Generic placeholder image

Current Traditional Medicine

Editor-in-Chief

ISSN (Print): 2215-0838
ISSN (Online): 2215-0846

Review Article

A Comprehensive Review on Anti-obesity Potential of Medicinal Plants and their Bioactive Compounds

Author(s): Piyush Verma, Bhuwan Chandra Joshi* and Partha Sarathi Bairy

Volume 8, Issue 5, 2022

Published on: 08 June, 2022

Article ID: e110222201081 Pages: 69

DOI: 10.2174/2215083808666220211162540

Price: $65

Abstract

Background: Obesity is a complex health and global epidemic issue. It is an increasing global health challenge covering high social and economic costs. Abnormal accumulation of fat in the body may increase health risks, including diabetes, hypertension, osteoarthritis, sleep apnea, cardiovascular diseases, stroke, and cancer. Synthetic drugs available in the market are reported to have several side effects. Therefore, the management of obesity needs to involve the traditional use of medicinal plants, which helps in searching for new therapeutic targets and supports the research and development of anti-obesity drugs.

Objective: This review aimed to update the data and provide a comprehensive report on currently available knowledge regarding medicinal plants and phytochemicals constituents reported for their anti-obesity activity.

Methodology: An electronic search of the periodical databases, like Web of Science, Scopus, Pub- Med, Scielo, Niscair, ScienceDirect, Springerlink, Wiley, SciFinder, and Google Scholar with information reported during 1991-2019, was made to retrieve published data.

Results: This review attempts to list the medicinal plants with anti-obesity activity. It focuses on plant extracts, isolated chemical compounds, their mechanism of action, and preclinical, experimental model, and clinical studies for further scientific research.

Conclusion: This review summarizes the medicinal plants and their constituents reported for the management of obesity. The data will fascinate the researcher to initiate further research that may lead to the discovery of a drug for the management of obesity and its associated secondary complications. Several herbal plants and their respective lead constituents have been screened by preclinical in-vitro and in-vivo clinical trials and were found to be effective in treating obesity. Therefore, there is a need to develop and screen a large number of plant extracts, and this approach can surely be a driving force for discovering anti-obesity drugs from medicinal plants.

Keywords: Obesity, anti-obesity drugs, medicinal plants, hyperlipidemia, leptin, databases.

Graphical Abstract
[1]
Mir SA, Shah MA, Ganai SA, Ahmad T, Gani M. Understanding the role of active components from plant sources in obesity management. J Saudi Soc Agric Sci 2019; 18(2): 168-76.
[http://dx.doi.org/10.1016/j.jssas.2017.04.003]
[2]
Karri S, Sharma S, Hatware K, Patil K. Natural anti-obesity agents and their therapeutic role in management of obesity: A future trend per-spective. Biomed Pharmacother 2019; 110: 224-38.
[http://dx.doi.org/10.1016/j.biopha.2018.11.076] [PMID: 30481727]
[3]
Bays H, Scinta W. Adiposopathy and epigenetics: An introduction to obesity as a transgenerational disease. Curr Med Res Opin 2015; 31(11): 2059-69.
[http://dx.doi.org/10.1185/03007995.2015.1087983] [PMID: 26331354]
[4]
Kushner RF, Kahan S. Introduction: the state of obesity in 2017. Med Clin North Am 2018; 102(1): 1-11.
[http://dx.doi.org/10.1016/j.mcna.2017.08.003] [PMID: 29156178]
[5]
Wilding JP. Pathophysiology and aetiology of obesity. Medicine (Baltimore) 2011; 39(1): 6-10.
[http://dx.doi.org/10.1016/j.mpmed.2010.10.002]
[6]
Meenakshi SM. Review of medicinal plants for anti-obesity activity. Arch Med (Oviedo) 2015; 6(3): 21.
[7]
Chalise JP, Hashimoto S, Parajuli G, et al. Feedback regulation of Arid5a and Ppar-γ2 maintains adipose tissue homeostasis. Proc Natl Acad Sci USA 2019; 116(30): 15128-33.
[http://dx.doi.org/10.1073/pnas.1906712116] [PMID: 31289228]
[8]
Yao YS, Li J, Jin YL, Chen Y, He LP. Association between PPAR-γ2 Pro12Ala polymorphism and obesity: A meta-analysis. Mol Biol Rep 2015; 42(6): 1029-38.
[http://dx.doi.org/10.1007/s11033-014-3838-6] [PMID: 25502405]
[9]
Illesca P, Valenzuela R, Espinosa A, et al. Hydroxytyrosol supplementation ameliorates the metabolic disturbances in white adipose tissue from mice fed a high-fat diet through recovery of transcription factors Nrf2, SREBP-1c, PPAR-γ and NF-κB. Biomed Pharmacother 2019; 109: 2472-81.
[http://dx.doi.org/10.1016/j.biopha.2018.11.120] [PMID: 30551508]
[10]
Illesca P, Valenzuela R, Espinosa A, et al. Protective effects of eicosapentaenoic acid plus hydroxytyrosol supplementation against white adipose tissue abnormalities in mice fed a high-fat diet. Molecules 2020; 25(19): 4433.
[http://dx.doi.org/10.3390/molecules25194433] [PMID: 32992508]
[11]
Rolland V, Le Liepvre X, Houbiguian ML, Lavau M, Dugail I. C/EBP α expression in adipose tissue of genetically obese Zucker rats. Biochem Biophys Res Commun 1995; 207(2): 761-7.
[http://dx.doi.org/10.1006/bbrc.1995.1252] [PMID: 7864870]
[12]
Engin A. Fat cell and fatty acid turnover in obesity.Obesity and Lipotoxicity. Cham: Springer 2017; pp. 135-60.
[13]
Shimano H. SREBPs: physiology and pathophysiology of the SREBP family. FEBS J 2009; 276(3): 616-21.
[http://dx.doi.org/10.1111/j.1742-4658.2008.06806.x] [PMID: 19143830]
[14]
O’Neill HM, Holloway GP, Steinberg GR. AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: Implications for obesi-ty. Mol Cell Endocrinol 2013; 366(2): 135-51.
[http://dx.doi.org/10.1016/j.mce.2012.06.019] [PMID: 22750049]
[15]
Fu X, Zhu M, Zhang S, Foretz M, Viollet B, Du M. Obesity impairs skeletal muscle regeneration through inhibition of AMPK. Diabetes 2016; 65(1): 188-200.
[PMID: 26384382]
[16]
Turpin SM, Nicholls HT, Willmes DM, et al. Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metab 2014; 20(4): 678-86.
[http://dx.doi.org/10.1016/j.cmet.2014.08.002] [PMID: 25295788]
[17]
Pilitsi E, Farr OM, Polyzos SA, et al. Pharmacotherapy of obesity: Available medications and drugs under investigation. Metabolism 2019; 92: 170-92.
[http://dx.doi.org/10.1016/j.metabol.2018.10.010] [PMID: 30391259]
[18]
Filippatos TD, Derdemezis CS, Gazi IF, Nakou ES, Mikhailidis DP, Elisaf MS. Orlistat-associated adverse effects and drug interactions: A critical review. Drug Saf 2008; 31(1): 53-65.
[http://dx.doi.org/10.2165/00002018-200831010-00005] [PMID: 18095746]
[19]
Lai D, Sin GL. A case of sibutramine causing recurrent episodes of catatonia. Asian J Psychiatr 2018; 36: 71-2.
[http://dx.doi.org/10.1016/j.ajp.2018.06.016] [PMID: 29990630]
[20]
Singh PA, Cassel KP, Moscati RM, Eckersley D. Acute generalized erythrodermic pustular psoriasis associated with bupropion/naltrexone (Contrave®). J Emerg Med 2017; 52(4): e111-3.
[http://dx.doi.org/10.1016/j.jemermed.2016.11.034] [PMID: 28130024]
[21]
Fu C, Jiang Y, Guo J, Su Z. Natural products with anti-obesity effects and different mechanisms of action. J Agric Food Chem 2016; 64(51): 9571-85.
[http://dx.doi.org/10.1021/acs.jafc.6b04468] [PMID: 27931098]
[22]
Chooi YC, Ding C, Magkos F. The epidemiology of obesity. Metabolism 2019; 92: 6-10.
[http://dx.doi.org/10.1016/j.metabol.2018.09.005] [PMID: 30253139]
[23]
Ahirwar R, Mondal PR. Prevalence of obesity in India: A systematic review. Diabetes Metab Syndr 2019; 13(1): 318-21.
[http://dx.doi.org/10.1016/j.dsx.2018.08.032] [PMID: 30641719]
[24]
Gadde KM, Martin CK, Berthoud HR, Heymsfield SB. Obesity: Pathophysiology and management. J Am Coll Cardiol 2018; 71(1): 69-84.
[http://dx.doi.org/10.1016/j.jacc.2017.11.011] [PMID: 29301630]
[25]
Gluck ME, Viswanath P, Stinson EJ. Obesity, appetite, and the prefrontal cortex. Curr Obes Rep 2017; 6(4): 380-8.
[http://dx.doi.org/10.1007/s13679-017-0289-0] [PMID: 29071480]
[26]
Atkinson TJ. Central and peripheral neuroendocrine peptides and signalling in appetite regulation: Considerations for obesity pharma-cotherapy. Obes Rev 2008; 9(2): 108-20.
[http://dx.doi.org/10.1111/j.1467-789X.2007.00412.x] [PMID: 18257752]
[27]
Oussaada SM, van Galen KA, Cooiman MI, et al. The pathogenesis of obesity. Metabolism 2019; 92: 26-36.
[http://dx.doi.org/10.1016/j.metabol.2018.12.012] [PMID: 30639246]
[28]
Oh CM, Park S, Kim H. Serotonin as a new therapeutic target for diabetes mellitus and obesity. Diabetes Metab J 2016; 40(2): 89-98.
[http://dx.doi.org/10.4093/dmj.2016.40.2.89] [PMID: 27126880]
[29]
Zha W, Ho HTB, Hu T, Hebert MF, Wang J. Serotonin transporter deficiency drives estrogen-dependent obesity and glucose intolerance. Sci Rep 2017; 7(1): 1137.
[http://dx.doi.org/10.1038/s41598-017-01291-5] [PMID: 28442777]
[30]
Luo SX. Dopamine and obesity: A path for translation? Biol Psychiatry 2016; 79(11): e85-6.
[http://dx.doi.org/10.1016/j.biopsych.2016.04.011] [PMID: 27198522]
[31]
Nixon JP, Mavanji V, Butterick TA, Billington CJ, Kotz CM, Teske JA. Sleep disorders, obesity, and aging: The role of orexin. Ageing Res Rev 2015; 20: 63-73.
[http://dx.doi.org/10.1016/j.arr.2014.11.001] [PMID: 25462194]
[32]
Wasim M, Awan FR, Najam SS, Khan AR, Khan HN. Role of leptin deficiency, inefficiency, and leptin receptors in obesity. Biochem Genet 2016; 54(5): 565-72.
[http://dx.doi.org/10.1007/s10528-016-9751-z] [PMID: 27313173]
[33]
Pan WW, Myers MG Jr. Leptin and the maintenance of elevated body weight. Nat Rev Neurosci 2018; 19(2): 95-105.
[http://dx.doi.org/10.1038/nrn.2017.168] [PMID: 29321684]
[34]
Cui H, López M, Rahmouni K. The cellular and molecular bases of leptin and ghrelin resistance in obesity. Nat Rev Endocrinol 2017; 13(6): 338-51.
[http://dx.doi.org/10.1038/nrendo.2016.222] [PMID: 28232667]
[35]
Rani N, Sharma SK, Vasudeva N. Assessment of antiobesity potential of Achyranthes aspera Linn. seed. Evid Based Complement Alternat Med 2012; 2012715912
[http://dx.doi.org/10.1155/2012/715912] [PMID: 22919417]
[36]
Oh SD, Kim M, Min BI, et al. Effect of Achyranthes bidentata blume on 3T3-L1 adipogenesis and rats fed with a high-fat diet. Evid Based Complement Alternat Med 2014; 2014158018
[http://dx.doi.org/10.1155/2014/158018] [PMID: 24963319]
[37]
Mythili Avadhani MN. The sweetness and bitterness of sweet flag [Acorus calamus L. – A review. Res J Pharm Biol Chem Sci 2013; 4: 598-610.
[38]
Sung YY, Yoon T, Yang WK, Moon BC, Kim HK. Anti obesity effects of Actinidia polygama extract in mice with high fat diet induced obesity. Mol Med Rep 2013; 7(2): 396-400.
[http://dx.doi.org/10.3892/mmr.2012.1239] [PMID: 23255063]
[39]
Hyun-Jin C, Mi Ja C, Seung-Shi H. Antiobese and hypocholesterolaemic effects of an Adenophora triphylla extract in HepG2 cells and high fat diet-induced obese mice. Food Chem 2010; 119: 437-44.
[http://dx.doi.org/10.1016/j.foodchem.2009.06.039]
[40]
Lee SE, Lee EH, Lee TJ, Kim SW, Kim BH. Anti-obesity effect and action mechanism of Adenophora triphylla root ethanol extract in C57BL/6 obese mice fed a high-fat diet. Biosci Biotechnol Biochem 2013; 77(3): 544-50.
[http://dx.doi.org/10.1271/bbb.120667] [PMID: 23470751]
[41]
Karmase A, Birari R, Bhutani KK. Evaluation of anti-obesity effect of Aegle marmelos leaves. Phytomedicine 2013; 20(10): 805-12.
[http://dx.doi.org/10.1016/j.phymed.2013.03.014] [PMID: 23632084]
[42]
Karmase A, Jagtap S, Bhutani KK. Anti adipogenic activity of Aegle marmelos Correa. Phytomedicine 2013; 20(14): 1267-71.
[http://dx.doi.org/10.1016/j.phymed.2013.07.011] [PMID: 23972792]
[43]
Sung YY, Kim DS, Kim HK. Akebia quinata extract exerts anti-obesity and hypolipidemic effects in high-fat diet-fed mice and 3T3-L1 adipocytes. J Ethnopharmacol 2015; 168: 17-24.
[http://dx.doi.org/10.1016/j.jep.2015.03.051] [PMID: 25835369]
[44]
Kim OY, Lee SM, Do H, et al. Influence of quercetin-rich onion peel extracts on adipokine expression in the visceral adipose tissue of rats. Phytother Res 2012; 26(3): 432-7.
[http://dx.doi.org/10.1002/ptr.3570] [PMID: 21833991]
[45]
Moon J, Do HJ, Kim OY, Shin MJ. Antiobesity effects of quercetin-rich onion peel extract on the differentiation of 3T3-L1 preadipocytes and the adipogenesis in high fat-fed rats. Food Chem Toxicol 2013; 58: 347-54.
[http://dx.doi.org/10.1016/j.fct.2013.05.006] [PMID: 23684756]
[46]
Sung YY, Kim SH, Yoo BW, Kim HK. The nutritional composition and anti-obesity effects of an herbal mixed extract containing Allium fistulosum and Viola mandshurica in high-fat-diet-induced obese mice. BMC Complement Altern Med 2015; 15(1): 370.
[http://dx.doi.org/10.1186/s12906-015-0875-1] [PMID: 26474757]
[47]
Sung YY, Kim DS, Kim SH, Kim HK. Aqueous and ethanolic extracts of welsh onion, Allium fistulosum, attenuate high-fat diet-induced obesity. BMC Complement Altern Med 2018; 18(1): 105.
[http://dx.doi.org/10.1186/s12906-018-2152-6] [PMID: 29558911]
[48]
Sung YY, Yoon T, Kim SJ, Yang WK, Kim HK. Anti-obesity activity of Allium fistulosum L. extract by down-regulation of the expression of lipogenic genes in high-fat diet-induced obese mice. Mol Med Rep 2011; 4(3): 431-5.
[PMID: 21468588]
[49]
Park S, No K, Lee J. Anti-obesity effect of Allium hookeri leaf extract in high-fat diet-fed mice. J Med Food 2018; 21(3): 254-60.
[http://dx.doi.org/10.1089/jmf.2017.3962] [PMID: 29315003]
[50]
Kim HJ, Lee MJ, Jang JY, Lee SH. Allium hookeri root extract inhibits adipogenesis by promoting lipolysis in high fat diet-induced obese mice. Nutrients 2019; 11(10): 2262.
[http://dx.doi.org/10.3390/nu11102262] [PMID: 31547031]
[51]
Chen YC. Methanolic extract of black garlic ameliorates diet-induced obesity via regulating adipogenesis, adipokine biosynthesis, and lipolysis. J Funct Foods 2014; 9: 98-108.
[http://dx.doi.org/10.1016/j.jff.2014.02.019]
[52]
Zhang Y, Xu L, Ding M, Su G, Zhao Y. Anti-obesity effect of garlic oil on obese rats via Shenque point administration. J Ethnopharmacol 2019; 231: 486-93.
[http://dx.doi.org/10.1016/j.jep.2018.11.030] [PMID: 30472401]
[53]
Kim I, Kim HR, Kim JH, Om AS. Beneficial effects of Allium sativum L. stem extract on lipid metabolism and antioxidant status in obese mice fed a high-fat diet. J Sci Food Agric 2013; 93(11): 2749-57.
[http://dx.doi.org/10.1002/jsfa.6094] [PMID: 23606129]
[54]
Lai YS, Chen WC, Ho CT, et al. Garlic essential oil protects against obesity-triggered nonalcoholic fatty liver disease through modulation of lipid metabolism and oxidative stress. J Agric Food Chem 2014; 62(25): 5897-906.
[http://dx.doi.org/10.1021/jf500803c] [PMID: 24857364]
[55]
Kumar S, Alagawadi KR. Anti-obesity effects of galangin, a pancreatic lipase inhibitor in cafeteria diet fed female rats. Pharm Biol 2013; 51(5): 607-13.
[http://dx.doi.org/10.3109/13880209.2012.757327] [PMID: 23363068]
[56]
Jung CH, Jang SJ, Ahn J, et al. Alpinia officinarum inhibits adipocyte differentiation and high-fat diet-induced obesity in mice through regulation of adipogenesis and lipogenesis. J Med Food 2012; 15(11): 959-67.
[http://dx.doi.org/10.1089/jmf.2012.2286] [PMID: 23126661]
[57]
Xia DZ, Yu XF, Wang HM, Ren QY, Chen BM. Anti-obesity and hypolipidemic effects of ethanolic extract from Alpinia officinarum Hance (Zingiberaceae) in rats fed high-fat diet. J Med Food 2010; 13(4): 785-91.
[http://dx.doi.org/10.1089/jmf.2009.1235] [PMID: 20482258]
[58]
Hwang JT, Kim SH, Hur HJ, et al. Decursin, an active compound isolated from Angelica gigas, inhibits fat accumulation, reduces adipo-cytokine secretion and improves glucose tolerance in mice fed a high-fat diet. Phytother Res 2012; 26(5): 633-8.
[http://dx.doi.org/10.1002/ptr.3612] [PMID: 21972114]
[59]
Elekofehinti OO, Lawal AO, Ejelonu OC, Molehin OR, Famusiwa CD. Involvement of fat mass and obesity gene (FTO) in the anti-obesity action of Annona muricata Annonaceae: In silico and in vivo studies. J Diabetes Metab Disord 2020; 1-8.
[http://dx.doi.org/10.1007/s40200-020-00491-7] [PMID: 32420297]
[60]
Sasso S, Sampaio E, Souza PC, Santana LF, et al. Use of an extract of Annona muricata Linn to prevent high-fat diet induced metabolic disorders in C57BL/6 mice. Nutrients 2019; 11(7): 1509.
[http://dx.doi.org/10.3390/nu11071509] [PMID: 31269728]
[61]
Kim H, Choung SY. Anti-obesity effects of Boussingaulti gracilis Miers var. pseudobaselloides Bailey via activation of AMP-activated protein kinase in 3T3-L1 cells. J Med Food 2012; 15(9): 811-7.
[http://dx.doi.org/10.1089/jmf.2011.2126] [PMID: 22871035]
[62]
Krongyut O, Sutthanut K. Phenolic profile, antioxidant activity, and anti-obesogenic bioactivity of mao luang fruits (Antidesma bunius L.). Molecules 2019; 24(22): 4109.
[http://dx.doi.org/10.3390/molecules24224109] [PMID: 31739440]
[63]
Chang CJ, Lu CC, Lin CS, et al. Antrodia cinnamomea reduces obesity and modulates the gut microbiota in high-fat diet-fed mice. Int J Obes 2018; 42(2): 231-43.
[http://dx.doi.org/10.1038/ijo.2017.149] [PMID: 28630461]
[64]
Cho BO, Che DN, Shin JY, Kang HJ, Kim JH, Jang SI. Anti-obesity effects of enzyme-treated celery extract in mice fed with high-fat diet. J Food Biochem 2020; 44(1)e13105
[http://dx.doi.org/10.1111/jfbc.13105] [PMID: 31788817]
[65]
Seo SH, Jo SM, Kim J, Lee M, Lee Y, Kang I. Peanut sprout extracts attenuate triglyceride accumulation by promoting mitochondrial fatty acid oxidation in adipocytes. Int J Mol Sci 2019; 20(5): 1216.
[http://dx.doi.org/10.3390/ijms20051216] [PMID: 30862029]
[66]
Han YH, Kee JY, Kim DS, et al. Anti-obesity effects of Arctii fructus (Arctium lappa) in white/brown adipocytes and high-fat diet-induced obese mice. Food Funct 2016; 7(12): 5025-33.
[http://dx.doi.org/10.1039/C6FO01170E] [PMID: 27882370]
[67]
Han YH, Kee JY, Park J, et al. Arctigenin inhibits adipogenesis by inducing AMPK activation and reduces weight gain in high‐fat diet‐induced obese mice. J Cell Biochem 2016; 117(9): 2067-77.
[http://dx.doi.org/10.1002/jcb.25509] [PMID: 26852013]
[68]
Kumar S, Alagawadi KR, Rao MR. Effect of Argyreia speciosa root extract on cafeteria diet-induced obesity in rats. Indian J Pharmacol 2011; 43(2): 163-7.
[http://dx.doi.org/10.4103/0253-7613.77353] [PMID: 21572650]
[69]
Kim NH, Jegal J, Kim YN, et al. Chokeberry extract and its active polyphenols suppress adipogenesis in 3T3-L1 adipocytes and modu-lates fat accumulation and insulin resistance in diet-induced obese mice. Nutrients 2018; 10(11): 1734.
[http://dx.doi.org/10.3390/nu10111734] [PMID: 30424495]
[70]
Haque MR, Ansari HS. Anti-obesity effect of Arq Zeera and Its main components thymol and cuminaldehyde in high fat diet induced obese rats. Drug Res (Stuttg) 2018; 68(11): 637-47.
[http://dx.doi.org/10.1055/a-0590-1956] [PMID: 29635674]
[71]
Baek HK, Shim H, Lim H, et al. Anti-adipogenic effect of Artemisia annua in diet-induced-obesity mice model. J Vet Sci 2015; 16(4): 389-96.
[http://dx.doi.org/10.4142/jvs.2015.16.4.389] [PMID: 26243598]
[72]
Song Y, Lee SJ, Jang SH, et al. Annual wormwood leaf inhibits the adipogenesis of 3T3-L1 and obesity in high-fat diet-induced obese rats. Nutrients 2017; 9(6): 554.
[http://dx.doi.org/10.3390/nu9060554] [PMID: 28555033]
[73]
Xu Y, Wang Q, Bao W, Pa B. Antihyperlipidemic effect, identification and isolation of the lipophilic components from Artemisia integrifo-lia. Molecules 2019; 24(4): 725.
[http://dx.doi.org/10.3390/molecules24040725] [PMID: 30781592]
[74]
Choi Y, Yanagawa Y, Kim S, Whang WK, Park T. Artemisia iwayomogi extract attenuates high-fat diet-induced obesity by decreasing the expression of genes associated with adipogenesis in mice. Evid Based Complement Alternat Med 2013; 2013915953
[http://dx.doi.org/10.1155/2013/915953] [PMID: 23401719]
[75]
Layman JI, Pereira DL, Chellan N, Huisamen B, Kotzé SH. A histomorphometric study on the hepatoprotective effects of a green rooibos extract in a diet-induced obese rat model. Acta Histochem 2019; 121(5): 646-56.
[http://dx.doi.org/10.1016/j.acthis.2019.05.008] [PMID: 31153588]
[76]
Lee HM, Yang G, Ahn TG, Kim MD, Nugroho A. Antiadipogenic effects of Aster glehni extract: In vivo and in vitro effects. Evid Based Complement Alternat Med 2013; •••859624
[77]
Kim SJ, Bang CY, Guo YR, Choung SY. Anti-obesity effects of Aster spathulifolius extract in high-fat diet-induced obese rats. J Med Food 2016; 19(4): 353-64.
[http://dx.doi.org/10.1089/jmf.2015.3566] [PMID: 26908215]
[78]
Kim SJ, Choung SY. Inhibitory effects of Aster spathulifolius extract on adipogenesis and lipid accumulation in 3T3-L1 preadipocytes. J Pharm Pharmacol 2016; 68(1): 107-18.
[http://dx.doi.org/10.1111/jphp.12485] [PMID: 26471469]
[79]
Jiao P, Tseng-Crank J, Corneliusen B, et al. Lipase inhibition and antiobesity effect of Atractylodes lancea. Planta Med 2014; 80(7): 577-82.
[http://dx.doi.org/10.1055/s-0034-1368354] [PMID: 24687739]
[80]
Liu MH, Ko CH, Ma N, Tan PW, Fu WM, He JY. Chemical profiles, antioxidant and anti-obesity effects of extract of Bambusa textilis McClure leaves. J Funct Foods 2016; 22: 533-46.
[http://dx.doi.org/10.1016/j.jff.2016.02.010]
[81]
Balamurugan G, Muralidharan P. Antiobesity effect of Bauhinia variegata bark extract on female rats fed on hypercaloric diet. Bangladesh J Pharmacol 2010; 5: 8-12.
[http://dx.doi.org/10.3329/bjp.v5i1.4310]
[82]
Shikov AN, Pozharitskaya ON, Makarova MN, Makarov VG, Wagner H. Bergenia crassifolia (L.) Fritsch--pharmacology and phytochem-istry. Phytomedicine 2014; 21(12): 1534-42.
[http://dx.doi.org/10.1016/j.phymed.2014.06.009] [PMID: 25442262]
[83]
Goyal A, Kaur R, Sharma D, Sharma M. Protective effect of Betula utilis bark extract on high fat diet induced obesity in Wistar rats. Obes Med 2019; 15100123
[http://dx.doi.org/10.1016/j.obmed.2019.100123]
[84]
Lee JJ. Effects of ramie leaves on improvement of lipid metabolism and antiobesity effect in rats fed a high fat/high cholesterol diet. Korean J Food Sci Technol 2011; 43: 83-90.
[http://dx.doi.org/10.9721/KJFST.2011.43.1.083]
[85]
Khalid M, Siddiqui HH. Evaluation of weight reduction and anti–cholesterol activity of Punarnava root extract against high fat diets in-duced obesity in experimental rodent. Asian Pac J Trop Biomed 2012; 2: S1323-8.
[http://dx.doi.org/10.1016/S2221-1691(12)60409-2]
[86]
Gupta P, Goyal R, Chauhan Y, Sharma PL. Possible modulation of FAS and PTP-1B signaling in ameliorative potential of Bombax ceiba against high fat diet induced obesity. BMC Complement Altern Med 2013; 13: 281.
[http://dx.doi.org/10.1186/1472-6882-13-281] [PMID: 24160453]
[87]
Navarro-Herrera D, Aranaz P, Eder-Azanza L, et al. Borago officinalis seed oil (BSO), a natural source of omega-6 fatty acids, attenuates fat accumulation by activating peroxisomal beta-oxidation both in C. elegans and in diet-induced obese rats. Food Funct 2018; 9(8): 4340-51.
[http://dx.doi.org/10.1039/C8FO00423D] [PMID: 30043014]
[88]
Zheng Y, Lee J, Shin KO, Park K, Kang IJ. Synergistic action of Erigeron annuus L. Pers and Borago officinalis L. enhances anti-obesity activity in a mouse model of diet-induced obesity. Nutr Res 2019; 69: 58-66.
[http://dx.doi.org/10.1016/j.nutres.2019.07.002] [PMID: 31670067]
[89]
An S, Han JI, Kim MJ, et al. Ethanolic extracts of Brassica campestris spp. rapa roots prevent high-fat diet-induced obesity via beta(3)-adrenergic regulation of white adipocyte lipolytic activity. J Med Food 2010; 13(2): 406-14.
[http://dx.doi.org/10.1089/jmf.2009.1295] [PMID: 20132043]
[90]
Roh C, Park MK, Shin HJ, Jung U, Kim JK. Buddleja officinalis Maximowicz extract inhibits lipid accumulation on adipocyte differentia-tion in 3T3-L1 cells and high-fat mice. Molecules 2012; 17(7): 8687-95.
[http://dx.doi.org/10.3390/molecules17078687] [PMID: 22825621]
[91]
Aguilar SL. Effect of Bursera grandiflora on body weight and lipemia in obese mice. Latin Am Carib Bull Med Arom Plants 2012; 11: 138-46.
[92]
Ochiai M, Nozaki T, Kato M, Ishihara KO. Camellia japonica seeds extract suppresses lipid-induced hypertriglyceridemia and fat accu-mulation in mice. J Oleo Sci 2018; 67(12): 1563-9.
[http://dx.doi.org/10.5650/jos.ess18138] [PMID: 30504625]
[93]
Tamaru S, Ohmachi K, Miyata Y, et al. Hypotriglyceridemic potential of fermented mixed tea made with third-crop green tea leaves and camellia (Camellia japonica) leaves in Sprague-Dawley rats. J Agric Food Chem 2013; 61(24): 5817-23.
[http://dx.doi.org/10.1021/jf400938h] [PMID: 23705670]
[94]
Chen Q. Polyphenol-rich extracts from Oiltea camellia prevent weight gain in obese mice fed a high-fat diet and slowed the accumulation of triacylglycerols in 3T3-L1 adipocytes. J Funct Foods 2014; 9: 148-55.
[http://dx.doi.org/10.1016/j.jff.2014.03.034]
[95]
Peng J, Jia Y, Hu T, et al. GC-(4→8)-GCG, A proanthocyanidin dimer from Camellia ptilophylla, modulates obesity and adipose tissue inflammation in high-fat diet induced obese mice. Mol Nutr Food Res 2019; 63(11)e1900082
[http://dx.doi.org/10.1002/mnfr.201900082] [PMID: 30893514]
[96]
Abd El-Moneim RA, Abd El-Mouaty HM. A comparative histological, immunohistochemical, and biochemical study of the effect of green tea extracts or chromium picolinate administration on the white visceral adipose tissue and liver in albino rats fed on high-fat diet. Egypt J Histol 2013; 36: 882-98.
[http://dx.doi.org/10.1097/01.EHX.0000439094.19244.a8]
[97]
Hamao M, Matsuda H, Nakamura S, et al. Anti-obesity effects of the methanolic extract and chakasaponins from the flower buds of Ca-mellia sinensis in mice. Bioorg Med Chem 2011; 19(20): 6033-41.
[http://dx.doi.org/10.1016/j.bmc.2011.08.042] [PMID: 21925888]
[98]
Kim HJ, Jeon SM, Lee MK, Jung UJ, Shin SK, Choi MS. Antilipogenic effect of green tea extract in C57BL/6J-Lep ob/ob mice. Phytother Res 2009; 23(4): 467-71.
[http://dx.doi.org/10.1002/ptr.2647] [PMID: 19051209]
[99]
Lee MS, Kim CT, Kim Y. Green tea (-)-epigallocatechin-3-gallate reduces body weight with regulation of multiple genes expression in adipose tissue of diet-induced obese mice. Ann Nutr Metab 2009; 54(2): 151-7.
[http://dx.doi.org/10.1159/000214834] [PMID: 19390166]
[100]
Li Q, Liu Z, Huang J, et al. Anti-obesity and hypolipidemic effects of Fuzhuan brick tea water extract in high-fat diet-induced obese rats. J Sci Food Agric 2013; 93(6): 1310-6.
[http://dx.doi.org/10.1002/jsfa.5887] [PMID: 23011925]
[101]
Oi Y, Hou IC, Fujita H, Yazawa K. Antiobesity effects of Chinese black tea (Pu-erh tea) extract and gallic acid. Phytother Res 2012; 26(4): 475-81.
[http://dx.doi.org/10.1002/ptr.3602] [PMID: 22508359]
[102]
Wein S, Schrader E, Rimbach G, Wolffram S. Oral green tea catechins transiently lower plasma glucose concentrations in female db/db mice. J Med Food 2013; 16(4): 312-7.
[http://dx.doi.org/10.1089/jmf.2012.0205] [PMID: 23514230]
[103]
Park B, Lee S, Lee B, et al. New ethanol extraction improves the anti-obesity effects of black tea. Arch Pharm Res 2016; 39(3): 310-20.
[http://dx.doi.org/10.1007/s12272-015-0674-8] [PMID: 26604105]
[104]
Sung J, Jeong HS, Lee J. Effect of the Capsicoside G-rich fraction from pepper (Capsicum annuum L.) Seeds on high-fat diet-induced obesity in mice. Phytother Res 2016; 30(11): 1848-55.
[http://dx.doi.org/10.1002/ptr.5692] [PMID: 27538894]
[105]
Yun MY, Lee JS, Kim BS, Choi HJ. Capsosiphon fulvescens extracts improve obesity-associated metabolic disorders and hepatic steatosis in high-fat diet-induced obese mice. Anim Sci J 2018; 89(3): 589-96.
[http://dx.doi.org/10.1111/asj.12969] [PMID: 29271532]
[106]
Kim KM, Lee HS, Yun MK, et al. Fermented Castanea crenata inner shell extract increases fat metabolism and decreases obesity in high-fat diet-induced obese mice. J Med Food 2019; 22(3): 264-70.
[http://dx.doi.org/10.1089/jmf.2018.4240] [PMID: 30672719]
[107]
Hwang EY, Yu MH, Jung YS, Lee SP, Shon JH, Lee SO. Defatted safflower seed extract inhibits adipogenesis in 3T3-L1 preadipocytes and improves lipid profiles in C57BL/6J ob/ob mice fed a high-fat diet. Nutr Res 2016; 36(9): 995-1003.
[http://dx.doi.org/10.1016/j.nutres.2016.07.004] [PMID: 27632920]
[108]
Maulidiani Abas F. Metabolic alteration in obese diabetes rats upon treatment with Centella asiatica extract. J Ethnopharmacol 2016; 180: 60-9.
[http://dx.doi.org/10.1016/j.jep.2016.01.001] [PMID: 26775274]
[109]
Lamichhane R, Kim SG, Poudel A, Sharma D, Lee KH, Jung HJ. Evaluation of in vitro and in vivo biological activities of Cheilanthes al-bomarginata Clarke. BMC Complement Altern Med 2014; 14: 342.
[http://dx.doi.org/10.1186/1472-6882-14-342] [PMID: 25238673]
[110]
Foucault AS, Mathé V, Lafont R, et al. Quinoa extract enriched in 20-hydroxyecdysone protects mice from diet-induced obesity and modulates adipokines expression. Obesity (Silver Spring) 2012; 20(2): 270-7.
[http://dx.doi.org/10.1038/oby.2011.257] [PMID: 21869758]
[111]
Ansari A, Bose S, Yadav MK, et al. CST, an herbal formula, exerts anti-obesity effects through brain-gut-adipose tissue axis modulation in high-fat diet fed mice. Molecules 2016; 21(11): 1522.
[http://dx.doi.org/10.3390/molecules21111522] [PMID: 27845741]
[112]
Nepali S, Cha JY, Ki HH, et al. Chrysanthemum indicum inhibits adipogenesis and activates the AMPK pathway in high-fat-diet-induced obese mice. Am J Chin Med 2018; 46(1): 119-36.
[http://dx.doi.org/10.1142/S0192415X18500076] [PMID: 29298511]
[113]
White PA, Cercato LM, Batista VS, et al. Aqueous extract of Chrysobalanus icaco leaves, in lower doses, prevent fat gain in obese high-fat fed mice. J Ethnopharmacol 2016; 179: 92-100.
[http://dx.doi.org/10.1016/j.jep.2015.12.047] [PMID: 26723470]
[114]
Fu J, Zeng C, Zeng Z, Wang B, Gong D. Cinnamomum camphora seed kernel oil ameliorates oxidative stress and inflammation in diet-induced obese rats. J Food Sci 2016; 81(5): H1295-300.
[http://dx.doi.org/10.1111/1750-3841.13271] [PMID: 27003858]
[115]
Zuo J, Zhao D, Yu N, et al. Cinnamaldehyde ameliorates diet-induced obesity in mice by inducing browning of white adipose tissue. Cell Physiol Biochem 2017; 42(4): 1514-25.
[http://dx.doi.org/10.1159/000479268] [PMID: 28719892]
[116]
Song MY, Kang SY, Kang A, Hwang JH, Park YK, Jung HW. Cinnamomum cassia prevents high-fat diet-induced obesity in mice through the increase of muscle energy. Am J Chin Med 2017; 45(5): 1017-31.
[http://dx.doi.org/10.1142/S0192415X17500549] [PMID: 28659036]
[117]
Kaur N, Chugh H, Tomar V, Sakharkar MK, Dass SK, Chandra R. Cinnamon attenuates adiposity and affects the expression of metabolic genes in diet-induced obesity model of zebrafish. Artif Cells Nanomed Biotechnol 2019; 47(1): 2930-9.
[http://dx.doi.org/10.1080/21691401.2019.1641509] [PMID: 31317780]
[118]
Inafuku M, Nugara RN, Kamiyama Y, Futenma I, Inafuku A, Oku H. Cirsium brevicaule A. GRAY leaf inhibits adipogenesis in 3T3-L1 cells and C57BL/6 mice. Lipids Health Dis 2013; 12: 124.
[http://dx.doi.org/10.1186/1476-511X-12-124] [PMID: 23945333]
[119]
Shen CY, Wan L, Wang TX, Jiang JG. Citrus aurantium L. var. amara Engl. inhibited lipid accumulation in 3T3-L1 cells and Caenorhabdi-tis elegans and prevented obesity in high-fat diet-fed mice. Pharmacol Res 2019; 147104347
[http://dx.doi.org/10.1016/j.phrs.2019.104347] [PMID: 31315066]
[120]
Park J, Kim HL, Jung Y, Ahn KS, Kwak HJ, Um JY. Bitter Orange (Citrus aurantium Linné) improves obesity by regulating adipogenesis and thermogenesis through AMPK activation. Nutrients 2019; 11(9): 1988.
[http://dx.doi.org/10.3390/nu11091988] [PMID: 31443565]
[121]
Yen YW, Lai YJ, Kong ZL. Dietary supplements of Shiikuwasha extract attenuates osteoarthritis progression in meniscal/ligamentous injury and obese rats. Nutrients 2019; 11(6): 1312.
[http://dx.doi.org/10.3390/nu11061312] [PMID: 31212619]
[122]
Lee YS, Cha BY, Saito K, et al. Effects of a Citrus depressa Hayata (shiikuwasa) extract on obesity in high-fat diet-induced obese mice. Phytomedicine 2011; 18(8-9): 648-54.
[http://dx.doi.org/10.1016/j.phymed.2010.11.005] [PMID: 21216135]
[123]
Guo J, Tao H, Cao Y, Ho CT, Jin S, Huang Q. Prevention of obesity and Type 2 diabetes with aged citrus peel (Chenpi) extract. J Agric Food Chem 2016; 64(10): 2053-61.
[http://dx.doi.org/10.1021/acs.jafc.5b06157] [PMID: 26912037]
[124]
Montalbano G, Mania M, Guerrera MC, et al. Effects of a flavonoid-rich extract from Citrus sinensis juice on a diet-induced obese zebrafish. Int J Mol Sci 2019; 20(20): 5116.
[http://dx.doi.org/10.3390/ijms20205116] [PMID: 31619003]
[125]
Li D, Wu H, Dou H, Guo L, Huang W. Microcapsule of sweet orange essential oil changes gut microbiota in diet-induced obese rats. Biochem Biophys Res Commun 2018; 505(4): 991-5.
[http://dx.doi.org/10.1016/j.bbrc.2018.10.035] [PMID: 30314697]
[126]
Kang SI, Shin HS, Kim HM, et al. Immature Citrus sunki peel extract exhibits antiobesity effects by β-oxidation and lipolysis in high-fat diet-induced obese mice. Biol Pharm Bull 2012; 35(2): 223-30.
[http://dx.doi.org/10.1248/bpb.35.223] [PMID: 22293353]
[127]
Sato M, Goto T, Inoue E, Miyaguchi Y, Toyoda A. Dietary intake of immature Citrus tumida Hort. ex Tanaka peels suppressed body weight gain and fat accumulation in a mouse model of acute obesity. J Nutr Sci Vitaminol (Tokyo) 2019; 65(1): 19-23.
[http://dx.doi.org/10.3177/jnsv.65.19] [PMID: 30814407]
[128]
Cho YR, Lee JA, Kim YY, Kang JS, Lee JH, Ahn EK. Anti-obesity effects of Clausena excavata in high-fat diet-induced obese mice. Biomed Pharmacother 2018; 99: 253-60.
[http://dx.doi.org/10.1016/j.biopha.2018.01.069] [PMID: 29334669]
[129]
Chidrawar VR. Pre–clinical evolutionary study of Clerodendrum phlomidis as an anti–obesity agent against high fat diet induced C57BL/6J mice. Asian Pac J Trop Biomed 2012; 2: S1509-19.
[http://dx.doi.org/10.1016/S2221-1691(12)60446-8]
[130]
Ahmed SM, Manoj J. Antiobesity activity of Coccinia indica in female rats fed with cafeteria and atherogenic diets. Pharm Lett 2012; 4: 1480-5.
[131]
Kolsi RBA, Jardak N, Hajkacem F, et al. Anti-obesity effect and protection of liver-kidney functions by Codium fragile sulphated polysac-charide on high fat diet induced obese rats. Int J Biol Macromol 2017; 102: 119-29.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.04.017] [PMID: 28392390]
[132]
Choi HK, Won EK, Jang YP, Choung SY. Antiobesity Effect of Codonopsis lanceolata in high-calorie/high-fat-diet-induced obese rats. Evid Based Complement Alternat Med 2013; 2013210297
[http://dx.doi.org/10.1155/2013/210297] [PMID: 23818922]
[133]
Panchal SK, Poudyal H, Waanders J, Brown L. Coffee extract attenuates changes in cardiovascular and hepatic structure and function without decreasing obesity in high-carbohydrate, high-fat diet-fed male rats. J Nutr 2012; 142(4): 690-7.
[http://dx.doi.org/10.3945/jn.111.153577] [PMID: 22378327]
[134]
Ontawong A, Duangjai A, Muanprasat C, et al. Lipid-lowering effects of Coffea arabica pulp aqueous extract in Caco-2 cells and hyper-cholesterolemic rats. Phytomedicine 2019; 52: 187-97.
[http://dx.doi.org/10.1016/j.phymed.2018.06.021] [PMID: 30599898]
[135]
Shivaprasad HN, Gopalakrishna S, Mariyanna B, Thekkoot M, Reddy R, Tippeswamy BS. Effect of Coleus forskohlii extract on cafeteria diet-induced obesity in rats. Pharmacognosy Res 2014; 6(1): 42-5.
[http://dx.doi.org/10.4103/0974-8490.122916] [PMID: 24497741]
[136]
Shivaprasad HN. Ethnopharmacological and phytomedical knowledge of Coleus forskohlii: An approach towards its safety and therapeutic value. Orient Pharm Exp Med 2014; 14: 301-12.
[http://dx.doi.org/10.1007/s13596-014-0169-z]
[137]
Wang L, Yamasaki M, Katsube T, Sun X, Yamasaki Y, Shiwaku K. Antiobesity effect of polyphenolic compounds from molokheiya (Corchorus olitorius L.) leaves in LDL receptor-deficient mice. Eur J Nutr 2011; 50(2): 127-33.
[http://dx.doi.org/10.1007/s00394-010-0122-y] [PMID: 20617439]
[138]
Lee HB, Oh MJ, Do MH, Kim YS, Park HY. Molokhia leaf extract prevents gut inflammation and obesity. J Ethnopharmacol 2020; 257112866
[http://dx.doi.org/10.1016/j.jep.2020.112866] [PMID: 32302714]
[139]
Araldi RP, Rechiutti BM, Mendes TB, Ito ET, Souza EB. Mutagenic potential of Cordia ecalyculata alone and in association with Spirulina maxima for their evaluation as candidate anti-obesity drugs. Genet Mol Res 2014; 13(3): 5207-20.
[http://dx.doi.org/10.4238/2014.July.7.14] [PMID: 25061746]
[140]
Li X, Chen P, Zhang P, Chang Y, Cui M, Duan J. Protein-Bound β-glucan from Coriolus versicolor has potential for use against obesity. Mol Nutr Food Res 2019; 63(7)e1801231
[http://dx.doi.org/10.1002/mnfr.201801231] [PMID: 30667154]
[141]
Kim HL, Jeon YD, Park J, et al. Corni fructus containing formulation attenuates weight gain in mice with diet-induced obesity and regulates adipogenesis through AMPK. Evid Based Complement Alternat Med 2013; 2013423741
[http://dx.doi.org/10.1155/2013/423741] [PMID: 24171041]
[142]
Rahman HA, Sahib NG, Saari N, et al. Anti-obesity effect of ethanolic extract from Cosmos caudatus Kunth leaf in lean rats fed a high fat diet. BMC Complement Altern Med 2017; 17(1): 122.
[http://dx.doi.org/10.1186/s12906-017-1640-4] [PMID: 28228098]
[143]
Jeong YJ, Sohn EH, Jung YH, et al. Anti-obesity effect of Crinum asiaticum var. japonicum Baker extract in high-fat diet-induced and monogenic obese mice. Biomed Pharmacother 2016; 82: 35-43.
[http://dx.doi.org/10.1016/j.biopha.2016.04.067] [PMID: 27470336]
[144]
Sun QH, Zhang Y, Chou GX. Synthesis and anti-obesity effects in vivo of Crotadihydrofuran C as a novel PPARγ antagonist from Crot-alaria albida. Sci Rep 2017; 7: 46735.
[http://dx.doi.org/10.1038/srep46735] [PMID: 28436456]
[145]
Bidkar JS, Ghanwat DD, Bhujbal MD, Dama GY. Anti-hyperlipidemic activity of Cucumis melo fruit peel extracts in high cholesterol diet induced hyperlipidemia in rats. J Complement Integr Med 2012; 9: 22.
[http://dx.doi.org/10.1515/1553-3840.1580] [PMID: 23023565]
[146]
Kalaivani A, Sathibabu Uddandrao VV, Brahmanaidu P, et al. Anti obese potential of Cucurbita maxima seeds oil: Effect on lipid profile and histoarchitecture in high fat diet induced obese rats. Nat Prod Res 2018; 32(24): 2950-3.
[http://dx.doi.org/10.1080/14786419.2017.1389939] [PMID: 29047298]
[147]
Jo YH, Choi KM, Liu Q, et al. Anti-obesity effect of 6, 8-diprenylgenistein, an isoflavonoid of Cudrania tricuspidata fruits in high-fat diet-induced obese mice. Nutrients 2015; 7(12): 10480-90.
[http://dx.doi.org/10.3390/nu7125544] [PMID: 26694457]
[148]
Kaur A, Behl T, Makkar R, Goyal A. Effect of ethanolic extract of Cuscuta reflexa on high fat diet-induced obesity in Wistar rats. Obes Med 2019; 14100082
[http://dx.doi.org/10.1016/j.obmed.2019.02.001]
[149]
Pande S, Srinivasan K. Potentiation of hypolipidemic and weight-reducing influence of dietary tender cluster bean (Cyamopsis tetragonol-oba) when combined with capsaicin in high-fat-fed rats. J Agric Food Chem 2012; 60(33): 8155-62.
[http://dx.doi.org/10.1021/jf301211c] [PMID: 22835261]
[150]
Seyedan A, Mohamed Z, Alshagga MA, Koosha S, Alshawsh MA. Cynometra cauliflora Linn. Attenuates metabolic abnormalities in high-fat diet-induced obese mice. J Ethnopharmacol 2019; 236: 173-82.
[http://dx.doi.org/10.1016/j.jep.2019.03.001] [PMID: 30851371]
[151]
Chen J, Leong PK, Leung HY, Chan WM, Wong HS, Ko KM. Biochemical mechanisms of the anti-obesity effect of a triterpenoid-enriched extract of Cynomorium songaricum in mice with high-fat-diet-induced obesity. Phytomedicine 2020; 73153038
[http://dx.doi.org/10.1016/j.phymed.2019.153038] [PMID: 31378503]
[152]
Park YJ, Lee GS, Cheon SY, Cha YY, An HJ. The anti-obesity effects of Tongbi-san in a high-fat diet-induced obese mouse model. BMC Complement Altern Med 2019; 19(1): 1-4.
[http://dx.doi.org/10.1186/s12906-018-2420-5] [PMID: 30606178]
[153]
Yang DJ, Chang YY, Hsu CL, et al. Antiobesity and hypolipidemic effects of polyphenol-rich longan (Dimocarpus longans Lour.) flower water extract in hypercaloric-dietary rats. J Agric Food Chem 2010; 58(3): 2020-7.
[http://dx.doi.org/10.1021/jf903355q] [PMID: 20088600]
[154]
Jeong EJ, Jegal J, Ahn J, Kim J, Yang MH. Anti-obesity effect of Dioscorea oppositifolia extract in high-fat diet-induced obese mice and its chemical characterization. Biol Pharm Bull 2016; 39(3): 409-14.
[http://dx.doi.org/10.1248/bpb.b15-00849] [PMID: 26700066]
[155]
Song MY, Lv N, Kim EK, et al. Antiobesity activity of aqueous extracts of Rhizoma dioscoreae Tokoronis on high-fat diet-induced obesi-ty in mice. J Med Food 2009; 12(2): 304-9.
[http://dx.doi.org/10.1089/jmf.2008.1010] [PMID: 19459730]
[156]
Song M, Yang G, Hoa TQ, et al. Anti-obesity effect of fermented Persimmon extracts via activation of AMP-Activated Protein Kinase. Biol Pharm Bull 2020; 43(3): 440-9.
[http://dx.doi.org/10.1248/bpb.b19-00777] [PMID: 32115502]
[157]
Kim BM, Cho BO, Jang SI. Anti-obesity effects of Diospyros lotus leaf extract in mice with high-fat diet-induced obesity. Int J Mol Med 2019; 43(1): 603-13.
[PMID: 30365061]
[158]
Che DN, Kang HJ, Cho BO, Shin JY, Jang SI. Combined effects of Diospyros lotus leaf and grape stalk extract in high-fat-diet-induced obesity in mice. Food Sci Biotechnol 2019; 28(4): 1207-15.
[http://dx.doi.org/10.1007/s10068-018-00551-y] [PMID: 31275721]
[159]
Sung YY, Kim DS, Choi G, Kim SH, Kim HK. Dohaekseunggi-tang extract inhibits obesity, hyperlipidemia, and hypertension in high-fat diet-induced obese mice. BMC Complement Altern Med 2014; 14: 372.
[http://dx.doi.org/10.1186/1472-6882-14-372] [PMID: 25280587]
[160]
Jang SA, Hwang YH, Kim T, Lee A, Ha H. Anti-osteoporotic and anti-adipogenic effects of the water extract of Drynaria roosii nakaike in ovariectomized mice fed a high-fat diet. Molecules 2019; 24(17): 3051.
[http://dx.doi.org/10.3390/molecules24173051] [PMID: 31443447]
[161]
Eo H, Park JE, Jeon YJ, Lim Y. Ameliorative effect of Ecklonia cava polyphenol extract on renal inflammation associated with aberrant energy metabolism and oxidative stress in high fat diet-induced obese mice. J Agric Food Chem 2017; 65(19): 3811-8.
[http://dx.doi.org/10.1021/acs.jafc.7b00357] [PMID: 28459555]
[162]
Gao Y, Li J, Xu X, et al. Embelin attenuates adipogenesis and lipogenesis through activating canonical Wnt signaling and inhibits high-fat diet-induced obesity. Int J Obes 2017; 41(5): 729-38.
[http://dx.doi.org/10.1038/ijo.2017.35] [PMID: 28163317]
[163]
Nazish I, Ansari SH. Emblica officinalis - Anti-obesity activity. J Complement Integr Med 2017; 15(2)
[http://dx.doi.org/10.1515/jcim-2016-0051] [PMID: 29206643]
[164]
Wang JH, Kim BS, Han K, Kim H. Ephedra-treated donor-derived gut microbiota transplantation ameliorates high fat diet-induced obesity in rats. Int J Environ Res Public Health 2017; 14(6): 555.
[http://dx.doi.org/10.3390/ijerph14060555] [PMID: 28545248]
[165]
Lin Y, Ren N, Li S, Chen M, Pu P. Novel anti-obesity effect of scutellarein and potential underlying mechanism of actions. Biomed Pharmacother 2019; 117109042
[http://dx.doi.org/10.1016/j.biopha.2019.109042] [PMID: 31228804]
[166]
Hosoo S, Koyama M, Watanabe A, et al. Preventive effect of Eucommia leaf extract on aortic media hypertrophy in Wistar-Kyoto rats fed a high-fat diet. Hypertens Res 2017; 40(6): 546-51.
[http://dx.doi.org/10.1038/hr.2016.189] [PMID: 28100919]
[167]
Hirata T. The chemistry and bioactivity of Eucommia ulmoides oliver leaves.Studies in Natural Products Chemistry, R Atta ur. Elsevier 2014; pp. 225-60.
[http://dx.doi.org/10.1016/B978-0-444-63294-4.00008-5]
[168]
Lee TN. The principle of symmetry in acupuncture and its clinical applications. Am J Chin Med 2013; 41(6): 1223-31.
[http://dx.doi.org/10.1142/S0192415X13500821] [PMID: 24228597]
[169]
Nepali S, Kim DK, Lee HY, et al. Euphorbia supina extract results in inhibition of high fat diet induced obesity in mice. Int J Mol Med 2018; 41(5): 2952-60.
[http://dx.doi.org/10.3892/ijmm.2018.3495] [PMID: 29484428]
[170]
Miyazawa N, Yoshimoto H, Kurihara S, Hamaya T, Eguchi F. Improvement of diet-induced obesity by ingestion of mushroom chitosan prepared from Flammulina velutipes. J Oleo Sci 2018; 67(2): 245-54.
[http://dx.doi.org/10.5650/jos.ess17159] [PMID: 29367486]
[171]
Ibarra A, Bai N, He K, et al. Fraxinus excelsior seed extract FraxiPure™ limits weight gains and hyperglycemia in high-fat diet-induced obese mice. Phytomedicine 2011; 18(6): 479-85.
[http://dx.doi.org/10.1016/j.phymed.2010.09.010] [PMID: 21036576]
[172]
Gao L, Lin Z, Liu Y. Hypolipidemic effect of Fragaria nilgerrensis Schlecht. medicine compound on hyperlipidemic rats. Lipids Health Dis 2018; 17(1): 222.
[173]
Sripradha R, Magadi SG. Efficacy of Garcinia cambogia on body weight, inflammation and glucose tolerance in high fat fed male wistar rats. J Clin Diagn Res 2015; 9(2): BF01-4.
[http://dx.doi.org/10.7860/JCDR/2015/12045.5577] [PMID: 25859449]
[174]
Altiner A. Effect of the antiobesity agent Garcinia cambogia extract on serum lipoprotein (a), apolipoproteins a1 and b, and total choles-terol levels in female rats fed atherogenic diet. J Anim Plant Sci 2012; 22: 872-7.
[175]
Márquez F, Babio N, Bulló M, Salas-Salvadó J. Evaluation of the safety and efficacy of hydroxycitric acid or Garcinia cambogia extracts in humans. Crit Rev Food Sci Nutr 2012; 52(7): 585-94.
[http://dx.doi.org/10.1080/10408398.2010.500551] [PMID: 22530711]
[176]
Liu QY, Wang YT, Lin LG. New insights into the anti-obesity activity of xanthones from Garcinia mangostana. Food Funct 2015; 6(2): 383-93.
[http://dx.doi.org/10.1039/C4FO00758A] [PMID: 25520256]
[177]
Kang MC, Kang N, Kim SY, et al. Popular edible seaweed, Gelidium amansii prevents against diet-induced obesity. Food Chem Toxicol 2016; 90: 181-7.
[http://dx.doi.org/10.1016/j.fct.2016.02.014] [PMID: 26911551]
[178]
Choi J, Kim KJ, Koh EJ, Lee BY. Gelidium elegans regulates the AMPK-PRDM16-UCP-1 pathway and has a synergistic effect with orlistat on obesity-associated features in mice fed a high-fat diet. Nutrients 2017; 9(4): 342.
[http://dx.doi.org/10.3390/nu9040342] [PMID: 28358328]
[179]
Choi RY, Nam SJ, Lee HI, et al. Gentiopicroside isolated from Gentiana scabra Bge. inhibits adipogenesis in 3T3-L1 cells and reduces body weight in diet-induced obese mice. Bioorg Med Chem Lett 2019; 29(14): 1699-704.
[http://dx.doi.org/10.1016/j.bmcl.2019.05.038] [PMID: 31130265]
[180]
Sung YY, Yoon T, Yang WK, Kim SJ, Kim HK. Anti-obesity effects of Geranium thunbergii extract via improvement of lipid metabolism in high-fat diet-induced obese mice. Mol Med Rep 2011; 4(6): 1107-13.
[PMID: 21874243]
[181]
Li H, Kang JH, Han JM, et al. Anti-obesity effects of soy leaf via regulation of adipogenic transcription factors and fat oxidation in diet-induced obese mice and 3T3-L1 adipocytes. J Med Food 2015; 18(8): 899-908.
[http://dx.doi.org/10.1089/jmf.2014.3388] [PMID: 25826408]
[182]
Kim HJ. The inhibitory effect of saponin derived from Cheonggukjang on adipocyte differentiation in vitro. Food Sci Biotechnol 2014; 23: 1273-8.
[http://dx.doi.org/10.1007/s10068-014-0175-4]
[183]
Singh BP, Vij S, Hati S. Functional significance of bioactive peptides derived from soybean. Peptides 2014; 54: 171-9.
[http://dx.doi.org/10.1016/j.peptides.2014.01.022] [PMID: 24508378]
[184]
Lee HE, Yang G, Han SH, et al. Anti-obesity potential of Glycyrrhiza uralensis and licochalcone A through induction of adipocyte brown-ing. Biochem Biophys Res Commun 2018; 503(3): 2117-23.
[http://dx.doi.org/10.1016/j.bbrc.2018.07.168] [PMID: 30093114]
[185]
Lee EJ, Oh H, Kang BG, et al. Lipid-lowering effects of medium-chain triglyceride-enriched coconut oil in combination with licorice ex-tracts in experimental hyperlipidemic mice. J Agric Food Chem 2018; 66(40): 10447-57.
[http://dx.doi.org/10.1021/acs.jafc.8b04080] [PMID: 30244576]
[186]
Yoneshiro T, Kaede R, Nagaya K, et al. Melinjo (Gnetum gnemon L.) seed extract induces uncoupling protein 1 expression in brown fat and protects mice against diet-induced obesity, inflammation, and insulin resistance. Nutr Res 2018; 58: 17-25.
[http://dx.doi.org/10.1016/j.nutres.2018.06.012] [PMID: 30340811]
[187]
Arika WM, Kibiti CM, Njagi JM, Ngugi MP. Anti-obesity effects of dichloromethane leaf extract of Gnidia glauca in high fat diet-induced obese rats. Heliyon 2019; 5(11)e02800
[http://dx.doi.org/10.1016/j.heliyon.2019.e02800] [PMID: 31844729]
[188]
Aoki H, Hanayama M, Mori K, Sato R. Grifola frondosa (Maitake) extract activates PPARδ and improves glucose intolerance in high-fat diet-induced obese mice. Biosci Biotechnol Biochem 2018; 82(9): 1550-9.
[http://dx.doi.org/10.1080/09168451.2018.1480348] [PMID: 29873587]
[189]
Kumar V, Bhandari U, Tripathi CD, Khanna G. Evaluation of antiobesity and cardioprotective effect of Gymnema sylvestre extract in mu-rine model. Indian J Pharmacol 2012; 44(5): 607-13.
[http://dx.doi.org/10.4103/0253-7613.100387] [PMID: 23112423]
[190]
Kumar V, Bhandari U, Tripathi CD, Khanna G. Anti-obesity effect of Gymnema sylvestre extract on high fat diet-induced obesity in Wistar rats. Drug Res (Stuttg) 2013; 63(12): 625-32.
[http://dx.doi.org/10.1055/s-0033-1349852] [PMID: 23842942]
[191]
Reddy RM, Latha PB, Vijaya T, Rao DS. The saponin-rich fraction of a Gymnema sylvestre R. Br. aqueous leaf extract reduces cafeteria and high-fat diet-induced obesity. Z Naturforsch C J Biosci 2012; 67(1-2): 39-46.
[http://dx.doi.org/10.1515/znc-2012-1-206] [PMID: 22486040]
[192]
Lee HS, Lim SM, Jung JI, et al. Gynostemma pentaphyllum extract ameliorates high-fat diet-induced obesity in C57BL/6N mice by upregu-lating SIRT1. Nutrients 2019; 11(10): 2475.
[http://dx.doi.org/10.3390/nu11102475] [PMID: 31618980]
[193]
de la Garza AL, Etxeberria U, Haslberger A, Aumueller E, Martínez JA, Milagro FI. Helichrysum and grapefruit extracts boost weight loss in overweight rats reducing inflammation. J Med Food 2015; 18(8): 890-8.
[http://dx.doi.org/10.1089/jmf.2014.0088] [PMID: 25599391]
[194]
Karthik M, Gayathri C. Effect of ethanolic extract of Hibiscus cannabinus leaf on high cholesterol diet induced obesity in female albino rats. Asian J Pharm Clin Res 2013; 6: 65-7.
[195]
Amaya-Cruz D, Peréz-Ramírez IF, Pérez-Jiménez J, Nava GM, Reynoso-Camacho R. Comparison of the bioactive potential of Roselle (Hibiscus sabdariffa L.) calyx and its by-product: Phenolic characterization by UPLC-QTOF MSE and their anti-obesity effect in vivo. Food Res Int 2019; 126108589
[http://dx.doi.org/10.1016/j.foodres.2019.108589] [PMID: 31732028]
[196]
Ojulari OV, Lee SG, Nam JO. Beneficial effects of natural bioactive compounds from Hibiscus sabdariffa L. on obesity. Molecules 2019; 24(1): 210.
[http://dx.doi.org/10.3390/molecules24010210] [PMID: 30626104]
[197]
Patel S. Hibiscus sabdariffa: An ideal yet under-exploited candidate for nutraceutical applications. Biomed Prevent Nutr 2014; 4: 23-7.
[http://dx.doi.org/10.1016/j.bionut.2013.10.004]
[198]
Villalpando-Arteaga EV, Mendieta-Condado E, Esquivel-Solís H, et al. Hibiscus sabdariffa L. aqueous extract attenuates hepatic steatosis through down-regulation of PPAR-γ and SREBP-1c in diet-induced obese mice. Food Funct 2013; 4(4): 618-26.
[http://dx.doi.org/10.1039/c3fo30270a] [PMID: 23389749]
[199]
Yang X, Wang Q, Pang ZR, Pan MR, Zhang W. Flavonoid-enriched extract from Hippophae rhamnoides seed reduces high fat diet induced obesity, hypertriglyceridemia, and hepatic triglyceride accumulation in C57BL/6 mice. Pharm Biol 2017; 55(1): 1207-14.
[http://dx.doi.org/10.1080/13880209.2016.1278454] [PMID: 28248545]
[200]
Subash AK, Augustine A. Hypolipidaemic effects of methanol extract of Holoptelea integrifolia (Roxb.) Planchon bark in diet-induced obese rats. Appl Biochem Biotechnol 2013; 169(2): 546-53.
[http://dx.doi.org/10.1007/s12010-012-9993-0] [PMID: 23239412]
[201]
Thatiparthi J, Dodoala S, Koganti B, Kvsrg P. Barley grass juice (Hordeum vulgare L.) inhibits obesity and improves lipid profile in high fat diet-induced rat model. J Ethnopharmacol 2019; 238111843
[http://dx.doi.org/10.1016/j.jep.2019.111843] [PMID: 30951844]
[202]
Wang LC, Pan TM, Tsai TY. Lactic acid bacteria-fermented product of green tea and Houttuynia cordata leaves exerts anti-adipogenic and anti-obesity effects. J Food Drug Anal 2018; 26(3): 973-84.
[203]
Lee YH, Kim YS, Song M, Lee M, Park J, Kim H. A herbal formula HT048, Citrus unshiu and Crataegus pinnatifida, prevents obesity by inhibiting adipogenesis and lipogenesis in 3T3-L1 preadipocytes and HFD-induced obese rats. Molecules 2015; 20(6): 9656-70.
[http://dx.doi.org/10.3390/molecules20069656] [PMID: 26016552]
[204]
Sumiyoshi M, Kimura Y. Hop (Humulus lupulus L.) extract inhibits obesity in mice fed a high-fat diet over the long term. Br J Nutr 2013; 109(1): 162-72.
[http://dx.doi.org/10.1017/S000711451200061X] [PMID: 22715886]
[205]
Yui K, Kiyofuji A, Osada K. Effects of xanthohumol-rich extract from the hop on fatty acid metabolism in rats fed a high-fat diet. J Oleo Sci 2014; 63(2): 159-68.
[http://dx.doi.org/10.5650/jos.ess13136] [PMID: 24420065]
[206]
Adeneye AA, Adeyemi OO, Agbaje EO. Anti-obesity and antihyperlipidaemic effect of Hunteria umbellata seed extract in experimental hyperlipidaemia. J Ethnopharmacol 2010; 130(2): 307-14.
[http://dx.doi.org/10.1016/j.jep.2010.05.009] [PMID: 20471465]
[207]
García-de la Cruz L, Galvan-Goiz Y, Caballero-Caballero S, Zamudio S, Alfaro A, Navarrete A. Hypericum silenoides Juss. and Hypericum philonotis Cham. & Schlecht. extracts: In-vivo hypolipidaemic and weight-reducing effects in obese rats. J Pharm Pharmacol 2013; 65(4): 591-603.
[http://dx.doi.org/10.1111/jphp.12015] [PMID: 23488789]
[208]
Wu H, Chen YL, Yu Y, Zang J, Wu Y, He Z. Ilex latifolia Thunb protects mice from HFD-induced body weight gain. Sci Rep 2017; 7(1): 14660.
[http://dx.doi.org/10.1038/s41598-017-15292-x] [PMID: 29116160]
[209]
Arçari DP, Bartchewsky W, dos Santos TW, et al. Antiobesity effects of yerba maté extract (Ilex paraguariensis) in high-fat diet-induced obese mice. Obesity (Silver Spring) 2009; 17(12): 2127-33.
[http://dx.doi.org/10.1038/oby.2009.158] [PMID: 19444227]
[210]
Arçari DP, Santos JC, Gambero A, Ribeiro ML. The in vitro and in vivo effects of yerba mate (Ilex paraguariensis) extract on adipogene-sis. Food Chem 2013; 141(2): 809-15.
[http://dx.doi.org/10.1016/j.foodchem.2013.04.062] [PMID: 23790851]
[211]
Gosmann G, Barlette AG, Dhamer T, et al. Phenolic compounds from maté (Ilex paraguariensis) inhibit adipogenesis in 3T3-L1 preadipo-cytes. Plant Foods Hum Nutr 2012; 67(2): 156-61.
[http://dx.doi.org/10.1007/s11130-012-0289-x] [PMID: 22544347]
[212]
Resende PE, Verza SG, Kaiser S, Gomes LF, Kucharski LC, Ortega GG. The activity of mate saponins (Ilex paraguariensis) in intra-abdominal and epididymal fat, and glucose oxidation in male Wistar rats. J Ethnopharmacol 2012; 144(3): 735-40.
[http://dx.doi.org/10.1016/j.jep.2012.10.023] [PMID: 23088849]
[213]
Park SH, Lee DH, Kim MJ, et al. Inula Japonica Thunb. flower ethanol extract improves obesity and exercise endurance in mice fed a high-fat diet. Nutrients 2018; 11(1): 17.
[214]
Ju JH, Yoon HS, Park HJ, et al. Anti-obesity and antioxidative effects of purple sweet potato extract in 3T3-L1 adipocytes in vitro. J Med Food 2011; 14(10): 1097-106.
[http://dx.doi.org/10.1089/jmf.2010.1450] [PMID: 21861722]
[215]
Ju R, Zheng S, Luo H, et al. Purple sweet potato attenuate weight gain in high fat diet induced obese mice. J Food Sci 2017; 82(3): 787-93.
[http://dx.doi.org/10.1111/1750-3841.13617] [PMID: 28135399]
[216]
Seo YJ, Lee K, Song JH, Chei S, Lee BY. Ishige okamurae extract suppresses obesity and hepatic steatosis in high fat diet-induced obese mice. Nutrients 2018; 10(11): 1802.
[http://dx.doi.org/10.3390/nu10111802] [PMID: 30463291]
[217]
Chin YX, Mi Y, Cao WX, Lim PE, Xue CH, Tang QJ. A pilot study on anti-obesity mechanisms of Kappaphycus alvarezii: The role of native κ-carrageenan and the leftover sans-carrageenan fraction. Nutrients 2019; 11(5): 1133.
[http://dx.doi.org/10.3390/nu11051133] [PMID: 31117266]
[218]
Harbilas D, Vallerand D, Brault A, et al. Larix laricina, an antidiabetic alternative treatment from the cree of Northern Quebec pharmaco-poeia, decreases glycemia and improves insulin sensitivity in vivo. Evid Based Complement Alternat Med 2012; 2012296432
[http://dx.doi.org/10.1155/2012/296432] [PMID: 22888363]
[219]
Park JH, Ahn EK, Kim JK, Oh JS. Antihyperlipidemic activity of Ligularia fischeri extract in mice fed a high-carbohydrate diet. J Med Food 2019; 22(4): 374-83.
[http://dx.doi.org/10.1089/jmf.2018.4248] [PMID: 30801226]
[220]
Cha KH, Song DG, Kim SM, Pan CH. Inhibition of gastrointestinal lipolysis by green tea, coffee, and gomchui (Ligularia fischeri) tea pol-yphenols during simulated digestion. J Agric Food Chem 2012; 60(29): 7152-7.
[http://dx.doi.org/10.1021/jf301047f] [PMID: 22730927]
[221]
Liu Q, Kim SH, Kim SB, et al. Anti-obesity effect of (8-E)-niizhenide, a secoiridoid from Ligustrum lucidum, in high-fat diet-induced obese mice. Nat Prod Commun 2014; 9(10): 1399-401.
[http://dx.doi.org/10.1177/1934578X1400901001] [PMID: 25522524]
[222]
Xie ZM, Zhou T, Liao HY, et al. Effects of Ligustrum robustum on gut microbes and obesity in rats. World J Gastroenterol 2015; 21(46): 13042-54.
[http://dx.doi.org/10.3748/wjg.v21.i46.13042] [PMID: 26676281]
[223]
Kim NH, Heo JD, Rho JR, Yang MH, Jeong EJ. Anti-obesity effect of halophyte crop, Limonium tetragonum in high-fat diet-induced obese mice and 3T3-L1 adipocytes. Biol Pharm Bull 2017; 40(11): 1856-65.
[http://dx.doi.org/10.1248/bpb.b17-00296] [PMID: 29093332]
[224]
Zhou CJ, Huang S, Liu JQ, et al. Sweet tea leaves extract improves leptin resistance in diet-induced obese rats. J Ethnopharmacol 2013; 145(1): 386-92.
[http://dx.doi.org/10.1016/j.jep.2012.09.057] [PMID: 23147498]
[225]
Gwon SY, Ahn JY, Chung CH, Moon B, Ha TY. Lithospermum erythrorhizon suppresses high-fat diet-induced obesity, and acetylshikonin, a main compound of Lithospermum erythrorhizon, inhibits adipocyte differentiation. J Agric Food Chem 2012; 60(36): 9089-96.
[http://dx.doi.org/10.1021/jf3017404] [PMID: 22900585]
[226]
Ko BS, Kim DS, Kang S, Ryuk JA, Park S. Prunus mume and Lithospermum erythrorhizon extracts synergistically prevent visceral adiposi-ty by improving energy metabolism through potentiating hypothalamic leptin and insulin signalling in ovariectomized rats. Evid Based Complement Alternat Med 2013; 2013750986
[http://dx.doi.org/10.1155/2013/750986] [PMID: 24319483]
[227]
Kim JW, Lee YS, Seol DJ, et al. Anti-obesity and fatty liver-preventing activities of Lonicera caerulea in high-fat diet-fed mice. Int J Mol Med 2018; 42(6): 3047-64.
[http://dx.doi.org/10.3892/ijmm.2018.3879] [PMID: 30221679]
[228]
Bharathi V, Rengarajan RL, Radhakrishnan R, et al. Effects of a medicinal plant Macrotyloma uniflorum (Lam.) Verdc. formulation (MUF) on obesity-associated oxidative stress-induced liver injury. Saudi J Biol Sci 2018; 25(6): 1115-21.
[http://dx.doi.org/10.1016/j.sjbs.2018.03.010] [PMID: 30174510]
[229]
Ramírez NM, Toledo RCL, Moreira MEC, et al. Anti-obesity effects of tea from Mangifera indica L. leaves of the Ubá variety in high-fat diet-induced obese rats. Biomed Pharmacother 2017; 91: 938-45.
[http://dx.doi.org/10.1016/j.biopha.2017.05.015] [PMID: 28514832]
[230]
Gomes Natal DI, de Castro Moreira ME, Soares Milião M, et al. Ubá mango juices intake decreases adiposity and inflammation in high-fat diet-induced obese Wistar rats. Nutrition 2016; 32(9): 1011-8.
[http://dx.doi.org/10.1016/j.nut.2016.02.008] [PMID: 27160499]
[231]
Karupiah S, Ismail Z. Anti-obesity effects of Melastoma malabathricum var alba linn in rats fed with a high-fat diet. AAPS PharmSciTech 2015; 16(3): 548-53.
[http://dx.doi.org/10.1208/s12249-014-0245-1] [PMID: 25374344]
[232]
Chen TX, Cheng XY, Wang Y, Yin W. Toosendanin inhibits adipogenesis by activating Wnt/β-catenin signaling. Sci Rep 2018; 8(1): 4626.
[http://dx.doi.org/10.1038/s41598-018-22873-x] [PMID: 29545541]
[233]
Woo S, Yoon M, Kim J, et al. The anti-angiogenic herbal extract from Melissa officinalis inhibits adipogenesis in 3T3-L1 adipocytes and suppresses adipocyte hypertrophy in high fat diet-induced obese C57BL/6J mice. J Ethnopharmacol 2016; 178: 238-50.
[http://dx.doi.org/10.1016/j.jep.2015.12.015] [PMID: 26702505]
[234]
Sunil V, Shree N, Venkataranganna MV, Bhonde RR, Majumdar M. The anti diabetic and anti obesity effect of Memecylon umbellatum extract in high fat diet induced obese mice. Biomed Pharmacother 2017; 89: 880-6.
[http://dx.doi.org/10.1016/j.biopha.2017.01.182] [PMID: 28282790]
[235]
Fan M, Kim EK, Choi YJ, Tang Y, Moon SH. The role of Momordica charantia in resisting obesity. Int J Environ Res Public Health 2019; 16(18): 3251.
[http://dx.doi.org/10.3390/ijerph16183251] [PMID: 31487939]
[236]
Bai J, Zhu Y, Dong Y. Response of gut microbiota and inflammatory status to bitter melon (Momordica charantia L.) in high fat diet in-duced obese rats. J Ethnopharmacol 2016; 194: 717-26.
[http://dx.doi.org/10.1016/j.jep.2016.10.043] [PMID: 27751827]
[237]
Saminathan M. Systematic review on anticancer potential and other health beneficial pharmacological activities of novel medicinal plant Morinda citrifolia (Noni). Int J Pharmacol 2013; 9: 462-92.
[http://dx.doi.org/10.3923/ijp.2013.462.492]
[238]
Jambocus NGS, Ismail A, Khatib A, et al. Morinda citrifolia L. leaf extract prevent weight gain in Sprague-Dawley rats fed a high fat diet. Food Nutr Res 2017; 61(1)1338919
[http://dx.doi.org/10.1080/16546628.2017.1338919] [PMID: 28814950]
[239]
Metwally FM, Rashad HM, Ahmed HH, Mahmoud AA, Raouf ER, Abdalla AM. Molecular mechanisms of the anti-obesity potential effect of Moringa oleifera in the experimental model. Asian Pac J Trop Biomed 2017; 7(3): 214-21.
[http://dx.doi.org/10.1016/j.apjtb.2016.12.007]
[240]
Ezzat SM, El Bishbishy MH, Aborehab NM, et al. Upregulation of MC4R and PPAR-α expression mediates the anti-obesity activity of Moringa oleifera Lam. in high-fat diet-induced obesity in rats. J Ethnopharmacol 2020; 251112541
[http://dx.doi.org/10.1016/j.jep.2020.112541] [PMID: 31911179]
[241]
Yang Y, Yang X, Xu B, et al. Chemical constituents of Morus alba L. and their inhibitory effect on 3T3-L1 preadipocyte proliferation and differentiation. Fitoterapia 2014; 98: 222-7.
[http://dx.doi.org/10.1016/j.fitote.2014.08.010] [PMID: 25128426]
[242]
Wu T, Qi X, Liu Y, et al. Dietary supplementation with purified mulberry (Morus australis Poir) anthocyanins suppresses body weight gain in high-fat diet fed C57BL/6 mice. Food Chem 2013; 141(1): 482-7.
[http://dx.doi.org/10.1016/j.foodchem.2013.03.046] [PMID: 23768383]
[243]
Lim HH, Lee SO, Kim SY, Yang SJ, Lim Y. Anti-inflammatory and antiobesity effects of mulberry leaf and fruit extract on high fat diet-induced obesity. Exp Biol Med (Maywood) 2013; 238(10): 1160-9.
[http://dx.doi.org/10.1177/1535370213498982] [PMID: 24000381]
[244]
Na HN, Park S, Jeon HJ, Kim HB, Nam JH. Reduction of adenovirus 36-induced obesity and inflammation by mulberry extract. Microbiol Immunol 2014; 58(5): 303-6.
[http://dx.doi.org/10.1111/1348-0421.12146] [PMID: 24580367]
[245]
Peng CH, Liu LK, Chuang CM, Chyau CC, Huang CN, Wang CJ. Mulberry water extracts possess an anti-obesity effect and ability to in-hibit hepatic lipogenesis and promote lipolysis. J Agric Food Chem 2011; 59(6): 2663-71.
[http://dx.doi.org/10.1021/jf1043508] [PMID: 21361295]
[246]
Fan L, Peng Y, Wu D, et al. Dietary supplementation of Morus nigra L. leaves decrease fat mass partially through elevating leptin-stimulated lipolysis in pig model. J Ethnopharmacol 2020; 249112416
[http://dx.doi.org/10.1016/j.jep.2019.112416] [PMID: 31756448]
[247]
Birari R, Javia V, Bhutani KK. Antiobesity and lipid lowering effects of Murraya koenigii (L.) Spreng leaves extracts and mahanimbine on high fat diet induced obese rats. Fitoterapia 2010; 81(8): 1129-33.
[http://dx.doi.org/10.1016/j.fitote.2010.07.013] [PMID: 20655993]
[248]
Nascimento OV, Boleti AP, Yuyama LK, Lima ES. Effects of diet supplementation with Camu-camu (Myrciaria dubia HBK McVaugh) fruit in a rat model of diet-induced obesity. An Acad Bras Cienc 2013; 85(1): 355-63.
[http://dx.doi.org/10.1590/S0001-37652013005000001] [PMID: 23460435]
[249]
Zhou X, Chen S, Ye X. The anti-obesity properties of the proanthocyanidin extract from the leaves of Chinese bayberry (Myrica rubra Sieb.et Zucc.). Food Funct 2017; 8(9): 3259-70.
[http://dx.doi.org/10.1039/C7FO00816C] [PMID: 28828418]
[250]
Ahmed AH. Flavonoid content and antiobesity activity of leaves of Myrtus communis. Asian J Chem 2013; 25: 6818-26.
[http://dx.doi.org/10.14233/ajchem.2013.14823]
[251]
Ahn JH, Kim ES, Lee C, et al. Chemical constituents from Nelumbo nucifera leaves and their anti-obesity effects. Bioorg Med Chem Lett 2013; 23(12): 3604-8.
[http://dx.doi.org/10.1016/j.bmcl.2013.04.013] [PMID: 23642481]
[252]
Du H, You JS, Zhao X, Park JY, Kim SH, Chang KJ. Antiobesity and hypolipidemic effects of lotus leaf hot water extract with taurine supplementation in rats fed a high fat diet. J Biomed Sci 2010; 17(Suppl. 1): S42.
[http://dx.doi.org/10.1186/1423-0127-17-S1-S42] [PMID: 20804619]
[253]
Velusami CC, Agarwal A, Mookambeswaran V. Effect of Nelumbo nucifera petal extracts on lipase, adipogenesis, adipolysis, and central receptors of obesity. Evid Based Complement Alternat Med 2013; 2013145925
[http://dx.doi.org/10.1155/2013/145925] [PMID: 24348689]
[254]
You JS, Lee YJ, Kim KS, Kim SH, Chang KJ. Anti-obesity and hypolipidaemic effects of Nelumbo nucifera seed ethanol extract in human pre-adipocytes and rats fed a high-fat diet. J Sci Food Agric 2014; 94(3): 568-75.
[http://dx.doi.org/10.1002/jsfa.6297] [PMID: 23824592]
[255]
Lin S, Wang Z, Lin Y, Ge S, Hamzah SS, Hu J. Bound phenolics from fresh lotus seeds exert anti-obesity effects in 3T3-L1 adipocytes and high-fat diet-fed mice by activation of AMPK. J Funct Foods 2019; 58: 74-84.
[http://dx.doi.org/10.1016/j.jff.2019.04.054]
[256]
Zhao YX, Liang WJ, Fan HJ, et al. Fatty acid synthase inhibitors from the hulls of Nephelium lappaceum L. Carbohydr Res 2011; 346(11): 1302-6.
[http://dx.doi.org/10.1016/j.carres.2011.04.028] [PMID: 21605850]
[257]
Namazi N, Larijani B, Ayati MH, Abdollahi M. The effects of Nigella sativa L. on obesity: A systematic review and meta-analysis. J Ethnopharmacol 2018; 219: 173-81.
[http://dx.doi.org/10.1016/j.jep.2018.03.001] [PMID: 29559374]
[258]
Zar Kalai F, Han J, Ksouri R, Abdelly C, Isoda H. Oral administration of Nitraria retusa ethanolic extract enhances hepatic lipid metabo-lism in db/db mice model ‘BKS.Cg-Dock7(m)+/+ Lepr(db/)J’ through the modulation of lipogenesis-lipolysis balance. Food Chem Toxicol 2014; 72: 247-56.
[http://dx.doi.org/10.1016/j.fct.2014.07.029] [PMID: 25086370]
[259]
Poudyal H, Campbell F, Brown L. Olive leaf extract attenuates cardiac, hepatic, and metabolic changes in high carbohydrate-, high fat-fed rats. J Nutr 2010; 140(5): 946-53.
[http://dx.doi.org/10.3945/jn.109.117812] [PMID: 20335636]
[260]
Vogel P, Kasper Machado I, Garavaglia J, Zani VT, de Souza D, Morelo Dal Bosco S. Polyphenols benefits of olive leaf (Olea europaea L.) to human health. Nutr Hosp 2014; 31(3): 1427-33.
[PMID: 25726243]
[261]
Hadrich F, Mahmoudi A, Bouallagui Z, et al. Evaluation of hypocholesterolemic effect of oleuropein in cholesterol-fed rats. Chem Biol Interact 2016; 252: 54-60.
[http://dx.doi.org/10.1016/j.cbi.2016.03.026] [PMID: 27019295]
[262]
Bounihi A, Bitam A, Bouazza A, Yargui L, Koceir EA. Fruit vinegars attenuate cardiac injury via anti-inflammatory and anti-adiposity actions in high-fat diet-induced obese rats. Pharm Biol 2017; 55(1): 43-52.
[http://dx.doi.org/10.1080/13880209.2016.1226369] [PMID: 27595296]
[263]
Choi YJ, Park SY, Kim JY, et al. Combined treatment of betulinic acid, a PTP1B inhibitor, with Orthosiphon stamineus extract decreases body weight in high-fat-fed mice. J Med Food 2013; 16(1): 2-8.
[http://dx.doi.org/10.1089/jmf.2012.2384] [PMID: 23256448]
[264]
Yang SC, Huang WC, Ng XE, et al. Rice bran reduces weight gain and modulates lipid metabolism in rats with high-energy-diet-induced obesity. Nutrients 2019; 11(9): 2033.
[http://dx.doi.org/10.3390/nu11092033] [PMID: 31480353]
[265]
Kim GH, Ju JY, Chung KS, et al. Rice Hull Extract (RHE) suppresses adiposity in high-fat diet-induced obese mice and inhibits differenti-ation of 3T3-L1 Preadipocytes. Nutrients 2019; 11(5): 1162.
[http://dx.doi.org/10.3390/nu11051162] [PMID: 31137609]
[266]
Lim SM, Goh YM, Mohtarrudin N, Loh SP. Germinated brown rice ameliorates obesity in high-fat diet induced obese rats. BMC Complement Altern Med 2016; 16(1): 140.
[http://dx.doi.org/10.1186/s12906-016-1116-y] [PMID: 27216718]
[267]
Nakayama H, Shimada Y, Zang L, et al. Novel anti-obesity properties of Palmaria mollis in zebrafish and mouse models. Nutrients 2018; 10(10): 1401.
[http://dx.doi.org/10.3390/nu10101401] [PMID: 30279329]
[268]
Lim S, Yoon JW, Choi SH, et al. Effect of ginsam, a vinegar extract from Panax ginseng, on body weight and glucose homeostasis in an obese insulin-resistant rat model. Metabolism 2009; 58(1): 8-15.
[http://dx.doi.org/10.1016/j.metabol.2008.07.027] [PMID: 19059525]
[269]
Park J, Jeon YD, Kim HL, et al. Interaction of Veratrum nigrum with Panax ginseng against Obesity: A Sang-ban Relationship. Evid Based Complement Alternat Med 2013; 2013732126
[http://dx.doi.org/10.1155/2013/732126] [PMID: 24073007]
[270]
Chen G, Li H, Zhao Y, et al. Saponins from stems and leaves of Panax ginseng prevent obesity via regulating thermogenesis, lipoCurrent Traditional Medicine, 2022, Vol. 8, No. 5 e110222201081 Verma et al. 66 genesis and lipolysis in high-fat diet-induced obese C57BL/6 mice. Food Chem Toxicol 2017; 106(2): 393-403.
[http://dx.doi.org/10.1016/j.fct.2017.06.012] [PMID: 28599882]
[271]
Bae S, Oh T. Anti-obesity effects of Korean red ginseng extract in healthy beagles. Pol J Vet Sci 2019; 22(2): 385-9.
[PMID: 31269358]
[272]
Liu H, Wang J, Liu M, et al. Antiobesity effects of ginsenoside Rg1 on 3T3-L1 preadipocytes and high fat diet-induced obese mice medi-ated by AMPK. Nutrients 2018; 10(7): 830.
[http://dx.doi.org/10.3390/nu10070830] [PMID: 29954059]
[273]
Choi HI, Lee DH, Park SH, et al. Antiobesity effects of the combination of Patrinia scabiosaefolia root and Hippophae rhamnoides leaf extracts. J Food Biochem 2020; 44(6)e13214
[http://dx.doi.org/10.1111/jfbc.13214] [PMID: 32232876]
[274]
Chen C, Han X, Dong P, et al. Sea cucumber saponin liposomes ameliorate obesity-induced inflammation and insulin resistance in high-fat-diet-fed mice. Food Funct 2018; 9(2): 861-70.
[http://dx.doi.org/10.1039/C7FO01599B] [PMID: 29292463]
[275]
de Almeida ME, Simão AA, Corrêa AD, de Barros Fernandes RV. Improvement of physiological parameters of rats subjected to hyperca-loric diet, with the use of Pereskia grandifolia (Cactaceae) leaf flour. Obes Res Clin Pract 2016; 10(6): 701-9.
[http://dx.doi.org/10.1016/j.orcp.2015.10.011] [PMID: 26616446]
[276]
Kim MJ, Kim HK. Perilla leaf extract ameliorates obesity and dyslipidemia induced by high-fat diet. Phytother Res 2009; 23(12): 1685-90.
[http://dx.doi.org/10.1002/ptr.2811] [PMID: 19444921]
[277]
Watanabe T, Hata K, Hiwatashi K, Hori K, Suzuki N, Itoh H. Suppression of murine preadipocyte differentiation and reduction of visceral fat accumulation by a Petasites japonicus ethanol extract in mice fed a high-fat diet. Biosci Biotechnol Biochem 2010; 74(3): 499-503.
[http://dx.doi.org/10.1271/bbb.90684] [PMID: 20208359]
[278]
Taira N, Nugara RN, Inafuku M, et al. In vivo and in vitro anti-obesity activities of dihydropyranocoumarins derivatives from Peuceda-num japonicum Thunb. J Funct Foods 2017; 29: 19-28.
[http://dx.doi.org/10.1016/j.jff.2016.11.030]
[279]
Carai MA, Fantini N, Loi B, et al. Multiple cycles of repeated treatments with a Phaseolus vulgaris dry extract reduce food intake and body weight in obese rats. Br J Nutr 2011; 106(5): 762-8.
[http://dx.doi.org/10.1017/S0007114511000778] [PMID: 21535904]
[280]
Neil ES, McGinley JN, Fitzgerald VK, et al. White kidney bean (Phaseolus vulgaris L.) consumption reduces fat accumulation in a poly-genic mouse model of obesity. Nutrients 2019; 11(11): 2780.
[http://dx.doi.org/10.3390/nu11112780] [PMID: 31731665]
[281]
Ahmed S, Khan RA, Jamil S. Anti hyperlipidemic and hepatoprotective effects of native date fruit variety “Aseel” (Phoenix dactylifera). Pak J Pharm Sci 2016; 29(6): 1945-50.
[PMID: 28375109]
[282]
Higa JK, Liu W, Berry MJ, Panee J. Supplement of bamboo extract lowers serum monocyte chemoattractant protein-1 concentration in mice fed a diet containing a high level of saturated fat. Br J Nutr 2011; 106(12): 1810-3.
[http://dx.doi.org/10.1017/S0007114511002157] [PMID: 21736779]
[283]
Ahn H, Go GW. Pinus densiflora bark extract (PineXol) decreases adiposity in mice by down-regulation of hepatic de novo lipogenesis and adipogenesis in white adipose tissue. J Microbiol Biotechnol 2017; 27(4): 660-7.
[http://dx.doi.org/10.4014/jmb.1612.12037] [PMID: 28081360]
[284]
Ahn H, Jeong J, Moyo K, et al. Downregulation of hepatic de novo lipogenesis and adipogenesis in adipocytes by Pinus densiflora Bark extract. J Microbiol Biotechnol 2017; 27(11): 1925-31.
[http://dx.doi.org/10.4014/jmb.1707.07030] [PMID: 28870006]
[285]
Lee MS, Cho SM, Lee MH, Lee EO, Kim SH, Lee HJ. Ethanol extract of Pinus koraiensis leaves containing lambertianic acid exerts anti-obesity and hypolipidemic effects by activating adenosine monophosphate-activated protein kinase (AMPK). BMC Complement Altern Med 2016; 16: 51.
[286]
Ko HS, Lee HJ, Lee HJ, et al. Essential oil of Pinus koraiensis exerts antiobesic and hypolipidemic activity via inhibition of peroxisome proliferator-activated receptors gamma signaling. Evid Based Complement Alternat Med 2013; 2013947037
[http://dx.doi.org/10.1155/2013/947037] [PMID: 23997801]
[287]
Darusman LK, Batubara UMR. Fractionation of active components from Piper cf. fragile essential oil as aromatherapy for anti-obesity. Acta Hortic 2014; (1023): 23-8.
[http://dx.doi.org/10.17660/ActaHortic.2014.1023.1]
[288]
Suhana Mohd Ramli E, Nirwana Soelaiman I, Othman F, et al. The effects of piper sarmentosum water extract on the expression and ac-tivity of 11β-hydroxysteroid dehydrogenase type 1 in the bones with excessive glucocorticoids. Iran J Med Sci 2012; 37(1): 39-46.
[PMID: 23115429]
[289]
Samout N, Ettaya A, Bouzenna H, Ncib S, Elfeki A, Hfaiedh N. Beneficial effects of Plantago albicans on high-fat diet-induced obesity in rats. Biomed Pharmacother 2016; 84: 1768-75.
[http://dx.doi.org/10.1016/j.biopha.2016.10.105] [PMID: 27876214]
[290]
Zhao HL, Harding SV, Marinangeli CP, Kim YS, Jones PJ. Hypocholesterolemic and anti-obesity effects of saponins from Platycodon grandiflorum in hamsters fed atherogenic diets. J Food Sci 2008; 73(8): H195-200.
[http://dx.doi.org/10.1111/j.1750-3841.2008.00915.x] [PMID: 19019115]
[291]
Hwang KA, Hwang YJ, Im PR, Hwang HJ, Song J, Kim YJ. Platycodon grandiflorum extract reduces high-fat diet-induced obesity through regulation of adipogenesis and lipogenesis pathways in mice. J Med Food 2019; 22(10): 993-9.
[http://dx.doi.org/10.1089/jmf.2018.4370] [PMID: 31298611]
[292]
Jo KJ, Ghim J, Kim J, et al. Water extract of Pleurotus eryngii var. ferulae prevents high-fat diet-induced obesity by inhibiting pancreatic lipase. J Med Food 2019; 22(2): 178-85.
[http://dx.doi.org/10.1089/jmf.2018.4255] [PMID: 30657431]
[293]
Kang MC, Kang N, Ko SC, Kim YB, Jeon YJ. Anti-obesity effects of seaweeds of Jeju Island on the differentiation of 3T3-L1 preadipo-cytes and obese mice fed a high-fat diet. Food Chem Toxicol 2016; 90: 36-44.
[http://dx.doi.org/10.1016/j.fct.2016.01.023] [PMID: 26845612]
[294]
Pai SA, Munshi RP, Panchal FH, et al. Plumbagin reduces obesity and nonalcoholic fatty liver disease induced by fructose in rats through regulation of lipid metabolism, inflammation and oxidative stress. Biomed Pharmacother 2019; 111: 686-94.
[http://dx.doi.org/10.1016/j.biopha.2018.12.139] [PMID: 30611993]
[295]
Wang CC, Yen JH, Cheng YC, et al. Polygala tenuifolia extract inhibits lipid accumulation in 3T3-L1 adipocytes and high-fat diet-induced obese mouse model and affects hepatic transcriptome and gut microbiota profiles. Food Nutr Res 2017; 61(1)1379861
[http://dx.doi.org/10.1080/16546628.2017.1379861] [PMID: 29056891]
[296]
Sung YY, Yoon T, Yang WK, Kim SJ, Kim DS, Kim HK. The antiobesity effect of Polygonum aviculare L. ethanol extract in high-fat diet-induced obese mice. Evid Based Complement Alternat Med 2013; 2013626397
[http://dx.doi.org/10.1155/2013/626397] [PMID: 23431342]
[297]
Choi RY, Lee HI, Ham JR, Yee ST, Kang KY, Lee MK. Heshouwu (Polygonum multiflorum Thunb.) ethanol extract suppresses pre-adipocytes differentiation in 3T3-L1 cells and adiposity in obese mice. Biomed Pharmacother 2018; 106: 355-62.
[http://dx.doi.org/10.1016/j.biopha.2018.06.140] [PMID: 29966981]
[298]
Jia S, Gao Z, Yan S, et al. Anti-obesity and hypoglycemic effects of Poncirus trifoliata L. extracts in high-fat diet C57BL/6 Mice. Molecules 2016; 21(4): 453.
[299]
Harbilas D, Vallerand D, Brault A, et al. Populus balsamifera extract and its active component salicortin reduce obesity and attenuate insu-lin resistance in a diet-induced obese mouse model. Evid Based Complement Alternat Med 2013; 2013172537
[http://dx.doi.org/10.1155/2013/172537] [PMID: 23781256]
[300]
Mali PY, Bigoniya P, Panchal SS, Muchhandi IS. Anti-obesity activity of chloroform-methanol extract of Premna integrifolia in mice fed with cafeteria diet. J Pharm Bioallied Sci 2013; 5(3): 229-36.
[http://dx.doi.org/10.4103/0975-7406.116825] [PMID: 24082700]
[301]
Song J, Kim YS, Kim L, Park HJ, Lee D, Kim H. Anti-obesity effects of the flower of Prunus persica in high-fat diet-induced obese mice. Nutrients 2019; 11(9): 2176.
[http://dx.doi.org/10.3390/nu11092176] [PMID: 31514294]
[302]
Liu J, Zhao Y, Huang C, Li Y, Guo F. Prenylated flavonoid-standardized extract from seeds of Psoralea corylifolia L. activated fat brown-ing in high-fat diet-induced obese mice. Phytother Res 2019; 33(7): 1851-64.
[http://dx.doi.org/10.1002/ptr.6374] [PMID: 31119811]
[303]
Jung HW, Kang AN, Kang SY, Park YK, Song MY. The root extract of Pueraria lobata and its main compound, puerarin, prevent obesity by increasing the energy metabolism in skeletal muscle. Nutrients 2017; 9(1): 33.
[http://dx.doi.org/10.3390/nu9010033] [PMID: 28054981]
[304]
Wang L, Wu Y, Zhuang L, et al. Puerarin prevents high-fat diet-induced obesity by enriching Akkermansia muciniphila in the gut micro-biota of mice. PLoS One 2019; 14(6)e0218490
[http://dx.doi.org/10.1371/journal.pone.0218490] [PMID: 31233515]
[305]
Kamiya T, Sameshima-Kamiya M, Nagamine R, et al. The crude extract from Puerariae flower exerts antiobesity and antifatty liver effects in high-fat diet-induced obese mice. Evid Based Complement Alternat Med 2012; 2012272710
[http://dx.doi.org/10.1155/2012/272710] [PMID: 22685484]
[306]
Adnyana IK. Anti-obesity effect of the pomegranate leaves ethanol extract (Punica granatuml.) in high-fat diet induced mice. Int J Pharm Pharm Sci 2014; 6: 626-31.
[307]
Viladomiu M, Hontecillas R, Lu P, Bassaganya-Riera J. Preventive and prophylactic mechanisms of action of pomegranate bioactive con-stituents. Evid Based Complement Alternat Med 2013; 2013789764
[http://dx.doi.org/10.1155/2013/789764] [PMID: 23737845]
[308]
Zhong T, Zhang H, Duan X, et al. Anti-obesity effect of radix Angelica sinensis and candidate causative genes in transcriptome analyses of adipose tissues in high-fat diet-induced mice. Gene 2017; 599: 92-8.
[http://dx.doi.org/10.1016/j.gene.2016.11.017] [PMID: 27838456]
[309]
Lee NK, Cheon CJ, Rhee JK. Anti-obesity effect of red radish coral sprout extract by inhibited triglyceride accumulation in a microbial evaluation system and in high-fat diet-induced obese mice. J Microbiol Biotechnol 2018; 28(3): 397-400.
[http://dx.doi.org/10.4014/jmb.1802.02005] [PMID: 29539876]
[310]
Vivarelli F, Canistro D, Babot Marquillas C, et al. The combined effect of Sango sprout juice and caloric restriction on metabolic disorders and gut microbiota composition in an obesity model. Int J Food Sci Nutr 2018; 69(2): 192-204.
[http://dx.doi.org/10.1080/09637486.2017.1350940] [PMID: 28770644]
[311]
Zhou J, Xu G, Ma S, et al. Catalpol ameliorates high-fat diet-induced insulin resistance and adipose tissue inflammation by suppressing the JNK and NF-κB pathways. Biochem Biophys Res Commun 2015; 467(4): 853-8.
[http://dx.doi.org/10.1016/j.bbrc.2015.10.054] [PMID: 26474703]
[312]
Li J, Ding L, Song B, et al. Emodin improves lipid and glucose metabolism in high fat diet-induced obese mice through regulating SREBP pathway. Eur J Pharmacol 2016; 770: 99-109.
[http://dx.doi.org/10.1016/j.ejphar.2015.11.045] [PMID: 26626587]
[313]
Oh J, Lee H, Lim H, Woo S, Shin SS, Yoon M. The herbal composition GGEx18 from Laminaria japonica, Rheum palmatum, and Ephed-ra sinica inhibits visceral obesity and insulin resistance by upregulating visceral adipose genes involved in fatty acid oxidation. Pharm Biol 2015; 53(2): 301-12.
[http://dx.doi.org/10.3109/13880209.2014.917328] [PMID: 25243869]
[314]
Shin SS, Park D, Lee HY, et al. The herbal composition GGEx18 from Laminaria japonica, Rheum palmatum, and Ephedra sinica reduces obesity via skeletal muscle AMPK and PPARα. Pharm Biol 2012; 50(4): 506-15.
[http://dx.doi.org/10.3109/13880209.2011.618502] [PMID: 22129093]
[315]
Zhang Y, Fan S, Hu N, et al. Rhein reduces fat weight in db/db mouse and prevents diet-induced obesity in C57Bl/6 mouse through the inhibition of PPARγ signaling. PPAR Res 2012; 2012374936
[http://dx.doi.org/10.1155/2012/374936] [PMID: 23049539]
[316]
Wang JH, Bose S, Kim HG, Han KS, Kim H. Fermented Rhizoma atractylodis Macrocephalae alleviates high fat diet-induced obesity in association with regulation of intestinal permeability and microbiota in rats. Sci Rep 2015; 5(1): 8391.
[http://dx.doi.org/10.1038/srep08391] [PMID: 25684573]
[317]
Zou ZY, Hu YR, Ma H, et al. Coptisine attenuates obesity-related inflammation through LPS/TLR-4-mediated signaling pathway in Syrian golden hamsters. Fitoterapia 2015; 105: 139-46.
[http://dx.doi.org/10.1016/j.fitote.2015.06.005] [PMID: 26073947]
[318]
Hwang YH, Jang SA, Kim T, Ha H. Anti-osteoporotic and Anti-adipogenic effects of Rhus chinensis nutgalls in ovariectomized mice fed with a high-fat diet. Planta Med 2019; 85(14-15): 1128-35.
[http://dx.doi.org/10.1055/a-0989-2585] [PMID: 31408887]
[319]
Suruga K, Tomita T, Kadokura K, Arai T. Rhus verniciflua leaf extract suppresses obesity in high-fat diet-induced obese mice. Food Nutr Res 2019; 63: 63.
[http://dx.doi.org/10.29219/fnr.v63.3601] [PMID: 31548839]
[320]
Park MY, Sung MK. Carnosic acid attenuates obesity-induced glucose intolerance and hepatic fat accumulation by modulating genes of lipid metabolism in C57BL/6J-ob/ob mice. J Sci Food Agric 2015; 95(4): 828-35.
[http://dx.doi.org/10.1002/jsfa.6973] [PMID: 25348739]
[321]
Romo Vaquero M, Yáñez-Gascón MJ, García Villalba R, et al. Inhibition of gastric lipase as a mechanism for body weight and plasma lipids reduction in Zucker rats fed a rosemary extract rich in carnosic acid. PLoS One 2012; 7(6)e39773
[http://dx.doi.org/10.1371/journal.pone.0039773] [PMID: 22745826]
[322]
Kaume L, Howard LR, Devareddy L. The blackberry fruit: A review on its composition and chemistry, metabolism and bioavailability, and health benefits. J Agric Food Chem 2012; 60(23): 5716-27.
[http://dx.doi.org/10.1021/jf203318p] [PMID: 22082199]
[323]
Jang WS, Choung SY. Antiobesity effects of the ethanol extract of Laminaria japonica areshoung in high-fat-diet-induced obese rat. Evid Based Complement Alternat Med 2013; 2013492807
[http://dx.doi.org/10.1155/2013/492807] [PMID: 23365609]
[324]
Rahman MM, Kim MJ, Kim JH, et al. Desalted Salicornia europaea powder and its active constituent, trans-ferulic acid, exert anti-obesity effects by suppressing adipogenic-related factors. Pharm Biol 2018; 56(1): 183-91.
[http://dx.doi.org/10.1080/13880209.2018.1436073] [PMID: 29521146]
[325]
Pichiah PB, Cha YS. Salicornia herbacea prevents weight gain and hepatic lipid accumulation in obese ICR mice fed a high-fat diet. J Sci Food Agric 2015; 95(15): 3150-9.
[http://dx.doi.org/10.1002/jsfa.7054] [PMID: 25523516]
[326]
Choi SI, Cho IH, Han SH, et al. Antiobesity effects of Salvia plebeia R. Br. extract in high-fat diet-induced obese mice. J Med Food 2016; 19(11): 1048-56.
[http://dx.doi.org/10.1089/jmf.2016.3763] [PMID: 27705068]
[327]
Suneetha DS, Divya TB, Ali F. Antiobesity values of methanolic extract of Sapindus emariganatus on monosodium glutamate induced model in rats. Int J Pharmacogn Phytochem Res 2013; 5: 267-70.
[328]
Kang SI, Shin HS, Kim HM, et al. Anti-obesity properties of a Sasa quelpaertensis extract in high-fat diet-induced obese mice. Biosci Biotechnol Biochem 2012; 76(4): 755-61.
[http://dx.doi.org/10.1271/bbb.110868] [PMID: 22484945]
[329]
Kang SW, Kang SI, Shin HS, et al. Sasa quelpaertensis Nakai extract and its constituent p-coumaric acid inhibit adipogenesis in 3T3-L1 cells through activation of the AMPK pathway. Food Chem Toxicol 2013; 59: 380-5.
[http://dx.doi.org/10.1016/j.fct.2013.06.033] [PMID: 23810795]
[330]
Jang MK, Yun YR, Kim JH, Park MH, Jung MH. Gomisin N inhibits adipogenesis and prevents high-fat diet-induced obesity. Sci Rep 2017; 7(1): 40345.
[http://dx.doi.org/10.1038/srep40345] [PMID: 28067305]
[331]
Park HJ. Anti-obesity effect of Schisandra chinensis in 3T3-L1 cells and high fat diet-induced obese rats. Food Chem 2012; 134: 227-34.
[http://dx.doi.org/10.1016/j.foodchem.2012.02.101]
[332]
Yu J, Ma Y, Sun J, et al. Microalgal Oil from Schizochytrium sp. prevents HFD-Induced abdominal fat accumulation in mice. J Am Coll Nutr 2017; 36(5): 347-56.
[http://dx.doi.org/10.1080/07315724.2017.1302366] [PMID: 28548560]
[333]
Kumar D, Karmase A, Jagtap S, Shekhar R, Bhutani KK. Pancreatic lipase inhibitory activity of cassiamin A, a bianthraquinone from Cas-sia siamea. Nat Prod Commun 2013; 8(2): 195-8.
[http://dx.doi.org/10.1177/1934578X1300800216] [PMID: 23513727]
[334]
Supriya KSK, Vrushabendra Swamy BM, Archana Swamy P. Anti-obesity activity of Shorea robusta G. leaves extract on monosodium glutamate induced obesity in albino rats. Res Pharm Biol Chem Sci 2012; 3(3): 555-65.
[335]
Thounaojam MC, Jadeja RN, Ramani UV, Devkar RV, Ramachandran AV. Sida rhomboidea. Roxb leaf extract down-regulates expression of PPARγ2 and leptin genes in high fat diet fed C57BL/6J Mice and retards in vitro 3T3L1 pre-adipocyte differentiation. Int J Mol Sci 2011; 12(7): 4661-77.
[http://dx.doi.org/10.3390/ijms12074661] [PMID: 21845103]
[336]
Ansari S, Bari A, Ullah R, Mathanmohun M, Veeraraghavan VP, Sun Z. Gold nanoparticles synthesized with Smilax glabra rhizome mod-ulates the anti-obesity parameters in high-fat diet and streptozotocin induced obese diabetes rat model. J Photochem Photobiol B 2019; 201111643
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111643] [PMID: 31698218]
[337]
Choi KM, Lee YS, Shin DM, et al. Green tomato extract attenuates high-fat-diet-induced obesity through activation of the AMPK pathway in C57BL/6 mice. J Nutr Biochem 2013; 24(1): 335-42.
[http://dx.doi.org/10.1016/j.jnutbio.2012.06.018] [PMID: 22974972]
[338]
Perveen R, Suleria HA, Anjum FM, Butt MS, Pasha I, Ahmad S. Tomato (Solanum lycopersicum) carotenoids and lycopenes chemistry; metabolism, absorption, nutrition, and allied health claims--A comprehensive review. Crit Rev Food Sci Nutr 2015; 55(7): 919-29.
[http://dx.doi.org/10.1080/10408398.2012.657809] [PMID: 24915375]
[339]
El-Shiekh RA, Al-Mahdy DA, Mouneir SM, Hifnawy MS, Abdel-Sattar EA. Anti-obesity effect of argel (Solenostemma argel) on obese rats fed a high fat diet. J Ethnopharmacol 2019; 238111893
[http://dx.doi.org/10.1016/j.jep.2019.111893] [PMID: 30999011]
[340]
Huang WC, Peng HL, Hu S, Wu SJ. Spilanthol from traditionally used Spilanthes acmella enhances AMPK and ameliorates obesity in mice fed high-fat diet. Nutrients 2019; 11(5): 991.
[http://dx.doi.org/10.3390/nu11050991] [PMID: 31052312]
[341]
Heo MG, Choung SY. Anti-obesity effects of Spirulina maxima in high fat diet induced obese rats via the activation of AMPK pathway and SIRT1. Food Funct 2018; 9(9): 4906-15.
[http://dx.doi.org/10.1039/C8FO00986D] [PMID: 30178808]
[342]
Bahadori MB, Maggi F, Zengin G, Asghari B, Eskandani M. Essential oils of hedgenettles (Stachys inflata, S. lavandulifolia, and S. byzan-tina) have antioxidant, anti-Alzheimer, antidiabetic, and anti-obesity potential: A comparative study. Ind Crops Prod 2020; 145112089
[http://dx.doi.org/10.1016/j.indcrop.2020.112089]
[343]
Jung CH, Ahn J, Jeon TI, Kim TW, Ha TY. Syzygium aromaticum ethanol extract reduces high-fat diet-induced obesity in mice through downregulation of adipogenic and lipogenic gene expression. Exp Ther Med 2012; 4(3): 409-14.
[http://dx.doi.org/10.3892/etm.2012.609] [PMID: 23181109]
[344]
Iwamoto K, Fukuda Y, Tokikura C, et al. The anti-obesity effect of Taheebo (Tabebuia avellanedae Lorentz ex Griseb) extract in ovariec-tomized mice and the identification of a potential anti-obesity compound. Biochem Biophys Res Commun 2016; 478(3): 1136-40.
[http://dx.doi.org/10.1016/j.bbrc.2016.08.081] [PMID: 27539320]
[345]
Azman KF, Amom Z, Azlan A, et al. Antiobesity effect of Tamarindus indica L. pulp aqueous extract in high-fat diet-induced obese rats. J Nat Med 2012; 66(2): 333-42.
[http://dx.doi.org/10.1007/s11418-011-0597-8] [PMID: 21989999]
[346]
Jindal V, Dhingra D, Sharma S, Parle M, Harna RK. Hypolipidemic and weight reducing activity of the ethanolic extract of Tamarindus indica fruit pulp in cafeteria diet- and sulpiride-induced obese rats. J Pharmacol Pharmacother 2011; 2(2): 80-4.
[http://dx.doi.org/10.4103/0976-500X.81896] [PMID: 21772765]
[347]
Sasidharan SR, Joseph JA, Anandakumar S, Venkatesan V, Madhavan CN, Agarwal A. Ameliorative potential of Tamarindus indica on high fat diet induced nonalcoholic fatty liver disease in rats. ScientificWorldJournal 2014; 2014507197
[http://dx.doi.org/10.1155/2014/507197] [PMID: 24688399]
[348]
Carvalho FMC, Lima VCO, Costa IS, et al. Anti-TNF-α agent tamarind kunitz trypsin inhibitor improves lipid profile of wistar rats pre-senting dyslipidemia and diet-induced obesity regardless of PPAR-γ induction. Nutrients 2019; 11(3): 512.
[http://dx.doi.org/10.3390/nu11030512] [PMID: 30818882]
[349]
Kim CY, Kang B, Suh HJ, Choi HS. Parthenolide, a feverfew-derived phytochemical, ameliorates obesity and obesity-induced inflammato-ry responses via the Nrf2/Keap1 pathway. Pharmacol Res 2019; 145104259
[http://dx.doi.org/10.1016/j.phrs.2019.104259] [PMID: 31078744]
[350]
Alvala R, Alvala M, Sama V, Dharmarajan S, Ullas JV. B MR. Scientific evidence for traditional claim of anti-obesity activity of Tecomella undulata bark. J Ethnopharmacol 2013; 148(2): 441-8.
[http://dx.doi.org/10.1016/j.jep.2013.04.033] [PMID: 23628454]
[351]
Mopuri R, Ganjayi M, Banavathy KS, Parim BN, Meriga B. Evaluation of anti-obesity activities of ethanolic extract of Terminalia panicu-lata bark on high fat diet-induced obese rats. BMC Complement Altern Med 2015; 15(1): 76.
[http://dx.doi.org/10.1186/s12906-015-0598-3] [PMID: 25887331]
[352]
Lee YS, Kim SH, Yuk HJ, Lee GJ, Kim DS. Tetragonia tetragonoides (Pall.) Kuntze (New Zealand Spinach) prevents obesity and hyperu-ricemia in high-fat diet-induced obese mice. Nutrients 2018; 10(8): 1087.
[http://dx.doi.org/10.3390/nu10081087] [PMID: 30110943]
[353]
Coronado-Cáceres LJ, Rabadán-Chávez G, Quevedo-Corona L, et al. Anti-obesity effect of cocoa proteins (Theobroma cacao L.) variety “Criollo” and the expression of genes related to the dysfunction of white adipose tissue in high-fat diet-induced obese rats. J Funct Foods 2019; 62103519
[http://dx.doi.org/10.1016/j.jff.2019.103519]
[354]
Cheng CY, Yang AJ, Ekambaranellore P, Huang KC, Lin WW. Anti-obesity action of INDUS810, a natural compound from Trigonella foenum-graecum: AMPK-dependent lipolysis effect in adipocytes. Obes Res Clin Pract 2018; 12(6): 562-9.
[http://dx.doi.org/10.1016/j.orcp.2018.08.005] [PMID: 30217462]
[355]
Wu T, Jiang Z, Yin J, Long H, Zheng X. Anti-obesity effects of artificial planting blueberry (Vaccinium ashei) anthocyanin in high-fat diet-treated mice. Int J Food Sci Nutr 2016; 67(3): 257-64.
[http://dx.doi.org/10.3109/09637486.2016.1146235] [PMID: 26899872]
[356]
Song Y, Park HJ, Kang SN, et al. Blueberry peel extracts inhibit adipogenesis in 3T3-L1 cells and reduce high-fat diet-induced obesity. PLoS One 2013; 8(7)e69925
[http://dx.doi.org/10.1371/journal.pone.0069925] [PMID: 23936120]
[357]
Zagayko AL, Kolisnyk TY, Chumak OI, Ruban OA, Koshovyi OM. Evaluation of anti-obesity and lipid-lowering properties of Vaccinium myrtillus leaves powder extract in a hamster model. J Basic Clin Physiol Pharmacol 2018; 29(6): 697-703.
[http://dx.doi.org/10.1515/jbcpp-2017-0161] [PMID: 30052516]
[358]
Wang Z, Hwang SH, Kim JH, Lim SS. Anti-obesity effect of the above-ground part of Valeriana dageletiana Nakai ex F. Maek extract in high-fat diet-induced obese C57BL/6N mice. Nutrients 2017; 9(7): 689.
[http://dx.doi.org/10.3390/nu9070689] [PMID: 28671595]
[359]
Egedigwe CA, Ijeh II, Okafor PN, Ejike CE. Aqueous and methanol extracts of Vernonia amygdalina leaves exert their anti-obesity effects through the modulation of appetite-regulatory hormones. Pharm Biol 2016; 54(12): 3232-6.
[http://dx.doi.org/10.1080/13880209.2016.1216135] [PMID: 27569644]
[360]
Kitano-Okada T, Ito A, Koide A, et al. Anti-obesity role of Adzuki bean extract containing polyphenols: in vivo and in vitro effects. J Sci Food Agric 2012; 92(13): 2644-51.
[http://dx.doi.org/10.1002/jsfa.5680] [PMID: 22495778]
[361]
Son Y, Nam JS, Jang MK, Jung IA, Cho SI, Jung MH. Antiobesity activity of Vigna nakashimae extract in high-fat diet-induced obesity. Biosci Biotechnol Biochem 2013; 77(2): 332-8.
[http://dx.doi.org/10.1271/bbb.120755] [PMID: 23391927]
[362]
Hou D, Zhao Q, Yousaf L, Xue Y, Shen Q. Whole mung bean (Vigna radiata L.) supplementation prevents high-fat diet-induced obesity and disorders in a lipid profile and modulates gut microbiota in mice. Eur J Nutr 2020; 59(8): 3617-34.
[http://dx.doi.org/10.1007/s00394-020-02196-2] [PMID: 32048004]
[363]
Sung YY, Kim DS, Kim SH, Kim HK. Anti-obesity activity, acute toxicity, and chemical constituents of aqueous and ethanol Viola mandshurica extracts. BMC Complement Altern Med 2017; 17(1): 297.
[http://dx.doi.org/10.1186/s12906-017-1810-4] [PMID: 28587677]
[364]
Jung HY, Kim YH, Kim IB, et al. The Korean Mistletoe (Viscum album coloratum) extract has an antiobesity effect and protects against hepatic steatosis in mice with high-fat diet-induced obesity. Evid Based Complement Alternat Med 2013; 2013168207
[http://dx.doi.org/10.1155/2013/168207] [PMID: 23935653]
[365]
Hsu HM. Vitis thunbergii supplementation demonstrates an anti-obesity effect in developing obese mice. Eur J Integr Med 2014; 6: 581-7.
[http://dx.doi.org/10.1016/j.eujim.2014.06.004]
[366]
Mahmoudi M, Charradi K, Limam F, Aouani E. Grape seed and skin extract as an adjunct to xenical therapy reduces obesity, brain lipo-toxicity and oxidative stress in high fat diet fed rats. Obes Res Clin Pract 2018; 12(1)(Suppl. 2): 115-26.
[http://dx.doi.org/10.1016/j.orcp.2016.04.006] [PMID: 27161420]
[367]
Kim YM, Lee EW, Eom SH, Kim TH. Pancreatic lipase inhibitory stilbenoids from the roots of Vitis vinifera. Int J Food Sci Nutr 2014; 65(1): 97-100.
[http://dx.doi.org/10.3109/09637486.2013.832172] [PMID: 24020412]
[368]
Jeong YS, Hong JH, Cho KH, Jung HK. Grape skin extract reduces adipogenesis- and lipogenesis-related gene expression in 3T3-L1 adi-pocytes through the peroxisome proliferator-activated receptor-γ signaling pathway. Nutr Res 2012; 32(7): 514-21.
[http://dx.doi.org/10.1016/j.nutres.2012.06.001] [PMID: 22901559]
[369]
Jeong YS. Anti-obesity effect of grape skin extract in 3T3-L1 adipocytes. Food Sci Biotechnol 2011; 20: 635-42.
[http://dx.doi.org/10.1007/s10068-011-0090-x]
[370]
Kang JS, Lee WK, Lee CW, et al. Improvement of high-fat diet-induced obesity by a mixture of red grape extract, soy isoflavone and L-carnitine: Implications in cardiovascular and non-alcoholic fatty liver diseases. Food Chem Toxicol 2011; 49(9): 2453-8.
[http://dx.doi.org/10.1016/j.fct.2011.06.071] [PMID: 21745528]
[371]
Kim H, Bartley GE, Arvik T, et al. Dietary supplementation of chardonnay grape seed flour reduces plasma cholesterol concentration, hepatic steatosis, and abdominal fat content in high-fat diet-induced obese hamsters. J Agric Food Chem 2014; 62(8): 1919-25.
[http://dx.doi.org/10.1021/jf404832s] [PMID: 24517872]
[372]
Oh J. Antioxidant and antiobesity activities of seed extract from campbell early grape as a functional ingredient. J Food Process Preserv 2013; 37: 291-8.
[http://dx.doi.org/10.1111/j.1745-4549.2011.00648.x]
[373]
Zhang XH, Huang B, Choi SK, Seo JS. Anti-obesity effect of resveratrol-amplified grape skin extracts on 3T3-L1 adipocytes differentia-tion. Nutr Res Pract 2012; 6(4): 286-93.
[http://dx.doi.org/10.4162/nrp.2012.6.4.286] [PMID: 22977681]
[374]
Khalilpourfarshbafi M, Devi Murugan D, Abdul Sattar MZ, Sucedaram Y, Abdullah NA. Withaferin A inhibits adipogenesis in 3T3-F442A cell line, improves insulin sensitivity and promotes weight loss in high fat diet-induced obese mice. PLoS One 2019; 14(6)e0218792
[http://dx.doi.org/10.1371/journal.pone.0218792] [PMID: 31226166]
[375]
Koh YM, Jang SW, Ahn TW. Anti-obesity effect of Yangkyuksanwha-tang in high-fat diet-induced obese mice. BMC Complement Altern Med 2019; 19(1): 246.
[http://dx.doi.org/10.1186/s12906-019-2669-3] [PMID: 31488172]
[376]
Gwon SY, Ahn JY, Kim TW, Ha TY. Zanthoxylum piperitum DC ethanol extract suppresses fat accumulation in adipocytes and high fat diet-induced obese mice by regulating adipogenesis. J Nutr Sci Vitaminol (Tokyo) 2012; 58(6): 393-401.
[http://dx.doi.org/10.3177/jnsv.58.393] [PMID: 23419397]
[377]
Chaiittianan R, Chayopas P, Rattanathongkom A, Tippayawat P, Sutthanut K. Anti-obesity potential of corn silks: Relationships of phyto-chemicals and antioxidation, anti-pre-adipocyte proliferation, anti-adipogenesis, and lipolysis induction. J Funct Foods 2016; 23: 497-510.
[http://dx.doi.org/10.1016/j.jff.2016.03.010]
[378]
Wang J, Li D, Wang P, Hu X, Chen F. Ginger prevents obesity through regulation of energy metabolism and activation of browning in high-fat diet-induced obese mice. J Nutr Biochem 2019; 70: 105-15.
[http://dx.doi.org/10.1016/j.jnutbio.2019.05.001] [PMID: 31200315]
[379]
Deshpande MS. Anti-obesity activity of Ziziphus mauritiana: A potent pancreatic lipase inhibitor. Asian J Pharm Clin Res 2013; 6: 168-73.
[380]
Kazemipoor M, Radzi CW, Hajifaraji M, Haerian BS, Mosaddegh MH, Cordell GA. Antiobesity effect of caraway extract on overweight and obese women: A randomized, triple-blind, placebo-controlled clinical trial. Evid Based Complement Alternat Med 2013; 2013928582
[http://dx.doi.org/10.1155/2013/928582] [PMID: 24319489]
[381]
Oben J, Kuate D, Agbor G, Momo C, Talla X. The use of a Cissus quadrangularis formulation in the management of weight loss and meta-bolic syndrome. Lipids Health Dis 2006; 5: 24.
[http://dx.doi.org/10.1186/1476-511X-5-24] [PMID: 16948861]
[382]
Moro CO, Basile G. Obesity and medicinal plants. Fitoterapia 2000; 71(Suppl. 1): S73-82.
[http://dx.doi.org/10.1016/S0367-326X(00)00177-5] [PMID: 10930716]
[383]
Kim GS, Park HJ, Woo JH, et al. Citrus aurantium flavonoids inhibit adipogenesis through the Akt signaling pathway in 3T3-L1 cells. BMC Complement Altern Med 2012; 12: 31.
[http://dx.doi.org/10.1186/1472-6882-12-31] [PMID: 22471389]
[384]
Stohs SJ, Preuss HG, Shara M. A review of the human clinical studies involving Citrus aurantium (bitter orange) extract and its primary protoalkaloid p-synephrine. Int J Med Sci 2012; 9(7): 527-38.
[http://dx.doi.org/10.7150/ijms.4446] [PMID: 22991491]
[385]
Cardile V, Graziano AC, Venditti A. Clinical evaluation of Moro (Citrus sinensis (L.) Osbeck) orange juice supplementation for the weight management. Nat Prod Res 2015; 29(23): 2256-60.
[http://dx.doi.org/10.1080/14786419.2014.1000897] [PMID: 25588369]
[386]
Lee M, Sorn SR, Park Y, Park HK. Anthocyanin rich-black soybean testa improved visceral fat and plasma lipid profiles in over-weight/obese Korean adults: A randomized controlled trial. J Med Food 2016; 19(11): 995-1003.
[http://dx.doi.org/10.1089/jmf.2016.3762] [PMID: 27809637]
[387]
Park SH, Huh TL, Kim SY, et al. Antiobesity effect of Gynostemma pentaphyllum extract (actiponin): A randomized, double-blind, place-bo-controlled trial. Obesity (Silver Spring) 2014; 22(1): 63-71.
[http://dx.doi.org/10.1002/oby.20539] [PMID: 23804546]
[388]
Leverrier A, Daguet D, Calame W, Dhoye P, Kodimule SP. Helianthus annuus seed extract affects weight and body composition of healthy obese adults during 12 weeks of consumption: A randomized, double-blind, placebo-controlled pilot study. Nutrients 2019; 11(5): 1080.
[http://dx.doi.org/10.3390/nu11051080] [PMID: 31096648]
[389]
Kim SY, Oh MR, Kim MG, Chae HJ, Chae SW. Anti-obesity effects of Yerba Mate (Ilex Paraguariensis): A randomized, double-blind, placebo-controlled clinical trial. BMC Complement Altern Med 2015; 15(1): 338.
[http://dx.doi.org/10.1186/s12906-015-0859-1] [PMID: 26408319]
[390]
Matsushita M, Yoneshiro T, Aita S, et al. Kaempferia parviflora extract increases whole-body energy expenditure in humans: Roles of brown adipose tissue. J Nutr Sci Vitaminol (Tokyo) 2015; 61(1): 79-83.
[http://dx.doi.org/10.3177/jnsv.61.79] [PMID: 25994142]
[391]
Lee Y, Cha YS, Park Y, Lee M. PPARγ2 C1431T polymorphism interacts with the antiobesogenic effects of Kochujang, a Korean ferment-ed, soybean-based red pepper paste, in overweight/obese subjects: A 12-week, double-blind randomized clinical trial. J Med Food 2017; 20(6): 610-7.
[http://dx.doi.org/10.1089/jmf.2016.3911] [PMID: 28622115]
[392]
Chan EW, Lye PY, Wong SK. Phytochemistry, pharmacology, and clinical trials of Morus alba. Chin J Nat Med 2016; 14(1): 17-30.
[PMID: 26850343]
[393]
Najmi A, Nasiruddin M, Khan RA, Haque SF. Effect of Nigella sativa oil on various clinical and biochemical parameters of insulin re-sistance syndrome. Int J Diabetes Dev Ctries 2008; 28(1): 11-4.
[http://dx.doi.org/10.4103/0973-3930.41980] [PMID: 19902033]
[394]
Razavi BM, Hosseinzadeh H. A review of the effects of Nigella sativa L. and its constituent, thymoquinone, in metabolic syndrome. J Endocrinol Invest 2014; 37(11): 1031-40.
[http://dx.doi.org/10.1007/s40618-014-0150-1] [PMID: 25125023]
[395]
Zhang L, Virgous C, Si H. Ginseng and obesity: Observations and understanding in cultured cells, animals and humans. J Nutr Biochem 2017; 44: 1-10.
[http://dx.doi.org/10.1016/j.jnutbio.2016.11.010] [PMID: 27930947]
[396]
Higashikawa F, Noda M, Awaya T, et al. Antiobesity effect of Pediococcus pentosaceus LP28 on overweight subjects: A randomized, double-blind, placebo-controlled clinical trial. Eur J Clin Nutr 2016; 70(5): 582-7.
[http://dx.doi.org/10.1038/ejcn.2016.17] [PMID: 26956126]
[397]
Kim YJ, Kwon EY, Kim JW, et al. Intervention study on the efficacy and safety of Platycodon grandiflorus ethanol extract in overweight or moderately obese adults: A single-center, randomized, double-blind, placebo-controlled trial. Nutrients 2019; 11(10): 2445.
[http://dx.doi.org/10.3390/nu11102445] [PMID: 31615016]
[398]
Han K, Bose S, Kim YM, et al. Rehmannia glutinosa reduced waist circumferences of Korean obese women possibly through modulation of gut microbiota. Food Funct 2015; 6(8): 2684-92.
[http://dx.doi.org/10.1039/C5FO00232J] [PMID: 26139477]
[399]
Ofner M, Tomaschitz A, Wonisch M, Litscher G. Complementary treatment of obesity and overweight with Salacia reticulata and vitamin d. Int J Vitam Nutr Res 2013; 83(4): 216-23.
[http://dx.doi.org/10.1024/0300-9831/a000162] [PMID: 25008011]
[400]
Chevassus H, Gaillard JB, Farret A, et al. A fenugreek seed extract selectively reduces spontaneous fat intake in overweight subjects. Eur J Clin Pharmacol 2010; 66(5): 449-55.
[http://dx.doi.org/10.1007/s00228-009-0770-0] [PMID: 20020282]
[401]
Szewczyk K, Zidorn C. Ethnobotany, phytochemistry, and bioactivity of the genus Turnera (Passifloraceae) with a focus on damiana--Turnera diffusa. J Ethnopharmacol 2014; 152(3): 424-43.
[http://dx.doi.org/10.1016/j.jep.2014.01.019] [PMID: 24468305]
[402]
Andersen T, Fogh J. Weight loss and delayed gastric emptying following a South American herbal preparation in overweight patients. J Hum Nutr Diet 2001; 14(3): 243-50.
[http://dx.doi.org/10.1046/j.1365-277X.2001.00290.x] [PMID: 11424516]
[403]
Anastasia UU. Anti-carcinoma, anti-obesity, antidiabetic and immune defence effects of Vernonia amygdalina leaf extract and leaf pow-der, in two human cancer patients. Am J Immunol 2010; 6: 50-3.
[http://dx.doi.org/10.3844/ajisp.2010.50.53]
[404]
Cho YG, Jung JH, Kang JH, Kwon JS, Yu SP, Baik TG. Effect of a herbal extract powder (YY-312) from Imperata cylindrica Beauvois, Citrus unshiu Markovich, and Evodia officinalis Dode on body fat mass in overweight adults: A 12-week, randomized, double-blind, pla-cebo-controlled, parallel-group clinical trial. BMC Complement Altern Med 2017; 17(1): 375.
[http://dx.doi.org/10.1186/s12906-017-1871-4] [PMID: 28754119]
[405]
Gao QH, Wu CS, Wang M. The jujube (Ziziphus jujuba Mill.) fruit: A review of current knowledge of fruit composition and health bene-fits. J Agric Food Chem 2013; 61(14): 3351-63.
[http://dx.doi.org/10.1021/jf4007032] [PMID: 23480594]
[406]
Mostafa UE, Labban L. The effect of Zizyphus jujube on serum lipid profile and some anthropometric measurements. Pak J Nutr 2013; 12: 538-43.
[http://dx.doi.org/10.3923/pjn.2013.538.543]
[407]
Kubota H, Morii R, Kojima-Yuasa A, Huang X, Yano Y, Matsui-Yuasa I. Effect of Zizyphus jujuba extract on the inhibition of adipogene-sis in 3T3-L1 preadipocytes. Am J Chin Med 2009; 37(3): 597-608.
[http://dx.doi.org/10.1142/S0192415X09007089] [PMID: 19606518]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy