Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Recent Developments in Targeting Bromodomain and Extra Terminal Domain Proteins for Cancer Therapeutics

Author(s): Maohua Cai, Jinyun Dong*, Haobin Li and Jiang-Jiang Qin*

Volume 29, Issue 25, 2022

Published on: 28 March, 2022

Page: [4391 - 4409] Pages: 19

DOI: 10.2174/0929867329666220211091806

Price: $65

conference banner
Abstract

Bromodomain and extra-terminal domain (BET) proteins are a well-studied family of proteins associated with a variety of diseases, including malignancy and chronic inflammation. Currently, numerous pan BET inhibitors have exhibited potent efficacy in several in vivo preclinical models and entered clinical trials but have largely stalled due to their adverse events. Therefore, the development of new selective inhibitors and PROTACs (Proteolysis Targeting Chimeras) targeting BET is urgently needed. In the present review, we summarize the BET protein structure and the recent development in BET inhibitors, focusing mainly on BRD4-selective inhibitors and PROTAC degraders.

Keywords: Cancer, BET, BRD4, inhibitor, PROTAC, drug design.

[1]
Filippakopoulos, P.; Picaud, S.; Mangos, M.; Keates, T.; Lambert, J.P.; Barsyte-Lovejoy, D.; Felletar, I.; Volkmer, R.; Müller, S.; Pawson, T.; Gingras, A.C.; Arrowsmith, C.H.; Knapp, S. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell, 2012, 149(1), 214-231.
[http://dx.doi.org/10.1016/j.cell.2012.02.013] [PMID: 22464331]
[2]
Pervaiz, M.; Mishra, P.; Günther, S. Bromodomain drug discovery - The past, the present, and the future. Chem. Rec., 2018, 18(12), 1808-1817.
[http://dx.doi.org/10.1002/tcr.201800074] [PMID: 30289209]
[3]
Belkina, A.C.; Denis, G.V. BET domain co-regulators in obesity, inflammation and cancer. Nat. Rev. Cancer, 2012, 12(7), 465-477.
[http://dx.doi.org/10.1038/nrc3256] [PMID: 22722403]
[4]
Zhang, Z.; Ma, P.; Jing, Y.; Yan, Y.; Cai, M.C.; Zhang, M.; Zhang, S.; Peng, H.; Ji, Z.L.; Di, W.; Gu, Z.; Gao, W.Q.; Zhuang, G. BET bromodomain inhibition as a therapeutic strategy in ovarian cancer by downregulating FoxM1. Theranostics, 2016, 6(2), 219-230.
[http://dx.doi.org/10.7150/thno.13178] [PMID: 26877780]
[5]
Tsume, M.; Kimura-Yoshida, C.; Mochida, K.; Shibukawa, Y.; Amazaki, S.; Wada, Y.; Hiramatsu, R.; Shimokawa, K.; Matsuo, I. Brd2 is required for cell cycle exit and neuronal differentiation through the E2F1 pathway in mouse neuroepithelial cells. Biochem. Biophys. Res. Commun., 2012, 425(4), 762-768.
[http://dx.doi.org/10.1016/j.bbrc.2012.07.149] [PMID: 22885183]
[6]
Gursoy-Yuzugullu, O.; Carman, C.; Price, B.D. Spatially restricted loading of BRD2 at DNA double-strand breaks protects H4 acetylation domains and promotes DNA repair. Sci. Rep., 2017, 7(1), 12921.
[http://dx.doi.org/10.1038/s41598-017-13036-5] [PMID: 29018219]
[7]
Lamonica, J.M.; Deng, W.; Kadauke, S.; Campbell, A.E.; Gamsjaeger, R.; Wang, H.; Cheng, Y.; Billin, A.N.; Hardison, R.C.; Mackay, J.P.; Blobel, G.A. Bromodomain protein Brd3 associates with acetylated GATA1 to promote its chromatin occupancy at erythroid target genes. Proc. Natl. Acad. Sci. USA, 2011, 108(22), E159-E168.
[http://dx.doi.org/10.1073/pnas.1102140108] [PMID: 21536911]
[8]
Gaucher, J.; Boussouar, F.; Montellier, E.; Curtet, S.; Buchou, T.; Bertrand, S.; Hery, P.; Jounier, S.; Depaux, A.; Vitte, A.L.; Guardiola, P.; Pernet, K.; Debernardi, A.; Lopez, F.; Holota, H.; Imbert, J.; Wolgemuth, D.J.; Gérard, M.; Rousseaux, S.; Khochbin, S. Bromodomain-dependent stage-specific male genome programming by Brdt. EMBO J., 2012, 31(19), 3809-3820.
[http://dx.doi.org/10.1038/emboj.2012.233] [PMID: 22922464]
[9]
Stonestrom, A.J.; Hsu, S.C.; Werner, M.T.; Blobel, G.A. Erythropoiesis provides a BRD’s eye view of BET protein function. Drug Discov. Today. Technol., 2016, 19, 23-28.
[http://dx.doi.org/10.1016/j.ddtec.2016.05.004] [PMID: 27769353]
[10]
Stathis, A.; Bertoni, F. BET proteins as targets for anticancer treatment. Cancer Discov., 2018, 8(1), 24-36.
[http://dx.doi.org/10.1158/2159-8290.CD-17-0605] [PMID: 29263030]
[11]
Duan, Q.; McMahon, S.; Anand, P.; Shah, H.; Thomas, S.; Salunga, H.T.; Huang, Y.; Zhang, R.; Sahadevan, A.; Lemieux, M.E.; Brown, J.D.; Srivastava, D.; Bradner, J.E.; McKinsey, T.A.; Haldar, S.M. BET bromodomain inhibition suppresses innate inflammatory and profibrotic transcriptional networks in heart failure. Sci. Transl. Med., 2017, 9(390), eaah5084.
[http://dx.doi.org/10.1126/scitranslmed.aah5084] [PMID: 28515341]
[12]
Lovén, J.; Hoke, H.A.; Lin, C.Y.; Lau, A.; Orlando, D.A.; Vakoc, C.R.; Bradner, J.E.; Lee, T.I.; Young, R.A. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell, 2013, 153(2), 320-334.
[http://dx.doi.org/10.1016/j.cell.2013.03.036] [PMID: 23582323]
[13]
Bradner, J.E.; Hnisz, D.; Young, R.A. Transcriptional addiction in cancer. Cell, 2017, 168(4), 629-643.
[http://dx.doi.org/10.1016/j.cell.2016.12.013] [PMID: 28187285]
[14]
Marazzi, I.; Greenbaum, B.D.; Low, D.H.P.; Guccione, E. Chromatin dependencies in cancer and inflammation. Nat. Rev. Mol. Cell Biol., 2018, 19(4), 245-261.
[http://dx.doi.org/10.1038/nrm.2017.113] [PMID: 29184195]
[15]
Wang, J.; Quan, Y.; Lv, J.; Gong, S.; Dong, D. BRD4 promotes glioma cell stemness via enhancing miR-142-5p-mediated activation of Wnt/β-catenin signaling. Environ. Toxicol., 2020, 35(3), 368-376.
[http://dx.doi.org/10.1002/tox.22873] [PMID: 31724259]
[16]
Fish, P.V.; Filippakopoulos, P.; Bish, G.; Brennan, P.E.; Bunnage, M.E.; Cook, A.S.; Federov, O.; Gerstenberger, B.S.; Jones, H.; Knapp, S.; Marsden, B.; Nocka, K.; Owen, D.R.; Philpott, M.; Picaud, S.; Primiano, M.J.; Ralph, M.J.; Sciammetta, N.; Trzupek, J.D. Identification of a chemical probe for bromo and extra C-terminal bromodomain inhibition through optimization of a fragment-derived hit. J. Med. Chem., 2012, 55(22), 9831-9837.
[http://dx.doi.org/10.1021/jm3010515] [PMID: 23095041]
[17]
Sheppard, G.S.; Wang, L.; Fidanze, S.D.; Hasvold, L.A.; Liu, D.; Pratt, J.K.; Park, C.H.; Longenecker, K.; Qiu, W.; Torrent, M.; Kovar, P.J.; Bui, M.; Faivre, E.; Huang, X.; Lin, X.; Wilcox, D.; Zhang, L.; Shen, Y.; Albert, D.H.; Magoc, T.J.; Rajaraman, G.; Kati, W.M.; McDaniel, K.F. Discovery of N-Ethyl-4-[2-(4-fluoro-2,6-dimethyl-phenoxy)- 5-(1-hydroxy-1-methyl-ethyl)phenyl]-6-methyl-7-oxo-1H-pyrrolo[2,3-c]pyridine-2-carboxamide (ABBV-744), a BET Bromodomain Inhibitor with Selectivity for the Second Bromodomain. J. Med. Chem.,
[http://dx.doi.org/10.1021/acs.jmedchem.0c00628] [PMID: 32324999]
[18]
Bradbury, R.H.; Callis, R.; Carr, G.R.; Chen, H.; Clark, E.; Feron, L.; Glossop, S.; Graham, M.A.; Hattersley, M.; Jones, C.; Lamont, S.G.; Ouvry, G.; Patel, A.; Patel, J.; Rabow, A.A.; Roberts, C.A.; Stokes, S.; Stratton, N.; Walker, G.E.; Ward, L.; Whalley, D.; Whittaker, D.; Wrigley, G.; Waring, M.J. Optimization of a series of bivalent triazolopyridazine based bromodomain and extraterminal inhibitors: The discovery of (3R)-4-[2-[4-[1-(3-Methoxy-[1,2,4]triazolo[4,3-b]pyridazin-6-yl)-4-piperidyl]phenoxy] ethyl]-1,3-dimethyl-piperazin-2-one (AZD5153). J. Med. Chem., 2016, 59(17), 7801-7817.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00070] [PMID: 27528113]
[19]
Liu, Z.; Wang, P.; Chen, H.; Wold, E.A.; Tian, B.; Brasier, A.R.; Zhou, J. Drug discovery targeting bromodomain-containing protein 4. J. Med. Chem., 2017, 60(11), 4533-4558.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01761] [PMID: 28195723]
[20]
Tang, P.; Zhang, J.; Liu, J.; Chiang, C.M.; Ouyang, L. Targeting bromodomain and extraterminal proteins for drug discovery: from current progress to technological development. J. Med. Chem., 2021, 64(5), 2419-2435.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01487] [PMID: 33616410]
[21]
Moreno, V.; Sepulveda, J.M.; Vieito, M.; Hernández-Guerrero, T.; Doger, B.; Saavedra, O.; Ferrero, O.; Sarmiento, R.; Arias, M.; De Alvaro, J.; Di Martino, J.; Zuraek, M.; Sanchez-Pérez, T.; Aronchik, I.; Filvaroff, E.H.; Lamba, M.; Hanna, B.; Nikolova, Z.; Braña, I. Phase I study of CC-90010, a reversible, oral BET inhibitor in patients with advanced solid tumors and relapsed/refractory non-Hodgkin’s lymphoma. Ann. Oncol., 2020, 31(6), 780-788.
[http://dx.doi.org/10.1016/j.annonc.2020.03.294] [PMID: 32240793]
[22]
Mascarenhas, J.; Kremyanskaya, M.; Hoffman, R.; Bose, P.; Talpaz, M.; Harrison, C.N.; Gupta, V.; Leber, B.; Sirhan, S.; Kabir, S.; Senderowicz, A.; Shao, J.; Mertz, J.; Trojer, P.; Verstovsek, S. MANIFEST, a phase 2 study of CPI-0610, a bromodomain and extraterminal domain inhibitor (BETi), as monotherapy or “add-on” to ruxolitinib, in patients with refractory or intolerant advanced myelofibrosis. Blood, 2019, 134(Suppl. 1), 670-670.
[http://dx.doi.org/10.1182/blood-2019-127119]
[23]
Patel, M.R.; Garcia-Manero, G.; Paquette, R.; Dinner, S.; Donnellan, W.B.; Grunwald, M.R.; Ribadeneira, M.D.; Schroeder, P.; Brevard, J.; Wilson, L.; Sweeney, J.; Kelly, P.; Lancet, J.E. Phase 1 dose escalation and expansion study to determine safety, tolerability, pharmacokinetics, and pharmacodynamics of the BET inhibitor FT-1101 as a single agent in patients with relapsed or refractory hematologic malignancies. Blood, 2019, 134(Suppl. 1), 3907-3907.
[http://dx.doi.org/10.1182/blood-2019-124741]
[24]
Bates, J.; Kusam, S.; Tannheimer, S.; Chan, J.; Li, Y.; Breckenridge, D.; Tumas, D. The combination of a BET Inhibitor (GS-5829) and a BTK Inhibitor (GS-4059) Potentiates DLBCL cell line cell death and reduces expression of MYC, IL-10, and IL-6 in vitro. Blood, 2016, 128(22), 5116.
[http://dx.doi.org/10.1182/blood.V128.22.5116.5116]
[25]
Zhang, D.; Leal, A.S.; Carapellucci, S.; Zydeck, K.; Sporn, M.B.; Liby, K.T. Chemoprevention of preclinical breast and lung cancer with the bromodomain inhibitor I-BET 762. Cancer Prev. Res. (Phila.), 2018, 11(3), 143-156.
[http://dx.doi.org/10.1158/1940-6207.CAPR-17-0264] [PMID: 29246957]
[26]
Forero-Torres, A.; Rosen, S.; Smith, D.C.; Lesser, G.; Peguero, J.; Gupta, S.; Watts, J.M.; Noel, M.; Kurzrock, R.; Park, H.; LoRusso, P.; Coombs, C.C.; Zheng, F.; Switzky, J.; Yeleswaram, S.; Falchook, G. Preliminary results from an ongoing phase 1/2 study of INCB057643, a Bromodomain and Extraterminal (BET) Protein Inhibitor, in Patients (pts) with advanced malignancies. Blood, 2017, 130(Suppl. 1), 4048-4048.
[http://dx.doi.org/10.1182/blood.V130.Suppl_1.4048.4048]
[27]
Ameratunga, M.; Braña, I.; Bono, P.; Postel-Vinay, S.; Plummer, R.; Aspegren, J.; Korjamo, T.; Snapir, A.; de Bono, J.S. First-in-human Phase 1 open label study of the BET inhibitor ODM-207 in patients with selected solid tumours. Br. J. Cancer, 2020, 123(12), 1730-1736.
[http://dx.doi.org/10.1038/s41416-020-01077-z] [PMID: 32989226]
[28]
Berthon, C.; Raffoux, E.; Thomas, X.; Vey, N.; Gomez-Roca, C.; Yee, K.; Taussig, D.C.; Rezai, K.; Roumier, C.; Herait, P.; Kahatt, C.; Quesnel, B.; Michallet, M.; Recher, C.; Lokiec, F.; Preudhomme, C.; Dombret, H. Bromodomain inhibitor OTX015 in patients with acute leukaemia: a dose-escalation, phase 1 study. Lancet Haematol., 2016, 3(4), e186-e195.
[http://dx.doi.org/10.1016/S2352-3026(15)00247-1] [PMID: 27063977]
[29]
Shapiro, G.I.; Dowlati, A.; LoRusso, P.M.; Eder, J.P.; Anderson, A.; Do, K.T.; Kagey, M.H.; Sirard, C.; Bradner, J.E.; Landau, S.B. Abstract A49: Clinically efficacy of the BET bromodomain inhibitor TEN-010 in an open-label substudy with patients with documented NUT-midline carcinoma (NMC). Mol. Cancer Ther., 2015, 14(12)(Suppl. 2), A49.
[http://dx.doi.org/10.1158/1535-7163.TARG-15-A49]
[30]
Aftimos, P.; Oliveira, M.; Punie, K.; Boni, V.; Robson, M. PS11-10: A Phase 1b/2 Study of the BET inhibitor ZEN003694 in combination with talazoparib for treatment of patients with TNBC without gBRCA1/2 mutations. Breast Cancer Virtual Symposium San Antonio, Texas, 2020, Dec. 8-11;.
[31]
Cochran, A.G.; Conery, A.R.; Sims, R.J., III Bromodomains: A new target class for drug development. Nat. Rev. Drug Discov., 2019, 18(8), 609-628.
[http://dx.doi.org/10.1038/s41573-019-0030-7] [PMID: 31273347]
[32]
Vangamudi, B.; Paul, T.A.; Shah, P.K.; Kost-Alimova, M.; Nottebaum, L.; Shi, X.; Zhan, Y.; Leo, E.; Mahadeshwar, H.S.; Protopopov, A.; Futreal, A.; Tieu, T.N.; Peoples, M.; Heffernan, T.P.; Marszalek, J.R.; Toniatti, C.; Petrocchi, A.; Verhelle, D.; Owen, D.R.; Draetta, G.; Jones, P.; Palmer, W.S.; Sharma, S.; Andersen, J.N. The SMARCA2/4 ATPase domain surpasses the bromodomain as a drug target in SWI/SNF-mutant cancers: Insights from cDNA rescue and PFI-3 inhibitor studies. Cancer Res., 2015, 75(18), 3865-3878.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-3798] [PMID: 26139243]
[33]
Nakamura, Y.; Umehara, T.; Nakano, K.; Jang, M.K.; Shirouzu, M.; Morita, S.; Uda-Tochio, H.; Hamana, H.; Terada, T.; Adachi, N.; Matsumoto, T.; Tanaka, A.; Horikoshi, M.; Ozato, K.; Padmanabhan, B.; Yokoyama, S. Crystal structure of the human BRD2 bromodomain: Insights into dimerization and recognition of acetylated histone H4. J. Biol. Chem., 2007, 282(6), 4193-4201.
[http://dx.doi.org/10.1074/jbc.M605971200] [PMID: 17148447]
[34]
Shi, J.; Song, S.; Han, H.; Xu, H.; Huang, M.; Qian, C.; Zhang, X.; Ouyang, L.; Hong, Y.; Zhuang, W.; Li, B. Potent activity of the bromodomain inhibitor OTX015 in multiple myeloma. Mol. Pharm., 2018, 15(9), 4139-4147.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00554] [PMID: 30048594]
[35]
Wong, C.; Laddha, S.V.; Tang, L.; Vosburgh, E.; Levine, A.J.; Normant, E.; Sandy, P.; Harris, C.R.; Chan, C.S.; Xu, E.Y. The bromodomain and extra-terminal inhibitor CPI203 enhances the antiproliferative effects of rapamycin on human neuroendocrine tumors. Cell Death Dis., 2014, 5(10), e1450.
[http://dx.doi.org/10.1038/cddis.2014.396] [PMID: 25299775]
[36]
Watson, R.J.; Bamborough, P.; Barnett, H.; Chung, C.W.; Davis, R.; Gordon, L.; Grandi, P.; Petretich, M.; Phillipou, A.; Prinjha, R.K.; Rioja, I.; Soden, P.; Werner, T.; Demont, E.H. GSK789: a selective inhibitor of the first bromodomains (BD1) of the bromo and extra terminal domain (BET) proteins. J. Med. Chem., 2020, 63(17), 9045-9069.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00614] [PMID: 32691589]
[37]
Wellaway, C.R.; Bamborough, P.; Bernard, S.G.; Chung, C.W.; Craggs, P.D.; Cutler, L.; Demont, E.H.; Evans, J.P.; Gordon, L.; Karamshi, B.; Lewis, A.J.; Lindon, M.J.; Mitchell, D.J.; Rioja, I.; Soden, P.E.; Taylor, S.; Watson, R.J.; Willis, R.; Woolven, J.M.; Wyspiańska, B.S.; Kerr, W.J.; Prinjha, R.K. Structure-based design of a Bromodomain and Extraterminal Domain (BET) inhibitor selective for the N-Terminal bromodomains that retains an anti-inflammatory and antiproliferative phenotype. J. Med. Chem., 2020, 63(17), 9020-9044.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00566] [PMID: 32787145]
[38]
Cui, H.; Divakaran, A.; Pandey, A.K.; Johnson, J.A.; Zahid, H.; Hoell, Z.J.; Ellingson, M.O.; Shi, K.; Aihara, H.; Harki, D.A.; Pomerantz, W.C.K. Selective N-terminal BET bromodomain inhibitors by targeting non-conserved residues and structured water displacement*. Angew. Chem. Int. Ed. Engl., 2021, 60(3), 1220-1226.
[http://dx.doi.org/10.1002/anie.202008625] [PMID: 32975004]
[39]
Jiang, H.; Xing, J.; Wang, C.; Zhang, H.; Yue, L.; Wan, X.; Chen, W.; Ding, H.; Xie, Y.; Tao, H.; Chen, Z.; Jiang, H.; Chen, K.; Chen, S.; Zheng, M.; Zhang, Y.; Luo, C. Discovery of novel BET inhibitors by drug repurposing of nitroxoline and its analogues. Org. Biomol. Chem., 2017, 15(44), 9352-9361.
[http://dx.doi.org/10.1039/C7OB02369C] [PMID: 29087414]
[40]
Chen, W.; Zhang, H.; Chen, Z.; Jiang, H.; Liao, L.; Fan, S.; Xing, J.; Xie, Y.; Chen, S.; Ding, H.; Chen, K.; Jiang, H.; Luo, C.; Zheng, M.; Yao, Z.; Huang, Y.; Zhang, Y. Development and evaluation of a novel series of Nitroxoline-derived BET inhibitors with antitumor activity in renal cell carcinoma. Oncogenesis, 2018, 7(11), 83.
[http://dx.doi.org/10.1038/s41389-018-0093-z] [PMID: 30385738]
[41]
Bailey, D.; Jahagirdar, R.; Gordon, A.; Hafiane, A.; Campbell, S.; Chatur, S.; Wagner, G.S.; Hansen, H.C.; Chiacchia, F.S.; Johansson, J.; Krimbou, L.; Wong, N.C.; Genest, J. RVX-208: a small molecule that increases apolipoprotein A-I and high-density lipoprotein cholesterol in vitro and in vivo. J. Am. Coll. Cardiol., 2010, 55(23), 2580-2589.
[http://dx.doi.org/10.1016/j.jacc.2010.02.035] [PMID: 20513599]
[42]
McLure, K.G.; Gesner, E.M.; Tsujikawa, L.; Kharenko, O.A.; Attwell, S.; Campeau, E.; Wasiak, S.; Stein, A.; White, A.; Fontano, E.; Suto, R.K.; Wong, N.C.; Wagner, G.S.; Hansen, H.C.; Young, P.R. RVX-208, an inducer of ApoA-I in humans, is a BET bromodomain antagonist. PLoS One, 2013, 8(12), e83190.
[http://dx.doi.org/10.1371/journal.pone.0083190] [PMID: 24391744]
[43]
Faivre, E.J.; McDaniel, K.F.; Albert, D.H.; Mantena, S.R.; Plotnik, J.P.; Wilcox, D.; Zhang, L.; Bui, M.H.; Sheppard, G.S.; Wang, L.; Sehgal, V.; Lin, X.; Huang, X.; Lu, X.; Uziel, T.; Hessler, P.; Lam, L.T.; Bellin, R.J.; Mehta, G.; Fidanze, S.; Pratt, J.K.; Liu, D.; Hasvold, L.A.; Sun, C.; Panchal, S.C.; Nicolette, J.J.; Fossey, S.L.; Park, C.H.; Longenecker, K.; Bigelow, L.; Torrent, M.; Rosenberg, S.H.; Kati, W.M.; Shen, Y. Selective inhibition of the BD2 bromodomain of BET proteins in prostate cancer. Nature, 2020, 578(7794), 306-310.
[http://dx.doi.org/10.1038/s41586-020-1930-8] [PMID: 31969702]
[44]
Chen, D.; Lu, T.; Yan, Z.; Lu, W.; Zhou, F.; Lyu, X.; Xu, B.; Jiang, H.; Chen, K.; Luo, C.; Zhao, Y. Discovery, structural insight, and bioactivities of BY27 as a selective inhibitor of the second bromodomains of BET proteins. Eur. J. Med. Chem., 2019, 182, 111633.
[http://dx.doi.org/10.1016/j.ejmech.2019.111633] [PMID: 31461688]
[45]
Law, R.P.; Atkinson, S.J.; Bamborough, P.; Chung, C.W.; Demont, E.H.; Gordon, L.J.; Lindon, M.; Prinjha, R.K.; Watson, A.J.B.; Hirst, D.J. Discovery of tetrahydroquinoxalines as Bromodomain and Extra-Terminal Domain (BET) inhibitors with selectivity for the second bromodomain. J. Med. Chem., 2018, 61(10), 4317-4334.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01666] [PMID: 29656650]
[46]
Preston, A.; Atkinson, S.; Bamborough, P.; Chung, C.W.; Craggs, P.D.; Gordon, L.; Grandi, P.; Gray, J.R.J.; Jones, E.J.; Lindon, M.; Michon, A.M.; Mitchell, D.J.; Prinjha, R.K.; Rianjongdee, F.; Rioja, I.; Seal, J.; Taylor, S.; Wall, I.; Watson, R.J.; Woolven, J.; Demont, E.H. Design and synthesis of a highly selective and in vivo-capable inhibitor of the second bromodomain of the bromodomain and extra terminal domain family of proteins. J. Med. Chem., 2020, 63(17), 9070-9092.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00605] [PMID: 32691591]
[47]
Seal, J.T.; Atkinson, S.J.; Aylott, H.; Bamborough, P.; Chung, C.W.; Copley, R.C.B.; Gordon, L.; Grandi, P.; Gray, J.R.J.; Harrison, L.A.; Hayhow, T.G.; Lindon, M.; Messenger, C.; Michon, A.M.; Mitchell, D.; Preston, A.; Prinjha, R.K.; Rioja, I.; Taylor, S.; Wall, I.D.; Watson, R.J.; Woolven, J.M.; Demont, E.H. The optimization of a novel, weak Bromo and Extra Terminal Domain (BET) bromodomain fragment ligand to a potent and selective second Bromodomain (BD2) inhibitor. J. Med. Chem., 2020, 63(17), 9093-9126.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00796] [PMID: 32702236]
[48]
Slavish, P.J.; Chi, L.; Yun, M.K.; Tsurkan, L.; Martinez, N.E.; Jonchere, B.; Chai, S.C.; Connelly, M.; Waddell, M.B.; Das, S.; Neale, G.; Li, Z.; Shadrick, W.R.; Olsen, R.R.; Freeman, K.W.; Low, J.A.; Price, J.E.; Young, B.M.; Bharatham, N.; Boyd, V.A.; Yang, J.; Lee, R.E.; Morfouace, M.; Roussel, M.F.; Chen, T.; Savic, D.; Guy, R.K.; White, S.W.; Shelat, A.A.; Potter, P.M. Bromodomain-selective BET inhibitors are potent antitumor agents against MYC-driven pediatric cancer. Cancer Res., 2020, 80(17), 3507-3518.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-3934] [PMID: 32651255]
[49]
Li, H.; Dong, J.; Cai, M.; Xu, Z.; Cheng, X-D.; Qin, J-J. Protein degradation technology: a strategic paradigm shift in drug discovery. J. Hematol. Oncol., 2021, 14(1), 138.
[http://dx.doi.org/10.1186/s13045-021-01146-7] [PMID: 34488823]
[50]
Zou, Y.; Ma, D.; Wang, Y. The PROTAC technology in drug development. Cell Biochem. Funct., 2019, 37(1), 21-30.
[http://dx.doi.org/10.1002/cbf.3369] [PMID: 30604499]
[51]
Dong, J.; Cheng, X.D.; Zhang, W.D.; Qin, J.J. Recent update on development of small-molecule STAT3 inhibitors for cancer therapy: From phosphorylation inhibition to protein degradation. J. Med. Chem., 2021, 64(13), 8884-8915.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00629] [PMID: 34170703]
[52]
Wang, P.; Zhou, J. Proteolysis Targeting Chimera (PROTAC): A paradigm-shifting approach in small molecule drug discovery. Curr. Top. Med. Chem., 2018, 18(16), 1354-1356.
[http://dx.doi.org/10.2174/1568026618666181010101922] [PMID: 30306871]
[53]
Tian, C.; Burgess, K. PROTAC compatibilities, degrading cell-surface receptors, and the sticky problem of finding a molecular glue. ChemMedChem, 2021, 16(2), 316-318.
[http://dx.doi.org/10.1002/cmdc.202000683] [PMID: 33112038]
[54]
Fischer, E.S.; Böhm, K.; Lydeard, J.R.; Yang, H.; Stadler, M.B.; Cavadini, S.; Nagel, J.; Serluca, F.; Acker, V.; Lingaraju, G.M.; Tichkule, R.B.; Schebesta, M.; Forrester, W.C.; Schirle, M.; Hassiepen, U.; Ottl, J.; Hild, M.; Beckwith, R.E.; Harper, J.W.; Jenkins, J.L.; Thomä, N.H. Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide. Nature, 2014, 512(7512), 49-53.
[http://dx.doi.org/10.1038/nature13527] [PMID: 25043012]
[55]
Filippakopoulos, P.; Qi, J.; Picaud, S.; Shen, Y.; Smith, W.B.; Fedorov, O.; Morse, E.M.; Keates, T.; Hickman, T.T.; Felletar, I.; Philpott, M.; Munro, S.; McKeown, M.R.; Wang, Y.; Christie, A.L.; West, N.; Cameron, M.J.; Schwartz, B.; Heightman, T.D.; La Thangue, N.; French, C.A.; Wiest, O.; Kung, A.L.; Knapp, S.; Bradner, J.E. Selective inhibition of BET bromodomains. Nature, 2010, 468(7327), 1067-1073.
[http://dx.doi.org/10.1038/nature09504] [PMID: 20871596]
[56]
Delmore, J.E.; Issa, G.C.; Lemieux, M.E.; Rahl, P.B.; Shi, J.; Jacobs, H.M.; Kastritis, E.; Gilpatrick, T.; Paranal, R.M.; Qi, J.; Chesi, M.; Schinzel, A.C.; McKeown, M.R.; Heffernan, T.P.; Vakoc, C.R.; Bergsagel, P.L.; Ghobrial, I.M.; Richardson, P.G.; Young, R.A.; Hahn, W.C.; Anderson, K.C.; Kung, A.L.; Bradner, J.E.; Mitsiades, C.S. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell, 2011, 146(6), 904-917.
[http://dx.doi.org/10.1016/j.cell.2011.08.017] [PMID: 21889194]
[57]
Winter, G.E.; Buckley, D.L.; Paulk, J.; Roberts, J.M.; Souza, A.; Dhe-Paganon, S.; Bradner, J.E. Drug development. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science, 2015, 348(6241), 1376-1381.
[http://dx.doi.org/10.1126/science.aab1433] [PMID: 25999370]
[58]
Winter, G.E.; Mayer, A.; Buckley, D.L.; Erb, M.A.; Roderick, J.E.; Vittori, S.; Reyes, J.M.; di Iulio, J.; Souza, A.; Ott, C.J.; Roberts, J.M.; Zeid, R.; Scott, T.G.; Paulk, J.; Lachance, K.; Olson, C.M.; Dastjerdi, S.; Bauer, S.; Lin, C.Y.; Gray, N.S.; Kelliher, M.A.; Churchman, L.S.; Bradner, J.E. BET bromodomain proteins function as master transcription elongation factors independent of CDK9 recruitment. Mol. Cell, 2017, 67(1), 5-18.e19.
[http://dx.doi.org/10.1016/j.molcel.2017.06.004] [PMID: 28673542]
[59]
Lu, J.; Qian, Y.; Altieri, M.; Dong, H.; Wang, J.; Raina, K.; Hines, J.; Winkler, J.D.; Crew, A.P.; Coleman, K.; Crews, C.M. Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4. Chem. Biol., 2015, 22(6), 755-763.
[http://dx.doi.org/10.1016/j.chembiol.2015.05.009] [PMID: 26051217]
[60]
He, L.; Chen, C.; Gao, G.; Xu, K.; Ma, Z. ARV-825-induced BRD4 protein degradation as a therapy for thyroid carcinoma. Aging (Albany NY), 2020, 12(5), 4547-4557.
[http://dx.doi.org/10.18632/aging.102910] [PMID: 32163373]
[61]
Piya, S.; Mu, H.; Bhattacharya, S.; Lorenzi, P.L.; Davis, R.E.; McQueen, T.; Ruvolo, V.; Baran, N.; Wang, Z.; Qian, Y.; Crews, C.M.; Konopleva, M.; Ishizawa, J.; You, M.J.; Kantarjian, H.; Andreeff, M.; Borthakur, G. BETP degradation simultaneously targets acute myelogenous leukemia stem cells and the microenvironment. J. Clin. Invest., 2019, 129(5), 1878-1894.
[http://dx.doi.org/10.1172/JCI120654] [PMID: 30829648]
[62]
Lu, Q.; Ding, X.; Huang, T.; Zhang, S.; Li, Y.; Xu, L.; Chen, G.; Ying, Y.; Wang, Y.; Feng, Z.; Wang, L.; Zou, X. BRD4 degrader ARV-825 produces long-lasting loss of BRD4 protein and exhibits potent efficacy against cholangiocarcinoma cells. Am. J. Transl. Res., 2019, 11(9), 5728-5739.
[PMID: 31632543]
[63]
Wakita, M.; Takahashi, A.; Sano, O.; Loo, T.M.; Imai, Y.; Narukawa, M.; Iwata, H.; Matsudaira, T.; Kawamoto, S.; Ohtani, N.; Yoshimori, T.; Hara, E. A BET family protein degrader provokes senolysis by targeting NHEJ and autophagy in senescent cells. Nat. Commun., 2020, 11(1), 1935.
[http://dx.doi.org/10.1038/s41467-020-15719-6] [PMID: 32321921]
[64]
Qin, C.; Hu, Y.; Zhou, B.; Fernandez-Salas, E.; Yang, C.Y.; Liu, L.; McEachern, D.; Przybranowski, S.; Wang, M.; Stuckey, J.; Meagher, J.; Bai, L.; Chen, Z.; Lin, M.; Yang, J.; Ziazadeh, D.N.; Xu, F.; Hu, J.; Xiang, W.; Huang, L.; Li, S.; Wen, B.; Sun, D.; Wang, S. Discovery of QCA570 as an exceptionally Potent and Efficacious Proteolysis Targeting Chimera (PROTAC) degrader of the Bromodomain and Extra-Terminal (BET) proteins capable of inducing complete and durable tumor regression. J. Med. Chem., 2018, 61(15), 6685-6704.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00506] [PMID: 30019901]
[65]
Bai, L.; Zhou, B.; Yang, C.Y.; Ji, J.; McEachern, D.; Przybranowski, S.; Jiang, H.; Hu, J.; Xu, F.; Zhao, Y.; Liu, L.; Fernandez-Salas, E.; Xu, J.; Dou, Y.; Wen, B.; Sun, D.; Meagher, J.; Stuckey, J.; Hayes, D.F.; Li, S.; Ellis, M.J.; Wang, S. Targeted degradation of BET proteins in triple-negative breast cancer. Cancer Res., 2017, 77(9), 2476-2487.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2622] [PMID: 28209615]
[66]
Shi, C.; Zhang, H.; Wang, P.; Wang, K.; Xu, D.; Wang, H.; Yin, L.; Zhang, S.; Zhang, Y. PROTAC induced-BET protein degradation exhibits potent anti-osteosarcoma activity by triggering apoptosis. Cell Death Dis., 2019, 10(11), 815.
[http://dx.doi.org/10.1038/s41419-019-2022-2] [PMID: 31653826]
[67]
Zhang, J.; Zhang, Q. VHL and hypoxia signaling: Beyond HIF in cancer. Biomedicines, 2018, 6(1), E35.
[http://dx.doi.org/10.3390/biomedicines6010035] [PMID: 29562667]
[68]
Toure, M.; Crews, C.M. Small-Molecule PROTACS: New approaches to protein degradation. Angew. Chem. Int. Ed. Engl., 2016, 55(6), 1966-1973.
[http://dx.doi.org/10.1002/anie.201507978] [PMID: 26756721]
[69]
Zengerle, M.; Chan, K.H.; Ciulli, A. Selective small molecule induced degradation of the BET Bromodomain Protein BRD4. ACS Chem. Biol., 2015, 10(8), 1770-1777.
[http://dx.doi.org/10.1021/acschembio.5b00216] [PMID: 26035625]
[70]
Testa, A.; Hughes, S.J.; Lucas, X.; Wright, J.E.; Ciulli, A. Structure-based design of a macrocyclic PROTAC. Angew. Chem. Int. Ed. Engl., 2020, 59(4), 1727-1734.
[http://dx.doi.org/10.1002/anie.201914396] [PMID: 31746102]
[71]
Raina, K.; Lu, J.; Qian, Y.; Altieri, M.; Gordon, D.; Rossi, A.M.; Wang, J.; Chen, X.; Dong, H.; Siu, K.; Winkler, J.D.; Crew, A.P.; Crews, C.M.; Coleman, K.G. PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. Proc. Natl. Acad. Sci. USA, 2016, 113(26), 7124-7129.
[http://dx.doi.org/10.1073/pnas.1521738113] [PMID: 27274052]
[72]
He, S.; Gao, F.; Ma, J.; Ma, H.; Dong, G.; Sheng, C. Aptamer-PROTAC Conjugates (APCs) for tumor-specific targeting in breast cancer. Angew. Chem. Int. Ed. Engl., 2021, 60(43), 23299-23305.
[http://dx.doi.org/10.1002/anie.202107347] [PMID: 34240523]
[73]
Gadd, M.S.; Testa, A.; Lucas, X.; Chan, K.H.; Chen, W.; Lamont, D.J.; Zengerle, M.; Ciulli, A. Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat. Chem. Biol., 2017, 13(5), 514-521.
[http://dx.doi.org/10.1038/nchembio.2329] [PMID: 28288108]
[74]
Chan, K.H.; Zengerle, M.; Testa, A.; Ciulli, A. Impact of target warhead and linkage vector on inducing protein degradation: Comparison of Bromodomain and Extra-Terminal (BET) Degraders Derived from Triazolodiazepine (JQ1) and Tetrahydroquinoline (I-BET726) BET inhibitor scaffolds. J. Med. Chem., 2018, 61(2), 504-513.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01912] [PMID: 28595007]
[75]
Li, W.; Elhassan, R.M.; Hou, X.; Fang, H. Recent advances in small molecule PROTACs for the treatment of cancer. Curr. Med. Chem., 2021, 28(24), 4893-4909.
[http://dx.doi.org/10.2174/0929867327666201117141611] [PMID: 33208057]
[76]
Xue, G.; Wang, K.; Zhou, D.; Zhong, H.; Pan, Z. Light-induced protein degradation with photocaged PROTACs. J. Am. Chem. Soc., 2019, 141(46), 18370-18374.
[http://dx.doi.org/10.1021/jacs.9b06422] [PMID: 31566962]
[77]
Liu, J.; Chen, H.; Ma, L.; He, Z.; Wang, D.; Liu, Y.; Lin, Q.; Zhang, T.; Gray, N.; Kaniskan, H.Ü.; Jin, J.; Wei, W. Light-induced control of protein destruction by opto-PROTAC. Sci. Adv., 2020, 6(8), eaay5154.
[http://dx.doi.org/10.1126/sciadv.aay5154] [PMID: 32128407]
[78]
Pfaff, P.; Samarasinghe, K.T.G.; Crews, C.M.; Carreira, E.M. Reversible spatiotemporal control of induced protein degradation by Bistable PhotoPROTACs. ACS Cent. Sci., 2019, 5(10), 1682-1690.
[http://dx.doi.org/10.1021/acscentsci.9b00713] [PMID: 31660436]
[79]
Maneiro, M.A.; Forte, N.; Shchepinova, M.M.; Kounde, C.S.; Chudasama, V.; Baker, J.R.; Tate, E.W. Antibody-PROTAC conjugates enable her2-dependent targeted protein degradation of BRD4. ACS Chem. Biol., 2020, 15(6), 1306-1312.
[http://dx.doi.org/10.1021/acschembio.0c00285] [PMID: 32338867]
[80]
Wan, X.; Sun, R.; Bao, Y.; Zhang, C.; Wu, Y.; Gong, Y. In vivo delivery of siRNAs targeting EGFR and BRD4 expression by peptide-modified redox responsive PEG-PEI nanoparticles for the treatment of triple-negative breast cancer. Mol. Pharm., 2021, 18(11), 3990-3998.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00282] [PMID: 34591491]
[81]
Zhang, C.; Yuan, W.; Wu, Y.; Wan, X.; Gong, Y. Co-delivery of EGFR and BRD4 siRNA by cell-penetrating peptides-modified redox-responsive complex in triple negative breast cancer cells. Life Sci., 2021, 266, 118886.
[http://dx.doi.org/10.1016/j.lfs.2020.118886] [PMID: 33310044]
[82]
Xing, E.; Surendranathan, N.; Kong, X.; Cyberski, N.; Garcia, J.D.; Cheng, X.; Sharma, A.; Li, P.K.; Larue, R.C. Development of murine leukemia virus integrase-derived peptides that bind Brd4 extra-terminal domain as candidates for suppression of acute myeloid leukemia. ACS Pharmacol. Transl. Sci., 2021, 4(5), 1628-1638.
[http://dx.doi.org/10.1021/acsptsci.1c00159] [PMID: 34661079]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy