 767-70.
[http://dx.doi.org/10.1126/science.2932797] [PMID: 2932797]
[52]
Levin ER, Gardner DG, Samson WK. Natriuretic peptides. N Engl J Med 1998; 339(5): 321-8.
[http://dx.doi.org/10.1056/NEJM199807303390507] [PMID: 9682046]
[53]
Shi SJ, Nguyen HT, Sharma GD, Navar LG, Pandey KN. Genetic disruption of atrial natriuretic peptide receptor-A alters renin and angiotensin II levels. Am J Physiol Renal Physiol 2001; 281(4): F665-73.
[http://dx.doi.org/10.1152/ajprenal.2001.281.4.F665] [PMID: 11553513]
[54]
Dubois SK, Kishimoto I, Lillis TO, Garbers DL. A genetic model defines the importance of the atrial natriuretic peptide receptor (guanylyl cyclase-A) in the regulation of kidney function. Proc Natl Acad Sci USA 2000; 97(8): 4369-73.
[http://dx.doi.org/10.1073/pnas.97.8.4369] [PMID: 10760303]
[55]
Pandey KN. The functional genomics of guanylyl cyclase/natriuretic peptide receptor-A: Perspectives and paradigms. FEBS J 2011; 278(11): 1792-807.
[http://dx.doi.org/10.1111/j.1742-4658.2011.08081.x] [PMID: 21375691]
[56]
Galet C, Min L, Narayanan R, Kishi M, Weigel NL, Ascoli M. Identification of a transferable two-amino-acid motif (GT) present in the C-terminal tail of the human lutropin receptor that redirects internalized G protein-coupled receptors from a degradation to a recycling pathway. Mol Endocrinol 2003; 17(3): 411-22.
[http://dx.doi.org/10.1210/me.2002-0161] [PMID: 12554787]
[57]
Prieto MC, Das S, Somanna NK, Harrison-Bernard LM, Navar LG, Pandey KN. Disruption of Npr1 gene differentially regulates the juxtaglomerular and distal tubular renin levels in null mutant mice. Int J Physiol Pathophysiol Pharmacol 2012; 4(3): 128-39.
[PMID: 23071870]
[58]
Lara LS, Bourgeois CR, El-Dahr SS, Prieto MC. Bradykinin/B2 receptor activation regulates renin in M-1 cells via protein kinase C and nitric oxide. Physiol Rep 2017; 5(7): e13211.
[http://dx.doi.org/10.14814/phy2.13211] [PMID: 28373410]
[59]
Danser AH. The role of the (pro)renin receptor in hypertensive disease. Am J Hypertens 2015; 28(10): 1187-96.
[http://dx.doi.org/10.1093/ajh/hpv045] [PMID: 25890829]
[60]
Nguyen G, Delarue F, Burcklé C, Bouzhir L, Giller T, Sraer J-D. Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Invest 2002; 109(11): 1417-27.
[http://dx.doi.org/10.1172/JCI0214276] [PMID: 12045255]
[61]
Nguyen G. Renin, (pro)renin and receptor: An update. Clin Sci (Lond) 2011; 120(5): 169-78.
[http://dx.doi.org/10.1042/CS20100432] [PMID: 21087212]
[62]
Nguyen G, Muller DN. The biology of the (pro)renin receptor. J Am Soc Nephrol 2010; 21(1): 18-23.
[http://dx.doi.org/10.1681/ASN.2009030300] [PMID: 19917780]
[63]
Yoshikawa A, Aizaki Y, Kusano K, et al. The (pro)renin receptor is cleaved by ADAM19 in the Golgi leading to its secretion into extracellular space. Hypertens Res 2011; 34(5): 599-605.
[http://dx.doi.org/10.1038/hr.2010.284] [PMID: 21270819]
[64]
Nakagawa T, Suzuki-Nakagawa C, Watanabe A, et al. Site-1 protease is required for the generation of soluble (pro)renin receptor. J Biochem 2017; 161(4): 369-79.
[http://dx.doi.org/10.1093/jb/mvw080] [PMID: 28013223]
[65]
Fang H, Xu C, Lu A, et al. (Pro)renin receptor mediates albumin-induced cellular responses: Role of site-1 protease-derived soluble (pro)renin receptor in renal epithelial cells. Am J Physiol Cell Physiol 2017; 313(6): C632-43.
[http://dx.doi.org/10.1152/ajpcell.00006.2017] [PMID: 28903918]
[66]
Nguyen G, Delarue F, Berrou J, Rondeau E, Sraer JD. Specific receptor binding of renin on human mesangial cells in culture increases plasminogen activator inhibitor-1 antigen. Kidney Int 1996; 50(6): 1897-903.
