Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

Quercetin and Glioma: Which Signaling Pathways are Involved?

Author(s): Omid Reza Tamtaji, Zahra Sadat Razavi, Nazanin Razzaghi, Michael Aschner, Erfaneh Barati and Hamed Mirzaei*

Volume 15, Issue 7, 2022

Published on: 29 April, 2022

Article ID: e110222201047 Pages: 7

DOI: 10.2174/1874467215666220211094136

Price: $65

Abstract

Gliomas are the most common brain tumors. These tumors commonly exhibit continuous growth without invading surrounding brain tissues. Dominant remedial approaches suffer limited therapy and survival rates. Although some progress has been made in conventional glioma treatments, these breakthroughs have not yet proven sufficient for treating this malignancy. The remedial options are limited given gliomas' aggressive metastasis and drug resistance. Quercetin, a flavonoid, is an anti-oxidative, anti-allergic, antiviral, anti-inflammatory, and anticancer compound. Multiple lines of evidence have shown that Quercetin has anti-tumor effects, documenting this natural compound exerts its pharmacological effects by targeting a variety of cellular and molecular processes, i.e., apoptosis, metastasis, and autophagy. Herein, we summarize various cellular and molecular pathways that are affected by Quercetin in gliomas.

Keywords: Glioma, quercetin, metastasis, apoptosis, molecular mechanism, pathology.

[1]
Castro, M.G.; Cowen, R.; Williamson, I.K.; David, A.; Jimenez-Dalmaroni, M.J.; Yuan, X.; Bigliari, A.; Williams, J.C.; Hu, J.; Lowenstein, P.R. Current and future strategies for the treatment of malignant brain tumors. Pharmacol. Ther., 2003, 98(1), 71-108.
[http://dx.doi.org/10.1016/S0163-7258(03)00014-7] [PMID: 12667889]
[2]
Porter, K.R.; McCarthy, B.J.; Freels, S.; Kim, Y.; Davis, F.G. Prevalence estimates for primary brain tumors in the United States by age, gender, behavior, and histology. Neuro-oncol., 2010, 12(6), 520-527.
[http://dx.doi.org/10.1093/neuonc/nop066] [PMID: 20511189]
[3]
Armstrong, T.S.; Bishof, A.M.; Brown, P.D.; Klein, M.; Taphoorn, M.J.; Theodore-Oklota, C. Determining priority signs and symptoms for use as clinical outcomes assessments in trials including patients with malignant gliomas: Panel 1 Report. Neuro-oncol., 2016, 18(Suppl. 2), ii1-ii12.
[http://dx.doi.org/10.1093/neuonc/nov267] [PMID: 26989127]
[4]
Vigneswaran, K.; Neill, S.; Hadjipanayis, C.G. Beyond the World Health Organization grading of infiltrating gliomas: advances in the molecular genetics of glioma classification. Ann. Transl. Med., 2015, 3(7), 95.
[PMID: 26015937]
[5]
Kang, C-M.; Bai, H-L.; Li, X-H.; Huang, R-Y.; Zhao, J-J.; Dai, X-Y.; Zheng, L.; Qiu, Y-R.; Hu, Y-W.; Wang, Q. The binding of lncRNA RP11-732M18.3 with 14-3-3 β/α accelerates p21 degradation and promotes glioma growth. EBioMedicine, 2019, 45, 58-69.
[http://dx.doi.org/10.1016/j.ebiom.2019.06.002] [PMID: 31202814]
[6]
Zhou, H.G.; Zhang, J.D.; Zhang, Y.F. The effect of downregulation of MCT1 on the proliferation of glioma cells. Zhonghua Zhong Liu Za Zhi, 2019, 41(3), 208-213. (Chinese journal of oncology)
[PMID: 30917457]
[7]
Du, C.L.; Peng, F.; Liu, K.Q. miR-517a is up-regulated in glioma and promotes glioma tumorigenesis in vitro and in vivo. Biosci. Rep., 2019, 39(5), BSR20181196.
[http://dx.doi.org/10.1042/BSR20181196] [PMID: 30962271]
[8]
Kleihues, P.; Louis, D.N.; Scheithauer, B.W.; Rorke, L.B.; Reifenberger, G.; Burger, P.C.; Cavenee, W.K. The WHO classification of tumors of the nervous system. J. Neuropathol. Exp. Neurol., 2002, 61(3), 215-225.
[http://dx.doi.org/10.1093/jnen/61.3.215] [PMID: 11895036]
[9]
Ohgaki, H.; Kleihues, P. Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J. Neuropathol. Exp. Neurol., 2005, 64(6), 479-489.
[http://dx.doi.org/10.1093/jnen/64.6.479] [PMID: 15977639]
[10]
Omuro, A.M.; Faivre, S.; Raymond, E. Lessons learned in the development of targeted therapy for malignant gliomas. Mol. Cancer Ther., 2007, 6(7), 1909-1919.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-0047] [PMID: 17620423]
[11]
Biau, J.; Chautard, E.; De Koning, L.; Court, F.; Pereira, B.; Verrelle, P.; Dutreix, M. Predictive biomarkers of resistance to hypofractionated radiotherapy in high grade glioma. Radiat. Oncol., 2017, 12(1), 123.
[PMID: 28754127]
[12]
Zanotto-Filho, A.; Coradini, K.; Braganhol, E.; Schröder, R.; de Oliveira, C.M.; Simões-Pires, A.; Battastini, A.M.O.; Pohlmann, A.R.; Guterres, S.S.; Forcelini, C.M.; Beck, R.C.; Moreira, J.C. Curcumin-loaded lipid-core nanocapsules as a strategy to improve pharmacological efficacy of curcumin in glioma treatment. Eur. J. Pharm. Biopharm., 2013, 83(2), 156-167.
[http://dx.doi.org/10.1016/j.ejpb.2012.10.019] [PMID: 23219677]
[13]
Wang, G.; Dai, F.; Yu, K.; Jia, Z.; Zhang, A.; Huang, Q.; Kang, C.; Jiang, H.; Pu, P. Resveratrol inhibits glioma cell growth via targeting oncogenic microRNAs and multiple signaling pathways. Int. J. Oncol., 2015, 46(4), 1739-1747.
[http://dx.doi.org/10.3892/ijo.2015.2863] [PMID: 25646654]
[14]
Hu, J.; Wang, J.; Wang, G.; Yao, Z.; Dang, X. Pharmacokinetics and antitumor efficacy of DSPE-PEG2000 polymeric liposomes loaded with quercetin and temozolomide: Analysis of their effectiveness in enhancing the chemosensitization of drug-resistant glioma cells. Int. J. Mol. Med., 2016, 37(3), 690-702.
[http://dx.doi.org/10.3892/ijmm.2016.2458] [PMID: 26782731]
[15]
Murakami, A.; Ashida, H.; Terao, J. Multitargeted cancer prevention by quercetin. Cancer Lett., 2008, 269(2), 315-325.
[http://dx.doi.org/10.1016/j.canlet.2008.03.046] [PMID: 18467024]
[16]
Zhang, W.T.; Zhang, W.; Zhong, Y.J.; Lü, Q.Y.; Cheng, J. Impact of quercetin on the expression of heparanase in cervical cancer cells. Zhonghua Fu Chan Ke Za Zhi, 2013, 48(3), 198-203.
[PMID: 23849943]
[17]
Ma, L.; Feugang, J.M.; Konarski, P.; Wang, J.; Lu, J.; Fu, S.; Ma, B.; Tian, B.; Zou, C.; Wang, Z. Growth inhibitory effects of quercetin on bladder cancer cell. Front. Biosci., 2006, 11, 2275-2285.
[http://dx.doi.org/10.2741/1970] [PMID: 16720314]
[18]
Li, H.; Tan, L.; Zhang, J-W.; Chen, H.; Liang, B.; Qiu, T.; Li, Q-S.; Cai, M.; Zhang, Q-H. Quercetin is the active component of Yang-Yin-Qing-Fei-Tang to induce apoptosis in non-small cell lung cancer. Am. J. Chin. Med., 2019, 47(4), 879-893.
[http://dx.doi.org/10.1142/S0192415X19500460] [PMID: 31179723]
[19]
Pozsgai, E.; Bellyei, S.; Cseh, A.; Boronkai, A.; Racz, B.; Szabo, A.; Sumegi, B.; Hocsak, E. Quercetin increases the efficacy of glioblastoma treatment compared to standard chemoradiotherapy by the suppression of PI-3-kinase-Akt pathway. Nutr. Cancer, 2013, 65(7), 1059-1066.
[http://dx.doi.org/10.1080/01635581.2013.810291] [PMID: 24032376]
[20]
Wild-Bode, C.; Weller, M.; Wick, W. Molecular determinants of glioma cell migration and invasion. J. Neurosurg., 2001, 94(6), 978-984.
[http://dx.doi.org/10.3171/jns.2001.94.6.0978] [PMID: 11409528]
[21]
Cottam, D.; Rees, R. Regulation of matrix metalloproteinases - their role in tumor invasion and metastasis. Int. J. Oncol., 1993, 2(6), 861-872.
[http://dx.doi.org/10.3892/ijo.2.6.861] [PMID: 21573639]
[22]
da Silva, A.B.; Coelho, P.L.C. das Neves Oliveira, M.; Oliveira, J.L.; Amparo, J.A.O.; da Silva, K.C.; Soares, J.R.P.; Pitanga, B.P.S; os Santos Souza, C. d; de Faria Lopes, G.P. The flavonoid rutin and its aglycone quercetin modulate the microglia inflammatory profile improving antiglioma activity. Brain Behav. Immun., 2020, 85, 170-185.
[23]
Zamin, L.L.; Filippi-Chiela, E.C.; Vargas, J.; Demartini, D.R.; Meurer, L.; Souza, A.P.; Bonorino, C.; Salbego, C.; Lenz, G. Quercetin promotes glioma growth in a rat model. Food Chem. Toxicol., 2014, 63, 205-211.
[http://dx.doi.org/10.1016/j.fct.2013.11.002] [PMID: 24252772]
[24]
Liu, Y.; Tang, Z-G.; Lin, Y.; Qu, X-G.; Lv, W.; Wang, G-B.; Li, C-L. Effects of quercetin on proliferation and migration of human glioblastoma U251 cells. Biomed. Pharmacother., 2017, 92, 33-38.
[http://dx.doi.org/10.1016/j.biopha.2017.05.044] [PMID: 28528183]
[25]
Santos, B.L.; Oliveira, M.N.; Coelho, P.L.; Pitanga, B.P.; da Silva, A.B.; Adelita, T.; Silva, V.D.A. Costa, Mde.F.; El-Bachá, R.S.; Tardy, M.; Chneiweiss, H.; Junier, M.P.; Moura-Neto, V.; Costa, S.L. Flavonoids suppress human glioblastoma cell growth by inhibiting cell metabolism, migration, and by regulating extracellular matrix proteins and metalloproteinases expression. Chem. Biol. Interact., 2015, 242, 123-138.
[http://dx.doi.org/10.1016/j.cbi.2015.07.014] [PMID: 26408079]
[26]
Pan, H-C.; Jiang, Q.; Yu, Y.; Mei, J-P.; Cui, Y-K.; Zhao, W-J. Quercetin promotes cell apoptosis and inhibits the expression of MMP-9 and fibronectin via the AKT and ERK signalling pathways in human glioma cells. Neurochem. Int., 2015, 80, 60-71.
[http://dx.doi.org/10.1016/j.neuint.2014.12.001] [PMID: 25481090]
[27]
Kim, H.; Moon, J.Y.; Ahn, K.S.; Cho, S.K. Quercetin induces mitochondrial mediated apoptosis and protective autophagy in human glioblastoma U373MG cells. Oxid. Med. Cell. Longev., 2013, 2013, 596496.
[http://dx.doi.org/10.1155/2013/596496] [PMID: 24379902]
[28]
Yuan, Z.; Hu, Z.; Zhang, L.; Yan, X.; Wang, H.; Wu, B. Effect of quercetin on invasion, migration, proliferation and cell cycle of glioma U87 cells. J. Southern Med. Uni., 2013, 33, 207-211.
[29]
Park, M.H.; Min, S. Quercetin-induced downregulation of phospholipase D1 inhibits proliferation and invasion in U87 glioma cells. Biochem. Biophys. Res. Commun., 2011, 412(4), 710-715.
[http://dx.doi.org/10.1016/j.bbrc.2011.08.037] [PMID: 21867678]
[30]
Amado, N.G.; Cerqueira, D.M.; Menezes, F.S.; da Silva, J.F.M.; Neto, V.M.; Abreu, J.G. Isoquercitrin isolated from Hyptis fasciculata reduces glioblastoma cell proliferation and changes β-catenin cellular localization. Anticancer Drugs, 2009, 20(7), 543-552.
[http://dx.doi.org/10.1097/CAD.0b013e32832d1149] [PMID: 19491660]
[31]
Michaud-Levesque, J.; Bousquet-Gagnon, N.; Béliveau, R. Quercetin abrogates IL-6/STAT3 signaling and inhibits glioblastoma cell line growth and migration. Exp. Cell Res., 2012, 318(8), 925-935.
[http://dx.doi.org/10.1016/j.yexcr.2012.02.017] [PMID: 22394507]
[32]
Bold, R.J.; Termuhlen, P.M.; McConkey, D.J. Apoptosis, cancer and cancer therapy. Surg. Oncol., 1997, 6(3), 133-142.
[http://dx.doi.org/10.1016/S0960-7404(97)00015-7] [PMID: 9576629]
[33]
Dell’Albani, P.; Di Marco, B.; Grasso, S.; Rocco, C.; Foti, M.C. Quercetin derivatives as potent inducers of selective cytotoxicity in glioma cells. Eur. J. Pharm. Sci., 2017, 101, 56-65.
[http://dx.doi.org/10.1016/j.ejps.2017.01.036] [PMID: 28153636]
[34]
Lou, M.; Zhang, L.N.; Ji, P.G.; Feng, F.Q.; Liu, J.H.; Yang, C.; Li, B.F.; Wang, L. Quercetin nanoparticles induced autophagy and apoptosis through AKT/ERK/Caspase-3 signaling pathway in human neuroglioma cells: In vitro and in vivo. Biomed. Pharmacother., 2016, 84, 1-9.
[http://dx.doi.org/10.1016/j.biopha.2016.08.055] [PMID: 27621033]
[35]
Sang, D.P.; Li, R.J.; Lan, Q. Quercetin sensitizes human glioblastoma cells to temozolomide in vitro via inhibition of Hsp27. Acta Pharmacol. Sin., 2014, 35(6), 832-838.
[http://dx.doi.org/10.1038/aps.2014.22] [PMID: 24902789]
[36]
Wang, H.; Yuan, Z.; Chen, Z.; Yao, F.; Hu, Z.; Wu, B. Effect of quercetin on glioma cell U87 apoptosis and feedback regulation of MDM2-p53. J. Southern Med. Univ., 2014, 34, 686-689.
[37]
Jakubowicz-Gil, J.; Langner, E.; Bądziul, D.; Wertel, I.; Rzeski, W. Quercetin and sorafenib as a novel and effective couple in programmed cell death induction in human gliomas. Neurotox. Res., 2014, 26(1), 64-77.
[http://dx.doi.org/10.1007/s12640-013-9452-x] [PMID: 24366851]
[38]
Jakubowicz-Gil, J.; Langner, E.; Bądziul, D.; Wertel, I.; Rzeski, W. Silencing of Hsp27 and Hsp72 in glioma cells as a tool for programmed cell death induction upon temozolomide and quercetin treatment. Toxicol. Appl. Pharmacol., 2013, 273(3), 580-589.
[http://dx.doi.org/10.1016/j.taap.2013.10.003] [PMID: 24126416]
[39]
Wang, G.; Wang, J.J.; Chen, X.L.; Du, S.M.; Li, D.S.; Pei, Z.J.; Lan, H.; Wu, L.B. The JAK2/STAT3 and mitochondrial pathways are essential for quercetin nanoliposome-induced C6 glioma cell death. Cell Death Dis., 2013, 4, e746.
[http://dx.doi.org/10.1038/cddis.2013.242] [PMID: 23907460]
[40]
Jakubowicz-Gil, J.; Langner, E.; Bądziul, D.; Wertel, I.; Rzeski, W. Apoptosis induction in human glioblastoma multiforme T98G cells upon temozolomide and quercetin treatment. Tumour Biol., 2013, 34(4), 2367-2378.
[http://dx.doi.org/10.1007/s13277-013-0785-0] [PMID: 23580181]
[41]
Jakubowicz-Gil, J.; Langner, E.; Rzeski, W. Kinetic studies of the effects of Temodal and quercetin on astrocytoma cells. Pharmacol. Rep., 2011, 63(2), 403-416.
[http://dx.doi.org/10.1016/S1734-1140(11)70506-0] [PMID: 21602595]
[42]
Siegelin, M.D.; Reuss, D.E.; Habel, A.; Rami, A.; von Deimling, A. Quercetin promotes degradation of survivin and thereby enhances death-receptor-mediated apoptosis in glioma cells. Neuro-oncol., 2009, 11(2), 122-131.
[http://dx.doi.org/10.1215/15228517-2008-085] [PMID: 18971417]
[43]
Kim, E.J.; Choi, C.H.; Park, J.Y.; Kang, S.K.; Kim, Y.K. Underlying mechanism of quercetin-induced cell death in human glioma cells. Neurochem. Res., 2008, 33(6), 971-979.
[http://dx.doi.org/10.1007/s11064-007-9416-8] [PMID: 18322795]
[44]
Braganhol, E.; Tamajusuku, A.S.; Bernardi, A.; Wink, M.R.; Battastini, A.M. Ecto-5′-nucleotidase/CD73 inhibition by quercetin in the human U138MG glioma cell line. Biochim. Biophys. Acta, 2007, 1770(9), 1352-1359.
[http://dx.doi.org/10.1016/j.bbagen.2007.06.003] [PMID: 17643826]
[45]
Wang, G.; Wang, J.; Luo, J.; Wang, L.; Chen, X.; Zhang, L.; Jiang, S. PEG2000-DPSE-coated quercetin nanoparticles remarkably enhanced anticancer effects through induced programed cell death on C6 glioma cells. J. Biomed. Mater. Res. A, 2013, 101(11), 3076-3085.
[http://dx.doi.org/10.1002/jbm.a.34607] [PMID: 23529952]
[46]
Zamin, L.L.; Filippi-Chiela, E.C.; Dillenburg-Pilla, P.; Horn, F.; Salbego, C.; Lenz, G. Resveratrol and quercetin cooperate to induce senescence-like growth arrest in C6 rat glioma cells. Cancer Sci., 2009, 100(9), 1655-1662.
[http://dx.doi.org/10.1111/j.1349-7006.2009.01215.x] [PMID: 19496785]
[47]
Bi, Y.; Shen, C.; Li, C.; Liu, Y.; Gao, D.; Shi, C.; Peng, F.; Liu, Z.; Zhao, B.; Zheng, Z.; Wang, X.; Hou, X.; Liu, H.; Wu, J.; Zou, H.; Wang, K.; Zhong, C.; Zhang, J.; Shi, C.; Zhao, S. Inhibition of autophagy induced by quercetin at a late stage enhances cytotoxic effects on glioma cells. Tumour Biol., 2016, 37(3), 3549-3560.
[http://dx.doi.org/10.1007/s13277-015-4125-4] [PMID: 26454746]
[48]
Jakubowicz-Gil, J.; Langner, E.; Wertel, I.; Piersiak, T.; Rzeski, W. Temozolomide, quercetin and cell death in the MOGGCCM astrocytoma cell line. Chem. Biol. Interact., 2010, 188(1), 190-203.
[http://dx.doi.org/10.1016/j.cbi.2010.07.015] [PMID: 20654599]
[49]
Galluzzi, L.; Kroemer, G. Necroptosis: A specialized pathway of programmed necrosis. Cell, 2008, 135(7), 1161-1163.
[http://dx.doi.org/10.1016/j.cell.2008.12.004] [PMID: 19109884]
[50]
Golstein, P.; Kroemer, G. Cell death by necrosis: Towards a molecular definition. Trends Biochem. Sci., 2007, 32(1), 37-43.
[http://dx.doi.org/10.1016/j.tibs.2006.11.001] [PMID: 17141506]
[51]
Edinger, A.L.; Thompson, C.B. Death by design: Apoptosis, necrosis and autophagy. Curr. Opin. Cell Biol., 2004, 16(6), 663-669.
[http://dx.doi.org/10.1016/j.ceb.2004.09.011] [PMID: 15530778]
[52]
Wang, G.; Wang, J.J.; Yang, G.Y.; Du, S.M.; Zeng, N.; Li, D.S.; Li, R.M.; Chen, J.Y.; Feng, J.B.; Yuan, S.H.; Ye, F. Effects of quercetin nanoliposomes on C6 glioma cells through induction of type III programmed cell death. Int. J. Nanomedicine, 2012, 7, 271-280.
[PMID: 22275840]
[53]
Braganhol, E.; Zamin, L.L.; Canedo, A.D.; Horn, F.; Tamajusuku, A.S.; Wink, M.R.; Salbego, C.; Battastini, A.M. Antiproliferative effect of quercetin in the human U138MG glioma cell line. Anticancer Drugs, 2006, 17(6), 663-671.
[http://dx.doi.org/10.1097/01.cad.0000215063.23932.02] [PMID: 16917212]
[54]
Mantovani, A.; Allavena, P.; Sica, A.; Balkwill, F. Cancer-related inflammation. Nature, 2008, 454(7203), 436-444.
[http://dx.doi.org/10.1038/nature07205] [PMID: 18650914]
[55]
Balkwill, F.; Coussens, L.M. Cancer: An inflammatory link. Nature, 2004, 431(7007), 405-406.
[http://dx.doi.org/10.1038/431405a] [PMID: 15385993]
[56]
Amirian, E.; Liu, Y.; Scheurer, M.E.; El-Zein, R.; Gilbert, M.R.; Bondy, M.L. Genetic variants in inflammation pathway genes and asthma in glioma susceptibility. Neuro-oncol., 2010, 12(5), 444-452.
[PMID: 20406895]
[57]
Chen, F.; Wang, W.; El-Deiry, W.S. Current strategies to target p53 in cancer. Biochem. Pharmacol., 2010, 80(5), 724-730.
[http://dx.doi.org/10.1016/j.bcp.2010.04.031] [PMID: 20450892]
[58]
Whibley, C.; Pharoah, P.D.; Hollstein, M. p53 polymorphisms: Cancer implications. Nat. Rev. Cancer, 2009, 9(2), 95-107.
[http://dx.doi.org/10.1038/nrc2584] [PMID: 19165225]
[59]
Timiryasova, T.M.; Chen, B.; Haghighat, P.; Fodor, I. Vaccinia virus-mediated expression of wild-type p53 suppresses glioma cell growth and induces apoptosis. Int. J. Oncol., 1999, 14(5), 845-854.
[http://dx.doi.org/10.3892/ijo.14.5.845] [PMID: 10200333]
[60]
Sherr, C.J. Cancer cell cycles. Science, 1996, 274(5293), 1672-1677.
[http://dx.doi.org/10.1126/science.274.5293.1672] [PMID: 8939849]
[61]
Zhang, X.; Zhao, M.; Huang, A.Y.; Fei, Z.; Zhang, W.; Wang, X.L. The effect of cyclin D expression on cell proliferation in human gliomas. J. Clin. Neurosci., 2005, 12(2), 166-168.
[http://dx.doi.org/10.1016/j.jocn.2004.03.036] [PMID: 15749420]
[62]
Scholzen, T.; Gerdes, J. The Ki-67 protein: From the known and the unknown. J. Cell. Physiol., 2000, 182(3), 311-322.
[http://dx.doi.org/10.1002/(SICI)1097-4652(200003)182:3<311:AID-JCP1>3.0.CO;2-9] [PMID: 10653597]
[63]
Klöppel, G.; Perren, A.; Heitz, P.U. The gastroenteropancreatic neuroendocrine cell system and its tumors: the WHO classification. Ann. N. Y. Acad. Sci., 2004, 1014, 13-27.
[http://dx.doi.org/10.1196/annals.1294.002] [PMID: 15153416]
[64]
Brown, D.C.; Gatter, K.C. Ki67 protein: the immaculate deception? Histopathology, 2002, 40(1), 2-11.
[http://dx.doi.org/10.1046/j.1365-2559.2002.01343.x] [PMID: 11903593]
[65]
Zuber, P.; Hamou, M-F.; de Tribolet, N. Identification of proliferating cells in human gliomas using the monoclonal antibody Ki-67. Neurosurgery, 1988, 22(2), 364-368.
[http://dx.doi.org/10.1227/00006123-198802000-00015] [PMID: 28327]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy