Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Perspective

Drug Repurposing for Cancer Therapy in the Era of Precision Medicine

Author(s): Kenneth K.W. To* and William C.S. Cho*

Volume 15, Issue 7, 2022

Published on: 10 May, 2022

Article ID: e140222201099 Pages: 9

DOI: 10.2174/1874467215666220214104530

conference banner
Abstract

Drug repurposing refers to the identification of clinically approved drugs with the known safety profiles and defined pharmacokinetic properties for new indications. Despite the advances in oncology research, cancers are still associated with the most unmet medical needs. Drug repurposing has emerged as a useful approach for the search for effective and durable cancer treatment. It may also represent a promising strategy to facilitate precision cancer treatment and overcome drug resistance. The repurposing of non-cancer drugs for precision oncology effectively extends the inventory of actionable molecular targets and thus increases the number of patients who may benefit from precision cancer treatment. In cancer types where genetic heterogeneity is so high that it is not feasible to identify strong repurposed drug candidates for standard treatment, the precision oncology approach offers individual patients access to novel treatment options. For repurposed candidates with low potency, a combination of multiple repurposed drugs may produce a synergistic therapeutic effect. Precautions should be taken when combining repurposed drugs with anticancer agents to avoid detrimental drug-drug interactions and unwanted side effects. New multifactorial data analysis and artificial intelligence methods are needed to untangle the complex association of molecular signatures influencing specific cancer subtypes to facilitate drug repurposing in precision oncology.

Keywords: Drug repurposing, drug resistance, precision oncology, rare cancer, synergistic drug combination.

Graphical Abstract
[1]
Moreno, L.; Pearson, A.D. How can attrition rates be reduced in cancer drug discovery? Expert Opin. Drug Discov., 2013, 8(4), 363-368.
[http://dx.doi.org/10.1517/17460441.2013.768984] [PMID: 23373702]
[2]
Zhang, Z.; Zhou, L.; Xie, N.; Nice, E.C.; Zhang, T.; Cui, Y.; Huang, C. Overcoming cancer therapeutic bottleneck by drug repurposing. Signal Transduct. Target. Ther., 2020, 5(1), 113.
[http://dx.doi.org/10.1038/s41392-020-00213-8] [PMID: 32616710]
[3]
Nowak-Sliwinska, P.; Scapozza, L.; Ruizi, A.A. Drug repurposing in oncology: Compounds, pathways, phenotypes and computational approaches for colorectal cancer. Biochim. Biophys. Acta Rev. Cancer, 2019, 1871(2), 434-454.
[http://dx.doi.org/10.1016/j.bbcan.2019.04.005] [PMID: 31034926]
[4]
Nosengo, N. Can you teach old drugs new tricks? Nature, 2016, 534(7607), 314-316.
[http://dx.doi.org/10.1038/534314a] [PMID: 27306171]
[5]
Hernandez, J.J.; Pryszlak, M.; Smith, L.; Yanchus, C.; Kurji, N.; Shahani, V.M.; Molinski, S.V. Giving drugs a second chance: Overcoming regulatory and financial hurdles in repurposing approved drugs as cancer therapeutics. Front. Oncol., 2017, 7, 273.
[http://dx.doi.org/10.3389/fonc.2017.00273] [PMID: 29184849]
[6]
Jain, P.; Jain, S.K.; Jain, M. Harnessing drug repurposing for exploration of new diseases: An insight to strategies and case studies. Curr. Mol. Med., 2021, 21(2), 111-132.
[http://dx.doi.org/10.2174/1566524020666200619125404] [PMID: 32560606]
[7]
Nagaraj, A.B.; Wang, Q.Q.; Joseph, P.; Zheng, C.; Chen, Y.; Kovalenko, O.; Singh, S.; Armstrong, A.; Resnick, K.; Zanotti, K.; Waggoner, S.; Xu, R.; DiFeo, A. Using a novel computational drug-repositioning approach (DrugPredict) to rapidly identify potent drug candidates for cancer treatment. Oncogene, 2018, 37(3), 403-414.
[http://dx.doi.org/10.1038/onc.2017.328] [PMID: 28967908]
[8]
Rose, P.W.; Prlić, A.; Altunkaya, A.; Bi, C.; Bradley, A.R.; Christie, C.H.; Costanzo, L.D.; Duarte, J.M.; Dutta, S.; Feng, Z.; Green, R.K.; Goodsell, D.S.; Hudson, B.; Kalro, T.; Lowe, R.; Peisach, E.; Randle, C.; Rose, A.S.; Shao, C.; Tao, Y.P.; Valasatava, Y.; Voigt, M.; Westbrook, J.D.; Woo, J.; Yang, H.; Young, J.Y.; Zardecki, C.; Berman, H.M.; Burley, S.K. The RCSB protein data bank: Integrative view of protein, gene and 3D structural information. Nucleic Acids Res., 2017, 45(D1), D271-D281.
[PMID: 27794042]
[9]
Konc, J.; Janezic, D. ProBiS-ligands: A web server for prediction of ligands by examination of protein binding sites. Nucleic Acids Res., 2014, 42(Web Server issue), W215-W220.
[http://dx.doi.org/ 10.1093/nar/gku460]
[10]
Salentin, S.; Schreiber, S.; Haupt, V.J.; Adasme, M.F.; Schroeder, M. PLIP: Fully automated protein-ligand interaction profiler. Nucleic Acids Res., 2015, 43(W1), W443-7.
[http://dx.doi.org/10.1093/nar/gkv315] [PMID: 25873628]
[11]
Lamb, J.; Crawford, E.D.; Peck, D.; Modell, J.W.; Blat, I.C.; Wrobel, M.J.; Lerner, J.; Brunet, J.P.; Subramanian, A.; Ross, K.N.; Reich, M.; Hieronymus, H.; Wei, G.; Armstrong, S.A.; Haggarty, S.J.; Clemons, P.A.; Wei, R.; Carr, S.A.; Lander, E.S.; Golub, T.R. The connectivity map: Using gene-expression signatures to connect small molecules, genes, and disease. Science, 2006, 313(5795), 1929-1935.
[http://dx.doi.org/10.1126/science.1132939] [PMID: 17008526]
[12]
Keenan, A.B.; Jenkins, S.L.; Jagodnik, K.M.; Koplev, S.; He, E.; Torre, D.; Wang, Z.; Dohlman, A.B.; Silverstein, M.C.; Lachmann, A.; Kuleshov, M.V.; Ma’ayan, A.; Stathias, V.; Terryn, R.; Cooper, D.; Forlin, M.; Koleti, A.; Vidovic, D.; Chung, C.; Schürer, S.C.; Vasiliauskas, J.; Pilarczyk, M.; Shamsaei, B.; Fazel, M.; Ren, Y.; Niu, W.; Clark, N.A.; White, S.; Mahi, N.; Zhang, L.; Kouril, M.; Reichard, J.F.; Sivaganesan, S.; Medvedovic, M.; Meller, J.; Koch, R.J.; Birtwistle, M.R.; Iyengar, R.; Sobie, E.A.; Azeloglu, E.U.; Kaye, J.; Osterloh, J.; Haston, K.; Kalra, J.; Finkbiener, S.; Li, J.; Milani, P.; Adam, M.; Escalante-Chong, R.; Sachs, K.; Lenail, A.; Ramamoorthy, D.; Fraenkel, E.; Daigle, G.; Hussain, U.; Coye, A.; Rothstein, J.; Sareen, D.; Ornelas, L.; Banuelos, M.; Mandefro, B.; Ho, R.; Svendsen, C.N.; Lim, R.G.; Stocksdale, J.; Casale, M.S.; Thompson, T.G.; Wu, J.; Thompson, L.M.; Dardov, V.; Venkatraman, V.; Matlock, A.; Van Eyk, J.E.; Jaffe, J.D.; Papanastasiou, M.; Subramanian, A.; Golub, T.R.; Erickson, S.D.; Fallahi-Sichani, M.; Hafner, M.; Gray, N.S.; Lin, J.R.; Mills, C.E.; Muhlich, J.L.; Niepel, M.; Shamu, C.E.; Williams, E.H.; Wrobel, D.; Sorger, P.K.; Heiser, L.M.; Gray, J.W.; Korkola, J.E.; Mills, G.B.; LaBarge, M.; Feiler, H.S.; Dane, M.A.; Bucher, E.; Nederlof, M.; Sudar, D.; Gross, S.; Kilburn, D.F.; Smith, R.; Devlin, K.; Margolis, R.; Derr, L.; Lee, A.; Pillai, A. The library of integrated network-based cellular signatures nih program: System-level cataloging of human cells response to perturbations. Cell Syst., 2018, 6(1), 13-24.
[http://dx.doi.org/10.1016/j.cels.2017.11.001] [PMID: 29199020]
[13]
Koleti, A.; Terryn, R.; Stathias, V.; Chung, C.; Cooper, D.J.; Turner, J.P.; Vidovic, D.; Forlin, M.; Kelley, T.T.; D’Urso, A.; Allen, B.K.; Torre, D.; Jagodnik, K.M.; Wang, L.; Jenkins, S.L.; Mader, C.; Niu, W.; Fazel, M.; Mahi, N.; Pilarczyk, M.; Clark, N.; Shamsaei, B.; Meller, J.; Vasiliauskas, J.; Reichard, J.; Medvedovic, M.; Ma’ayan, A.; Pillai, A.; Schürer, S.C. Data portal for the library of integrated network-based cellular signatures (lincs) program: Integrated access to diverse large-scale cellular perturbation response data. Nucleic Acids Res., 2018, 46(D1), D558-D566.
[http://dx.doi.org/10.1093/nar/gkx1063] [PMID: 29140462]
[14]
Corsello, S.M.; Bittker, J.A.; Liu, Z.; Gould, J.; McCarren, P.; Hirschman, J.E.; Johnston, S.E.; Vrcic, A.; Wong, B.; Khan, M.; Asiedu, J.; Narayan, R.; Mader, C.C.; Subramanian, A.; Golub, T.R. The drug repurposing hub: A next-generation drug library and information resource. Nat. Med., 2017, 23(4), 405-408.
[http://dx.doi.org/10.1038/nm.4306] [PMID: 28388612]
[15]
Tang, J.; Tanoli, Z.U.; Ravikumar, B.; Alam, Z.; Rebane, A.; Vähä-Koskela, M.; Peddinti, G.; van Adrichem, A.J.; Wakkinen, J.; Jaiswal, A.; Karjalainen, E.; Gautam, P.; He, L.; Parri, E.; Khan, S.; Gupta, A.; Ali, M.; Yetukuri, L.; Gustavsson, A.L.; Seashore-Ludlow, B.; Hersey, A.; Leach, A.R.; Overington, J.P.; Repasky, G.; Wennerberg, K.; Aittokallio, T. Drug target commons: A community effort to build a consensus knowledge base for drug-target interactions. Cell Chem. Biol., 2018, 25(2), 224-229.e2.
[http://dx.doi.org/10.1016/j.chembiol.2017.11.009] [PMID: 29276046]
[16]
Khaladkar, M.; Koscielny, G.; Hasan, S.; Agarwal, P.; Dunham, I.; Rajpal, D.; Sanseau, P. Uncovering novel repositioning opportunities using the Open Targets platform. Drug Discov. Today, 2017, 22(12), 1800-1807.
[http://dx.doi.org/10.1016/j.drudis.2017.09.007] [PMID: 28919242]
[17]
Brown, A.S.; Patel, C.J. A standard database for drug repositioning. Sci. Data, 2017, 4, 170029.
[http://dx.doi.org/10.1038/sdata.2017.29] [PMID: 28291243]
[18]
Shameer, K.; Glicksberg, B.S.; Hodos, R.; Johnson, K.W.; Badgeley, M.A.; Readhead, B.; Tomlinson, M.S.; O’Connor, T.; Miotto, R.; Kidd, B.A.; Chen, R.; Ma’ayan, A.; Dudley, J.T. Systematic analyses of drugs and disease indications in RepurposeDB reveal pharmacological, biological and epidemiological factors influencing drug repositioning. Brief. Bioinform., 2018, 19(4), 656-678.
[http://dx.doi.org/10.1093/bib/bbw136] [PMID: 28200013]
[19]
Ferrara, M.G.; Di Noia, V.; D’Argento, E.; Vita, E.; Damiano, P.; Cannella, A.; Ribelli, M.; Pilotto, S.; Milella, M.; Tortora, G.; Bria, E. Oncogene-addicted non-small-cell lung cancer: Treatment opportunities and future perspectives. Cancers (Basel), 2020, 12(5), 1196.
[http://dx.doi.org/10.3390/cancers12051196] [PMID: 32397295]
[20]
Yates, L.R.; Seoane, J.; Le Tourneau, C.; Siu, L.L.; Marais, R.; Michiels, S.; Soria, J.C.; Campbell, P.; Normanno, N.; Scarpa, A.; Reis-Filho, J.S.; Rodon, J.; Swanton, C.; Andre, F. The European Society for Medical Oncology (ESMO) precision medicine glossary. Ann. Oncol., 2018, 29(1), 30-35.
[http://dx.doi.org/10.1093/annonc/mdx707] [PMID: 29140430]
[21]
Pantziarka, P.; Bouche, G.; André, N. “Hard” drug repurposing for precision oncology: The missing link? Front. Pharmacol., 2018, 9, 637.
[http://dx.doi.org/10.3389/fphar.2018.00637] [PMID: 29962954]
[22]
Pantziarka, P.; Meheus, L.; Rombauts, K.; Vandeborne, L.; Bouche, G. Drug repurposing for cancer therapy-An introduction. In: Drug Repurposing in Cancer Therapy: Approaches and Applications, 1st Ed; To, K.K.; Cho, W.C., Eds.; Academic Press, Elsevier: New York, United States, 2020; pp. 1-12.
[http://dx.doi.org/10.1016/B978-0-12-819668-7.00001-4]
[23]
Hamada, T.; Cao, Y.; Qian, Z.R.; Masugi, Y.; Nowak, J.A.; Yang, J.; Song, M.; Mima, K.; Kosumi, K.; Liu, L.; Shi, Y.; da Silva, A.; Gu, M.; Li, W.; Keum, N.; Zhang, X.; Wu, K.; Meyerhardt, J.A.; Giovannucci, E.L.; Giannakis, M.; Rodig, S.J.; Freeman, G.J.; Nevo, D.; Wang, M.; Chan, A.T.; Fuchs, C.S.; Nishihara, R.; Ogino, S. Aspirin use and colorectal cancer survival according to tumor CD274 (Programmed cell death 1 ligand 1) expression status. J. Clin. Oncol., 2017, 35(16), 1836-1844.
[http://dx.doi.org/10.1200/JCO.2016.70.7547] [PMID: 28406723]
[24]
Byron, S.A.; Tran, N.L.; Halperin, R.F.; Phillips, J.J.; Kuhn, J.G.; de Groot, J.F.; Colman, H.; Ligon, K.L.; Wen, P.Y.; Cloughesy, T.F.; Mellinghoff, I.K.; Butowski, N.A.; Taylor, J.W.; Clarke, J.L.; Chang, S.M.; Berger, M.S.; Molinaro, A.M.; Maggiora, G.M.; Peng, S.; Nasser, S.; Liang, W.S.; Trent, J.M.; Berens, M.E.; Carpten, J.D.; Craig, D.W.; Prados, M.D. Prospective feasibility trial for genomics-informed treatment in recurrent and progressive glioblastoma. Clin. Cancer Res., 2018, 24(2), 295-305.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0963] [PMID: 29074604]
[25]
Banavali, S.; Pasquier, E.; Andre, N. Targeted therapy with propranolol and metronomic chemotherapy combination: Sustained complete response of a relapsing metastatic angiosarcoma. Ecancermedicalscience, 2015, 9, 499.
[http://dx.doi.org/10.3332/ecancer.2015.499] [PMID: 25624880]
[26]
Stiles, J.M.; Amaya, C.; Rains, S.; Diaz, D.; Pham, R.; Battiste, J.; Modiano, J.F.; Kokta, V.; Boucheron, L.E.; Mitchell, D.C.; Bryan, B.A. Targeting of beta adrenergic receptors results in therapeutic efficacy against models of hemangioendothelioma and angiosarcoma. PLoS One, 2013, 8(3), e60021.
[http://dx.doi.org/10.1371/journal.pone.0060021] [PMID: 23555867]
[27]
Mottini, C.; Napolitano, F.; Li, Z.; Gao, X.; Cardone, L. Computer-aided drug repurposing for cancer therapy: Approaches and opportunities to challenge anticancer targets. Semin. Cancer Biol., 2021, 68, 59-74.
[http://dx.doi.org/10.1016/j.semcancer.2019.09.023] [PMID: 31562957]
[28]
Adasme, M.F.; Parisi, D.; Sveshnikova, A.; Schroeder, M. Structure-based drug repositioning: Potential and limits. Semin. Cancer Biol., 2021, 68, 192-198.
[http://dx.doi.org/10.1016/j.semcancer.2020.01.010] [PMID: 32032699]
[29]
Sohraby, F.; Bagheri, M.; Aryapour, H. Performing an in silico repurposing of existing drugs by combining virtual screening and molecular dynamics simulation. Methods Mol. Biol., 2019, 1903, 23-43.
[http://dx.doi.org/10.1007/978-1-4939-8955-3_2] [PMID: 30547434]
[30]
Ye, H.; Liu, Q.; Wei, J. Construction of drug network based on side effects and its application for drug repositioning. PLoS One, 2014, 9(2), e87864.
[http://dx.doi.org/10.1371/journal.pone.0087864] [PMID: 24505324]
[31]
Kim, S. Getting the most out of PubChem for virtual screening. Expert Opin. Drug Discov., 2016, 11(9), 843-855.
[http://dx.doi.org/10.1080/17460441.2016.1216967] [PMID: 27454129]
[32]
Wang, L.; Pei, Y.; Li, S.; Zhang, S.; Yang, Y. Distinct molecular mechanisms analysis of three lung cancer subtypes based on gene expression profiles. J. Comput. Biol., 2019, 26(10), 1140-1155.
[http://dx.doi.org/10.1089/cmb.2019.0046] [PMID: 31305128]
[33]
Fernández-Torras, A.; Comajuncosa-Creus, A.; Duran-Frigola, M.; Aloy, P. Connecting chemistry and biology through molecular descriptors. Curr. Opin. Chem. Biol., 2021, 66, 102090.
[http://dx.doi.org/10.1016/j.cbpa.2021.09.001] [PMID: 34626922]
[34]
Irwin, J.J.; Shoichet, B.K. ZINC--a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model., 2005, 45(1), 177-182.
[http://dx.doi.org/10.1021/ci049714+] [PMID: 15667143]
[35]
Irwin, J.J.; Tang, K.G.; Young, J.; Dandarchuluun, C.; Wong, B.R.; Khurelbaatar, M.; Moroz, Y.S.; Mayfield, J.; Sayle, R.A. ZINC20 – a free ultralarge-scale chemical database for ligand discovery. J. Chem. Inf. Model., 2020, 60(12), 6065-6073.
[http://dx.doi.org/10.1021/acs.jcim.0c00675] [PMID: 33118813]
[36]
Ma, Z.; Zou, X. MDock: A suite for molecular inverse docking and target prediction. Methods Mol. Biol., 2021, 2266, 313-322.
[http://dx.doi.org/10.1007/978-1-0716-1209-5_18] [PMID: 33759135]
[37]
Wang, Y.; Yella, J.; Jegga, A.G. Transcriptomic data mining and repurposing for computational drug discovery. Methods Mol. Biol., 2019, 1903, 73-95.
[http://dx.doi.org/10.1007/978-1-4939-8955-3_5] [PMID: 30547437]
[38]
Cheng, F.; Lu, W.; Liu, C.; Fang, J.; Hou, Y.; Handy, D.E.; Wang, R.; Zhao, Y.; Yang, Y.; Huang, J.; Hill, D.E.; Vidal, M.; Eng, C.; Loscalzo, J. A genome-wide positioning systems network algorithm for in silico drug repurposing. Nat. Commun., 2019, 10(1), 3476.
[http://dx.doi.org/10.1038/s41467-019-10744-6] [PMID: 31375661]
[39]
Hernández-Lemus, E.; Martínez-García, M. Pathway-based drug-repurposing schemes in cancer: The role of translational bioinformatics. Front. Oncol., 2021, 10, 605680.
[http://dx.doi.org/10.3389/fonc.2020.605680] [PMID: 33520715]
[40]
Regan-Fendt, K.; Li, D.; Reyes, R.; Yu, L.; Wani, N.A.; Hu, P.; Jacob, S.T.; Ghoshal, K.; Payne, P.R.O.; Motiwala, T. Transcriptomics-based drug repurposing approach identifies novel drugs against sorafenib-resistant hepatocellular carcinoma. Cancers (Basel), 2020, 12(10), 2730.
[http://dx.doi.org/10.3390/cancers12102730] [PMID: 32977582]
[41]
Zeder-Lutz, G.; Choulier, L.; Besse, M.; Cousido-Siah, A.; Ruiz Figueras, F.X.; Didier, B.; Jung, M.L.; Podjarny, A.; Altschuh, D. Validation of surface plasmon resonance screening of a diverse chemical library for the discovery of protein tyrosine phosphatase 1b binders. Anal. Biochem., 2012, 421(2), 417-427.
[http://dx.doi.org/10.1016/j.ab.2011.09.015] [PMID: 22037289]
[42]
Oh, J.W.; Oh, Y.J.; Han, S.; Her, N.G.; Nam, D.H. High-content analysis-based sensitivity prediction and novel therapeutics screening for c-Met-addicted glioblastoma. Cancers (Basel), 2021, 13(3), 372.
[http://dx.doi.org/10.3390/cancers13030372] [PMID: 33498427]
[43]
Kwon, O.S.; Lee, H.; Kong, H.J.; Kwon, E.J.; Park, J.E.; Lee, W.; Kang, S.; Kim, M.; Kim, W.; Cha, H.J. Connectivity map-based drug repositioning of bortezomib to reverse the metastatic effect of GALNT14 in lung cancer. Oncogene, 2020, 39(23), 4567-4580.
[http://dx.doi.org/10.1038/s41388-020-1316-2] [PMID: 32388539]
[44]
Zhao, Y.; Liu, Y.; Bai, H. Integrating LINCs data to evaluate cancer transcriptome modifying potential of small-molecule compounds for drug repositioning. Comb. Chem. High Throughput Screen., 2021, 24(9), 1340-1350.
[http://dx.doi.org/10.2174/1386207323666201027120149] [PMID: 33109034]
[45]
Dixon, K.; Young, S.; Shen, Y.; Thibodeau, M.L.; Fok, A.; Pleasance, E. Establishing a framework for the clinical translation of germline findings in precision oncology. JNCI Cancer Spectr., 2020, 4, pkaa045.
[http://dx.doi.org/10.1093/jncics/pkaa045]
[46]
Weymann, D.; Laskin, J.; Jones, S.J.M.; Lim, H.; Renouf, D.J.; Roscoe, R.; Schrader, K.A.; Sun, S.; Yip, S.; Marra, M.A.; Regier, D.A. Matching methods in precision oncology: An introduction and illustrative example. Mol. Genet. Genomic Med., 2021, 9(1), e1554.
[http://dx.doi.org/10.1002/mgg3.1554] [PMID: 33237632]
[47]
Laskin, J.; Jones, S.; Aparicio, S.; Chia, S.; Ch’ng, C.; Deyell, R.; Eirew, P.; Fok, A.; Gelmon, K.; Ho, C.; Huntsman, D.; Jones, M.; Kasaian, K.; Karsan, A.; Leelakumari, S.; Li, Y.; Lim, H.; Ma, Y.; Mar, C.; Martin, M.; Moore, R.; Mungall, A.; Mungall, K.; Pleasance, E.; Rassekh, S.R.; Renouf, D.; Shen, Y.; Schein, J.; Schrader, K.; Sun, S.; Tinker, A.; Zhao, E.; Yip, S.; Marra, M.A. Lessons learned from the application of whole-genome analysis to the treatment of patients with advanced cancers. Cold Spring Harb. Mol. Case Stud., 2015, 1(1), a000570.
[http://dx.doi.org/10.1101/mcs.a000570] [PMID: 27148575]
[48]
Jones, M.R.; Schrader, K.A.; Shen, Y.; Pleasance, E.; Ch’ng, C.; Dar, N.; Yip, S.; Renouf, D.J.; Schein, J.E.; Mungall, A.J.; Zhao, Y.; Moore, R.; Ma, Y.; Sheffield, B.S.; Ng, T.; Jones, S.J.; Marra, M.A.; Laskin, J.; Lim, H.J. Response to angiotensin blockade with irbesartan in a patient with metastatic colorectal cancer. Ann. Oncol., 2016, 27(5), 801-806.
[http://dx.doi.org/10.1093/annonc/mdw060] [PMID: 27022066]
[49]
Robinson, E.; Nandi, M.; Wilkinson, L.L.; Arrowsmith, D.M.; Curtis, A.D.; Richardson, A. Preclinical evaluation of statins as a treatment for ovarian cancer. Gynecol. Oncol., 2013, 129(2), 417-424.
[http://dx.doi.org/10.1016/j.ygyno.2013.02.003] [PMID: 23402903]
[50]
Pedro-Botet, J.; Millán Núñez-Cortés, J.; Chillarón, J.J.; Flores-Le Roux, J.A.; Rius, J. Severity of statin-induced adverse effects on muscle and associated conditions: Data from the DAMA study. Expert Opin. Drug Saf., 2016, 15(12), 1583-1587.
[PMID: 27645494] [http://dx.doi.org/10.1080/14740338.2016.1238068]
[51]
Marcath, L.A.; Coe, T.D.; Hoylman, E.K.; Redman, B.G.; Hertz, D.L. Prevalence of drug-drug interactions in oncology patients enrolled on National Clinical Trials Network oncology clinical trials. BMC Cancer, 2018, 18(1), 1155.
[http://dx.doi.org/10.1186/s12885-018-5076-0] [PMID: 30466416]
[52]
Baer, M.R.; George, S.L.; Dodge, R.K.; O’Loughlin, K.L.; Minderman, H.; Caligiuri, M.A.; Anastasi, J.; Powell, B.L.; Kolitz, J.E.; Schiffer, C.A.; Bloomfield, C.D.; Larson, R.A. Phase 3 study of the multidrug resistance modulator PSC-833 in previously untreated patients 60 years of age and older with acute myeloid leukemia: Cancer and Leukemia Group B Study 9720. Blood, 2002, 100(4), 1224-1232.
[http://dx.doi.org/10.1182/blood.V100.4.1224.h81602001224_1224_1232] [PMID: 12149202]
[53]
Verbaanderd, C.; Rooman, I.; Meheus, L.; Huys, I. On-label or off-label? Overcoming regulatory and financial barriers to bring repurposed medicines to cancer patients. Front. Pharmacol., 2020, 10, 1664.
[http://dx.doi.org/10.3389/fphar.2019.01664] [PMID: 32076405]
[54]
André, N.; Banavali, S.; Snihur, Y.; Pasquier, E. Has the time come for metronomics in low-income and middle-income countries? Lancet Oncol., 2013, 14(6), e239-e248.
[http://dx.doi.org/10.1016/S1470-2045(13)70056-1] [PMID: 23639324]
[55]
Horak, P.; Heining, C.; Kreutzfeldt, S. Comprehensive genomic and transciptomic analysis for guiding therapeutic decisions in patients with rare cancers. Cancer Discov., 2021, candisc.0126.
[http://dx.doi.org/10.1158/2159-8290.CD-21-0126]
[56]
Heinhuis, K.M.; IJzerman, N.S.; Koenen, A.M.; van der Graaf, W.T.A.; Haas, R.L.; Beijnen, J.H.; Huitema, A.D.R.; van Houdt, W.J.; Steeghs, N. PropAngio study protocol: A neoadjuvant trial on the efficacy of propranolol monotherapy in cutaneous angiosarcoma-a proof of principle study. BMJ Open, 2020, 10(9), e039449.
[http://dx.doi.org/10.1136/bmjopen-2020-039449] [PMID: 32912994]
[57]
Wagner, M.J.; Cranmer, L.D.; Loggers, E.T.; Pollack, S.M. Propranolol for the treatment of vascular sarcomas. J. Exp. Pharmacol., 2018, 10, 51-58.
[http://dx.doi.org/10.2147/JEP.S146211] [PMID: 30233257]
[58]
Malone, E.R.; Oliva, M.; Sabatini, P.J.B.; Stockley, T.L.; Siu, L.L. Molecular profiling for precision cancer therapies. Genome Med., 2020, 12(1), 8.
[http://dx.doi.org/10.1186/s13073-019-0703-1] [PMID: 31937368]
[59]
Sun, W.; Sanderson, P.E.; Zheng, W. Drug combination therapy increases successful drug repositioning. Drug Discov. Today, 2016, 21(7), 1189-1195.
[http://dx.doi.org/10.1016/j.drudis.2016.05.015] [PMID: 27240777]
[60]
Yu, Z.; Zhao, G.; Xie, G.; Zhao, L.; Chen, Y.; Yu, H.; Zhang, Z.; Li, C.; Li, Y. Metformin and temozolomide act synergistically to inhibit growth of glioma cells and glioma stem cells in vitro and in vivo . Oncotarget, 2015, 6(32), 32930-32943.
[http://dx.doi.org/10.18632/oncotarget.5405] [PMID: 26431379]
[61]
Soo, J.S.; Ng, C.H.; Tan, S.H.; Malik, R.A.; Teh, Y.C.; Tan, B.S.; Ho, G.F.; See, M.H.; Taib, N.A.; Yip, C.H.; Chung, F.F.; Hii, L.W.; Teo, S.H.; Leong, C.O. Metformin synergizes 5-fluorouracil, epirubicin, and cyclophosphamide (FEC) combination therapy through impairing intracellular ATP production and DNA repair in breast cancer stem cells. Apoptosis, 2015, 20(10), 1373-1387.
[http://dx.doi.org/10.1007/s10495-015-1158-5] [PMID: 26276035]
[62]
Venkatesan, S.; Swanton, C.; Taylor, B.S.; Costello, J.F. Treatment-induced mutagenesis and selective pressures sculpt cancer evolution. Cold Spring Harb. Perspect. Med., 2017, 7(8), a026617.
[http://dx.doi.org/10.1101/cshperspect.a026617] [PMID: 28289245]
[63]
Wang, L.; Wang, H.; Song, D.; Xu, M.; Liebmen, M. New strategies for targeting drug combinations to overcome mutation-driven drug resistance. Semin. Cancer Biol., 2017, 42, 44-51.
[http://dx.doi.org/10.1016/j.semcancer.2016.11.002] [PMID: 27840276]
[64]
Tam, V.; Patel, N.; Turcotte, M.; Bossé, Y.; Paré, G.; Meyre, D. Benefits and limitations of genome-wide association studies. Nat. Rev. Genet., 2019, 20(8), 467-484.
[http://dx.doi.org/10.1038/s41576-019-0127-1] [PMID: 31068683]
[65]
Schneider, L.; Kehl, T.; Thedinga, K.; Grammes, N.L.; Backes, C.; Mohr, C.; Schubert, B.; Lenhof, K.; Gerstner, N.; Hartkopf, A.D.; Wallwiener, M.; Kohlbacher, O.; Keller, A.; Meese, E.; Graf, N.; Lenhof, H.P. ClinOmicsTrailbc: A visual analytics tool for breast cancer treatment stratification. Bioinformatics, 2019, 35(24), 5171-5181.
[http://dx.doi.org/10.1093/bioinformatics/btz302] [PMID: 31038669]
[66]
Bulusu, K.C.; Guha, R.; Mason, D.J.; Lewis, R.P.; Muratov, E.; Kalantar Motamedi, Y.; Cokol, M.; Bender, A. Modelling of compound combination effects and applications to efficacy and toxicity: State-of-the-art, challenges and perspectives. Drug Discov. Today, 2016, 21(2), 225-238.
[http://dx.doi.org/10.1016/j.drudis.2015.09.003] [PMID: 26360051]
[67]
Walf-Vorderwülbecke, V.; Pearce, K.; Brooks, T.; Hubank, M.; van den Heuvel-Eibrink, M.M.; Zwaan, C.M.; Adams, S.; Edwards, D.; Bartram, J.; Samarasinghe, S.; Ancliff, P.; Khwaja, A.; Goulden, N.; Williams, G.; de Boer, J.; Williams, O. Targeting acute myeloid leukemia by drug-induced c-MYB degradation. Leukemia, 2018, 32(4), 882-889.
[http://dx.doi.org/10.1038/leu.2017.317] [PMID: 29089643]
[68]
Yang, J.; Xu, W.W.; Hong, P.; Ye, F.; Huang, X.H.; Hu, H.F.; Zhang, Q.H.; Yan, X.; Li, B.; He, Q.Y. Adefovir dipivoxil sensitizes colon cancer cells to vemurafenib by disrupting the KCTD12-CDK1 interaction. Cancer Lett., 2019, 451, 79-91.
[http://dx.doi.org/10.1016/j.canlet.2019.02.050] [PMID: 30872078]
[69]
Irham, L.M.; Wong, H.S.C.; Chou, W.H.; Adikusuma, W.; Mugiyanto, E.; Huang, W.C.; Chang, W.C. Integration of genetic variants and gene network for drug repurposing in colorectal cancer. Pharmacol. Res., 2020, 161, 105203.
[http://dx.doi.org/10.1016/j.phrs.2020.105203] [PMID: 32950641]
[70]
Zelenay, S.; van der Veen, A.G.; Böttcher, J.P.; Snelgrove, K.J.; Rogers, N.; Acton, S.E.; Chakravarty, P.; Girotti, M.R.; Marais, R.; Quezada, S.A.; Sahai, E.; Reis e Sousa, C. Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell, 2015, 162(6), 1257-1270.
[http://dx.doi.org/10.1016/j.cell.2015.08.015] [PMID: 26343581]
[71]
Newton, Y.; Rassekh, S.R.; Deyell, R.J.; Shen, Y.; Jones, M.R.; Dunham, C. Comparative RNA-sequencing analysis benefits a pediatric patient with relapsed cancer. JCO Precis. Oncol., 2018, 2, PO.17.00198.
[http://dx.doi.org/10.1200/PO.17.00198]

© 2024 Bentham Science Publishers | Privacy Policy