[http://dx.doi.org/10.1038/ki.1996.511] [PMID: 8943472]
[67]
Batenburg WW, Krop M, Garrelds IM, et al. Prorenin is the endogenous agonist of the (pro)renin receptor. Binding kinetics of renin and prorenin in rat vascular smooth muscle cells overexpressing the human (pro)renin receptor. J Hypertens 2007; 25(12): 2441-53.
[http://dx.doi.org/10.1097/HJH.0b013e3282f05bae] [PMID: 17984666]
[68]
Batenburg WW, Danser AJ. Prorenin and the (pro)renin receptor: Binding kinetics, signalling and interaction with aliskiren. J Renin Angiotensin Aldosterone Syst 2008; 9(3): 181-4.
[http://dx.doi.org/10.1177/1470320308097674] [PMID: 18957390]
[69]
Tang J, Wysocki J, Ye M, et al. Urinary renin in patients and mice with diabetic kidney disease. Hypertension 2019; 74(1): 83-94.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.119.12873] [PMID: 31079532]
[70]
Kang JJ, Toma I, Sipos A, Meer EJ, Vargas SL, Peti-Peterdi J. The collecting duct is the major source of prorenin in diabetes. Hypertension 2008; 51(6): 1597-604.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.107.107268] [PMID: 18413493]
[71]
Nguyen G. Renin and prorenin receptor in hypertension: What’s new? Curr Hypertens Rep 2011; 13(1): 79-85.
[http://dx.doi.org/10.1007/s11906-010-0172-9] [PMID: 21125352]
[72]
Gonzalez AA, Lara LS, Luffman C, Seth DM, Prieto MC. Soluble form of the (pro)renin receptor is augmented in the collecting duct and urine of chronic angiotensin II-dependent hypertensive rats. Hypertension 2011; 57(4): 859-64.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.110.167957] [PMID: 21321306]
[73]
Cuevas CA, Gonzalez AA, Inestrosa NC, Vio CP, Prieto MC. Angiotensin II increases fibronectin and collagen I through the β-catenin-dependent signaling in mouse collecting duct cells. Am J Physiol Renal Physiol 2015; 308(4): F358-65.
[http://dx.doi.org/10.1152/ajprenal.00429.2014] [PMID: 25411386]
[74]
Moilanen AM, Rysä J, Serpi R, et al. (Pro)renin receptor triggers distinct angiotensin II-independent extracellular matrix remodeling and deterioration of cardiac function. PLoS One 2012; 7(7): e41404.
[http://dx.doi.org/10.1371/journal.pone.0041404] [PMID: 22911790]
[75]
Gonzalez AA, Zamora L, Reyes-Martinez C, et al. (Pro)renin receptor activation increases profibrotic markers and fibroblast-like phenotype through MAPK-dependent ROS formation in mouse renal collecting duct cells. Clin Exp Pharmacol Physiol 2017; 44(11): 1134-44.
[http://dx.doi.org/10.1111/1440-1681.12813] [PMID: 28696542]
[76]
Suzuki F, Hayakawa M, Nakagawa T, et al. Human prorenin has “gate and handle” regions for its non-proteolytic activation. J Biol Chem 2003; 278(25): 22217-22.
[http://dx.doi.org/10.1074/jbc.M302579200] [PMID: 12684512]
[77]
Nurun NA, Uddin NM, Nakagawa T, et al. Role of “handle” region of prorenin prosegment in the non-proteolytic activation of prorenin by binding to membrane anchored (pro)renin receptor. Front Biosci 2007; 12(12): 4810-7.
[http://dx.doi.org/10.2741/2429] [PMID: 17569611]
[78]
Li W, Sullivan MN, Zhang S, et al. Intracerebroventricular infusion of the (Pro)renin receptor antagonist PRO20 attenuates deoxycorticosterone acetate-salt-induced hypertension. Hypertension 2015; 65(2): 352-61.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.114.04458] [PMID: 25421983]
[79]
Nabi AH, Suzuki F. Biochemical properties of renin and prorenin binding to the (pro)renin receptor. Hypertens Res 2010; 33(2): 91-7.
[http://dx.doi.org/10.1038/hr.2009.201] [PMID: 19942927]
[80]
Ichihara A, Kaneshiro Y, Takemitsu T, et al. Contribution of nonproteolytically activated prorenin in glomeruli to hypertensive renal damage. J Am Soc Nephrol 2006; 17(9): 2495-503.
[http://dx.doi.org/10.1681/ASN.2005121278] [PMID: 16885412]
[81]
Muller DN, Klanke B, Feldt S, et al. (Pro)renin receptor peptide inhibitor “handle-region” peptide does not affect hypertensive nephrosclerosis in Goldblatt rats. Hypertension 2008; 51(3): 676-81.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.107.101493] [PMID: 18212268]
[82]
Lu X, Wang F, Liu M, et al. Activation of ENaC in collecting duct cells by prorenin and its receptor PRR: Involvement of Nox4-derived hydrogen peroxide. Am J Physiol Renal Physiol 2016; 310(11): F1243-50.
[http://dx.doi.org/10.1152/ajprenal.00492.2015] [PMID: 26697985]
[83]
Ramkumar N, Stuart D, Calquin M, et al. Nephron-specific deletion of the prorenin receptor causes a urine concentration defect. Am J Physiol Renal Physiol 2015; 309(1): F48-56.
[http://dx.doi.org/10.1152/ajprenal.00126.2015] [PMID: 25995108]
[84]
Ramkumar N, Stuart D, Mironova E, et al. Collecting duct principal, but not intercalated, cell prorenin receptor regulates renal sodium and water excretion. Am J Physiol Renal Physiol 2018; 315(3): F607-17.
[http://dx.doi.org/10.1152/ajprenal.00122.2018] [PMID: 29790390]
[85]
Kaneshiro Y, Ichihara A, Sakoda M, et al. Slowly progressive, angiotensin II-independent glomerulosclerosis in human (pro)renin receptor-transgenic rats. J Am Soc Nephrol 2007; 18(6): 1789-95.
[http://dx.doi.org/10.1681/ASN.2006091062] [PMID: 17494887]
[86]
Cervenka L, Vanecková I, Husková Z, et al. Pivotal role of angiotensin II receptor subtype 1A in the development of two-kidney, one-clip hypertension: Study in angiotensin II receptor subtype 1A knockout mice. J Hypertens 2008; 26(7): 1379-89.
[http://dx.doi.org/10.1097/HJH.0b013e3282fe6eaa] [PMID: 18551014]
[87]
Prieto MC, Williams DE, Liu L, Kavanagh KL, Mullins JJ, Mitchell KD. Enhancement of renin and prorenin receptor in collecting duct of Cyp1a1-Ren2 rats may contribute to development and progression of malignant hypertension. Am J Physiol Renal Physiol 2011; 300(2): F581-8.
[http://dx.doi.org/10.1152/ajprenal.00433.2010] [PMID: 21068087]
[88]
Gonzalez AA, Prieto MC. Renin and the (pro)renin receptor in the renal collecting duct: Role in the pathogenesis of hypertension. Clin Exp Pharmacol Physiol 2015; 42(1): 14-21.
[http://dx.doi.org/10.1111/1440-1681.12319] [PMID: 25371190]
[89]
Clavreul N, Sansilvestri-Morel P, Magard D, Verbeuren TJ, Rupin A. (Pro)renin promotes fibrosis gene expression in HEK cells through a Nox4-dependent mechanism. Am J Physiol Renal Physiol 2011; 300(6): F1310-8.
[http://dx.doi.org/10.1152/ajprenal.00119.2010] [PMID: 21411480]
[90]
Reyes-Martinez C, Nguyen QM, Kassan M, Gonzalez AA. (Pro)renin Receptor-dependent induction of profibrotic factors is mediated by COX-2/EP4/NOX-4/smad pathway in collecting duct cells. Front Pharmacol 2019; 10: 803.
[http://dx.doi.org/10.3389/fphar.2019.00803] [PMID: 31396082]
[91]
Zhou G, Wu J, Gu C, et al. Prorenin independently causes hypertension and renal and cardiac fibrosis in cyp1a1-prorenin transgenic rats. Clin Sci (Lond) 2018; 132(12): 1345-63.
[http://dx.doi.org/10.1042/CS20171659] [PMID: 29848510]
[92]
Wang F, Luo R, Peng K, et al. Soluble (pro)renin receptor regulation of ENaC involved in aldosterone signaling in cultured collecting duct cells. Am J Physiol Renal Physiol 2020; 318(3): F817-25.
[http://dx.doi.org/10.1152/ajprenal.00436.2019] [PMID: 31841392]
[93]
Akhtar S, Siragy HM. Pro-renin receptor suppresses mitochondrial biogenesis and function via AMPK/SIRT-1/PGC-1α pathway in diabetic kidney. PLoS One 2019; 14(12): e0225728.
[http://dx.doi.org/10.1371/journal.pone.0225728] [PMID: 31800607]
[94]
Huang J, Siragy HM. Glucose promotes the production of interleukine-1β and cyclooxygenase-2 in mesangial cells via enhanced (Pro)renin receptor expression. Endocrinology 2009; 150(12): 5557-65.
[http://dx.doi.org/10.1210/en.2009-0442] [PMID: 19861503]
[95]
Ichihara A, Yatabe MS. The (pro)renin receptor in health and disease. Nat Rev Nephrol 2019; 15(11): 693-712.
[http://dx.doi.org/10.1038/s41581-019-0160-5] [PMID: 31164719]
[96]
Prieto MC, Gonzalez AA, Navar LG. Evolving concepts on regulation and function of renin in distal nephron. Pflugers Arch 2013; 465(1): 121-32.
[http://dx.doi.org/10.1007/s00424-012-1151-6] [PMID: 22990760]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy