Generic placeholder image

Recent Patents on Nanotechnology

Editor-in-Chief

ISSN (Print): 1872-2105
ISSN (Online): 2212-4020

Review Article

Nanocapsules: An Emerging Drug Delivery System

Author(s): Deepika Purohit, Pawan Jalwal, Deeksha Manchanda, Sapna Saini, Ravinder Verma, Deepak Kaushik, Vineet Mittal, Manish Kumar, Tanima Bhattacharya, Md. Habibur Rahman, Rohit Dutt and Parijat Pandey*

Volume 17, Issue 3, 2023

Published on: 18 April, 2022

Page: [190 - 207] Pages: 18

DOI: 10.2174/1872210516666220210113256

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Controlled drug release and site-specific delivery of drugs make nanocapsules the most approbative drug delivery system for various kinds of drugs, bioactive, protein, and peptide compounds. Nanocapsules (NCs) are spherical shape microscopic shells consisting of a core (solid or liquid) in which the drug is positioned in a cavity enclosed by a distinctive polymeric membrane.

Objectives: The main objective of the present patent study is to elaborate on various formulation techniques and methods of nanocapsules (NCs). The review also spotlights various biomedical applications as well as on the patents of NCs to date.

Methods: The review was extracted from the searches performed using various search engines such as PubMed, Google Patents, Medline, Google Scholars, etc. In order to emphasize the importance of NCs, some published patents of NCs have also been reported in the review.

Results: NCs are tiny magical shells having incredible reproducibility. Various techniques can be used to formulate NCs. The pharmaceutical performance of the formulated NCs can be judged by evaluating their shape, size, entrapment efficiency, loading capacity, etc., using different analytical techniques. Their main applications are found in the field of agrochemicals, genetic manipulation, cosmetics, hygiene items, strategic distribution of drugs to tumors, nanocapsule bandages to combat infection, and radiotherapy.

Conclusion: In the present review, our team made a deliberate effort to summarize the recent advances in the field of NCs and focus on new patents related to the implementation of NCs delivery systems in the area of some life-threatening disorders like diabetes, cancer, and cardiovascular diseases.

Keywords: Nanocapsules, nanoparticles, biodegradable polymer, amphiphilic polymer, characterization, drug delivery system.

[1]
Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J Nanotechnol 2018; 9: 1050-74.
[http://dx.doi.org/10.3762/bjnano.9.98] [PMID: 29719757]
[2]
Siwach R, Pandey P, Chawla V, Dureja H. Role of nanotechnology in diabetic management. Recent Pat Nanotechnol 2019; 13(1): 28-37.
[http://dx.doi.org/10.2174/1872210513666190104122032] [PMID: 30608045]
[3]
Pandey P, Dureja H. Recent patents on polymeric nanoparticles for cancer therapy. Recent Pat Nanotechnol 2018; 12(2): 155-69.
[http://dx.doi.org/10.2174/1872210512666180327120648] [PMID: 29589551]
[4]
Lovell PA, Schork FJ. Fundamentals of emulsion polymerization. Biomacromolecules 2020; 21(11): 4396-441.
[http://dx.doi.org/10.1021/acs.biomac.0c00769] [PMID: 32543173]
[5]
Navya PN, Kaphle A, Srinivas SP, Bhargava SK, Rotello VM, Daima HK. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg 2019; 6(1): 23-52.
[http://dx.doi.org/10.1186/s40580-019-0193-2] [PMID: 31304563]
[6]
Lee C-H, Li Y-J, Huang C-C, Lai J-Y. Poly(ε-caprolactone) nanocapsule carriers with sustained drug release: single dose for long-term glaucoma treatment. Nanoscale 2017; 9(32): 11754-64.
[http://dx.doi.org/10.1039/C7NR03221H] [PMID: 28782783]
[7]
Yurgel V, Collares T, Seixas F. Developments in the use of nanocapsules in oncology. Braz J Med Biol Res 2013; 46(6): 486-501.
[http://dx.doi.org/10.1590/1414-431X20132643] [PMID: 23802234]
[8]
Islam SU, Shehzad A, Ahmed MB, Lee YS. Intranasal delivery of nanoformulations: A potential way of treatment for neurological disorders. Molecules 2020; 25(8): 1929-55.
[http://dx.doi.org/10.3390/molecules25081929] [PMID: 32326318]
[9]
Jagadeesh P, Dasthagiri S, Nethravani G. Review of nanocapsules. World J Pharm Pharm Sci 2016; 5(2): 1365-80.
[10]
AZONANO. Nanocapsules and dendrimers - Properties and future Applications. Available from: https://www.azonano.com/article.aspx?ArticleID=1649 (Accessed on: 20th October, 2021).
[11]
Suganya V, Anuradha V. Microencapsulation and nanoencapsulation: A review. Int J Pharm Clin Res 2017; 9(3): 233-9.
[http://dx.doi.org/10.25258/ijpcr.v9i3.8324]
[12]
Pisal M, Barbade P, Dudhal S. Nanocapsule. Int J Pharm Sci Rev Res 2020; 60(2): 53-62.
[13]
Lengert EV, Koltsov SI, Li J, et al. Nanoparticles in polyelectrolyte multilayer layer-by-layer (LbL) films and capsules-Key enabling components of hybrid coatings. Coatings 2020; 10: 1131-58.
[http://dx.doi.org/10.3390/coatings10111131]
[14]
Marturano V, Cerruti P, Giamberini M, Tylkowski B, Ambrogi V. Light-responsive polymer micro- and nano-capsules. Polymers (Basel) 2016; 9(1): 8-17.
[http://dx.doi.org/10.3390/polym9010008] [PMID: 30970685]
[15]
Bolto B, Zhang J, Wu X, Xie Z. A review on current development of membranes for oil removal from wastewaters. Membranes (Basel) 2020; 10(4): 65-83.
[http://dx.doi.org/10.3390/membranes10040065] [PMID: 32272650]
[16]
Manavitehrani I, Fathi A, Badr H, Daly S, Negahi Shirazi A, Dehghani F. Biomedical applications of biodegradable polyesters. Polymers (Basel) 2016; 8(1): 20-51.
[http://dx.doi.org/10.3390/polym8010020] [PMID: 30979116]
[17]
Sonawane SM, Darekar AB, Saudagar RB. Nanocapsule: Review article. Int J Universal Pharm Bio Sci 2016; 5(6): 77-92.
[18]
Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok H-A. Surface-initiated controlled radical polymerization: State-of-the-art, opportunities, and challenges in surface and interface engineering with polymer brushes. Chem Rev 2017; 117(3): 1105-318.
[http://dx.doi.org/10.1021/acs.chemrev.6b00314] [PMID: 28135076]
[19]
Song Y, Fan J-B, Wang S. Recent progress in interfacial polymerization. Mater Chem Front 2017; 1: 1028-40.
[http://dx.doi.org/10.1039/C6QM00325G]
[20]
Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem Rev 2016; 116(4): 2602-63.
[http://dx.doi.org/10.1021/acs.chemrev.5b00346] [PMID: 26854975]
[21]
Piradashvili K, Alexandrino EM, Wurm FR, Landfester K. Reactions and polymerizations at the liquid−liquid interface. Chem Rev 2016; 116(4): 2141-69.
[http://dx.doi.org/10.1021/acs.chemrev.5b00567] [PMID: 26708780]
[22]
Sharipova AA, Aidarova SB, Mutaliyeva BZ, et al. The use of polymer and surfactants for the microencapsulation and emulsion stabilization. Colloids Interfaces 2017; 1: 3-17.
[http://dx.doi.org/10.3390/colloids1010003]
[23]
Ma C, Laaksonen A, Liu C, Lu X, Ji X. The peculiar effect of water on ionic liquids and deep eutectic solvents. Chem Soc Rev 2018; 47(23): 8685-720.
[http://dx.doi.org/10.1039/C8CS00325D] [PMID: 30298877]
[24]
OMICS. Nanoparticles by Interfacial Deposition Method 2021.https://www.omicsonline.org/blog/2015/12/19/24243-Nanoparticles-by-Interfacial-Deposition-Method.html Available from: (Accessed on: 20th October, 2021).
[25]
Lu Y, Shah KW, Xu J. Synthesis, morphologies and building applications of nanostructured polymers. Polymers (Basel) 2017; 9(10): 506-35.
[http://dx.doi.org/10.3390/polym9100506] [PMID: 30965809]
[26]
Liu Y, Yang G, Zou D, Hui Y, Nigam K, Middleberg APJ. Formulation of nanoparticles using mixing-induced nanoprecipitation for drug delivery. Ind Eng Chem Res 2019; 1: 1-17.
[27]
Khayata N, Abdelwahed W, Chehna MF, Charcosset C, Fessi H. Preparation of vitamin E loaded nanocapsules by the nanoprecipitation method: from laboratory scale to large scale using a membrane contactor. Int J Pharm 2012; 423(2): 419-27.
[http://dx.doi.org/10.1016/j.ijpharm.2011.12.016] [PMID: 22197757]
[28]
Ozkan G, Franco P, De Marco I, Xiao J, Capanoglu E. A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chem 2019; 272: 494-506.
[http://dx.doi.org/10.1016/j.foodchem.2018.07.205] [PMID: 30309574]
[29]
Turner SR, Liu Y. Chemistry and technology of step-growth polyestersPolym Sci A Comprehens Ref 2012; 5: 31-311.
[30]
Vanpouille-Box C, Lacoeuille F, Roux J, et al. Lipid nanocapsules loaded with rhenium-188 reduce tumor progression in a rat hepatocellular carcinoma model. PLoS One 2011; 6(3)e16926
[http://dx.doi.org/10.1371/journal.pone.0016926] [PMID: 21408224]
[31]
Annelieke V, Contri RV, Betti AH, et al. Chitosan-coated nanocapsules ameliorates the effect of olanzapine in prepulse inhibition of startle response (PPI) in rats following oral administration. React Funct Polym 2020; 148: 104493-505.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2020.104493]
[32]
Mehrotra A, Pandit JK. Preparation and characterization and biodistribution studies of lomustine loaded PLGA nanoparticles by interfacial deposition method. J Nanomed Nanotechnol 2015; 6(6): 1-14.
[http://dx.doi.org/10.4172/2157-7439.1000328]
[33]
Deng S, Gigliobianco MR, Censi R, Di Martino P. Polymeric nanocapsules as nanotechnological alternative for drug delivery system: Current status, challenges and opportunities. Nanomaterials (Basel) 2020; 10(5): 847-82.
[http://dx.doi.org/10.3390/nano10050847] [PMID: 32354008]
[34]
Perrigue PM, Murray RA, Mielcarek A, Henschke A, Moya SE. Degradation of drug delivery nanocarriers and payload release: A review of physical methods for tracing nanocarrier biological fate. Pharmaceutics 2021; 13(6): 770-95.
[http://dx.doi.org/10.3390/pharmaceutics13060770] [PMID: 34064155]
[35]
Jain AK, Thareja S. In vitro and in vivo characterization of pharmaceutical nanocarriers used for drug delivery. Artif Cells Nanomed Biotechnol 2019; 47(1): 524-39.
[http://dx.doi.org/10.1080/21691401.2018.1561457] [PMID: 30784319]
[36]
Bentz KC, Savin DA. Hollow polymer nanocapsules: Synthesis, properties, and applications. Polym Chem 2018; 9: 2059-81.
[http://dx.doi.org/10.1039/C8PY00142A]
[37]
Corrêa ACNTF, Vericimo MA, Dashevskiy A, Pereira PR, Paschoalin VMF. Liposomal taro lectin nanocapsules control human glioblastoma and mammary adenocarcinoma cell proliferation. Molecules 2019; 24(3): 471-82.
[http://dx.doi.org/10.3390/molecules24030471] [PMID: 30699910]
[38]
Sánchez-Moreno P, Ortega-Vinuesa JL, Martín-Rodríguez A, Boulaiz H, Marchal-Corrales JA, Peula-García JM. Characterization of different functionalized lipidic nanocapsules as potential drug carriers. Int J Mol Sci 2012; 13(2): 2405-24.
[http://dx.doi.org/10.3390/ijms13022405] [PMID: 22408461]
[39]
Jafari SM, Esfanjani AF. Instrumental analysis and characterization of nanocapsules. Nanoencapsulation Technol Food Nutraceuticals Ind 2017; 1: 524-44.
[http://dx.doi.org/10.1016/B978-0-12-809436-5.00014-8]
[40]
Rajabi H, Jafari SM, Rajabzadehb G, Sarfarazia M, Sedaghati S. Chitosan-gum Arabic complex nanocarriers for encapsulation of saffron bioactive components. Colloids Surf A Physicochem Eng Asp 2019; 578: 123644-57.
[http://dx.doi.org/10.1016/j.colsurfa.2019.123644]
[41]
Govender T, Choonara YE, Kumar P, et al. A novel melt-dispersion technique for simplistic preparation of chlorpromazine-loaded polycaprolactone nanocapsules. Polym 2015; 7: 1145-76.
[http://dx.doi.org/10.3390/polym7061145]
[42]
de Andrade DF, Zuglianello C, Pohlmann AR, Guterres SS, Beck RC. Assessing the in vitro drug release from lipid-core nanocapsules: A new strategy combining dialysis sac and a continuous-flow system. AAPS PharmSciTech 2015; 16(6): 1409-17.
[http://dx.doi.org/10.1208/s12249-015-0330-0] [PMID: 25986595]
[43]
Srikar G, Rani AP. Study on influence of polymer and surfactant on in vitro performance of biodegradable aqueous-core nanocapsules of tenofovir disoproxil fumarate by response surface methodology. Braz J Pharm Sci 2019; 55: 1-10.
[http://dx.doi.org/10.1590/s2175-97902019000118736]
[44]
de Gomes MG, Pando Pereira M, Guerra Teixeira FE, et al. Assessment of unloaded polymeric nanocapsules with different coatings in female rats: Influence on toxicological and behavioral parameters. Biomed Pharmacother 2020; 121: 109575-90.
[http://dx.doi.org/10.1016/j.biopha.2019.109575] [PMID: 31689599]
[45]
Pandey P, Chellappan DK, Tambuwala MM, Bakshi HA, Dua K, Dureja H. Central composite designed formulation, characterization and in vitro cytotoxic effect of erlotinib loaded chitosan nanoparticulate system. Int J Biol Macromol 2019; 141: 596-610.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.023] [PMID: 31494160]
[46]
Pandey P, Marwaha RK, Nanda A, Dureja H. Spray-dried nanoparticles-in-microparticles system (NiMS) of acetazolamide using central composite design. Nanosci Nanotechnol Asia 2016; 6(2): 146-56.
[http://dx.doi.org/10.2174/2210681206666160402004241]
[47]
Din FU, Aman W, Ullah I, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine 2017; 12: 7291-309.
[http://dx.doi.org/10.2147/IJN.S146315] [PMID: 29042776]
[48]
Lu RM, Hwang YC, Liu IJ, et al. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci 2020; 27(1): 1-30.
[http://dx.doi.org/10.1186/s12929-019-0592-z] [PMID: 31894001]
[49]
Xu R, Zhang K, Liang J, Gao F, Li J, Guan F. Hyaluronic acid/polyethyleneimine nanoparticles loaded with copper ion and disulfiram for esophageal cancer. Carbohydr Polym 2021; 261(1)117846
[http://dx.doi.org/10.1016/j.carbpol.2021.117846] [PMID: 33766342]
[50]
Li J, Chen L, Zhang X, Guan S-K. Enhancing biocompatibility and corrosion resistance of biodegradable Mg-Zn-Y-Nd alloy by preparing PDA/HA coating for potential application of cardiovascular biomaterials. Mater Sci Eng C 2020; 109110607
[51]
Chen Q, Li X, Xie Y, et al. Azo modified hyaluronic acid based nanocapsules: CD44 targeted, UV-responsive decomposition and drug release in liver cancer cells. Carbohydr Polym 2021; 267118152
[http://dx.doi.org/10.1016/j.carbpol.2021.118152] [PMID: 34119127]
[52]
Janik-Hazuka M, Kamiński K, Kaczor-Kamińska M, et al. Hyaluronic acid-based nanocapsules as efficient delivery systems of garlic oil active components with anticancer activity. Nanomaterials (Basel) 2021; 11(5): 1354-77.
[http://dx.doi.org/10.3390/nano11051354] [PMID: 34065497]
[53]
Wang Y, Wang Z, Qian Y, et al. Synergetic estrogen receptor-targeting liposome nanocarriers with anti-phagocytic properties for enhanced tumor theranostics. J Mater Chem B Mater Biol Med 2019; 7(7): 1056-63.
[http://dx.doi.org/10.1039/C8TB03351J] [PMID: 32254773]
[54]
Raut PK, Choi DY, Kim SH, et al. Estrogen receptor signaling mediates leptin-induced growth of breast cancer cells via autophagy induction. Oncotarget 2017; 8(65): 109417-35.
[http://dx.doi.org/10.18632/oncotarget.22684] [PMID: 29312618]
[55]
Perera E, Gnaneswaran N, Jennens R, Sinclair R. Malignant Melanoma. Healthcare (Basel) 2013; 2(1): 1-19.
[http://dx.doi.org/10.3390/healthcare2010001] [PMID: 27429256]
[56]
Sharma G, Sharma AR, Nam JS, Doss GPC, Lee S-S, Chakraborty C. Nanoparticle based insulin delivery system: The next generation efficient therapy for Type 1 diabetes. J Nanobiotechnology 2015; 13: 74-86.
[http://dx.doi.org/10.1186/s12951-015-0136-y] [PMID: 26498972]
[57]
Fattal E, Tsapis N. Nanomedicine technology: Current achievements and new trends. Clin Transl Imaging 2014; 2: 77-87.
[http://dx.doi.org/10.1007/s40336-014-0053-3]
[58]
Rong X, Xie Y, Hao X, Chen T, Wang Y, Liu Y. Applications of polymeric nanocapsules in field of drug delivery systems. Curr Drug Discov Technol 2011; 8(3): 173-87.
[http://dx.doi.org/10.2174/157016311796799008] [PMID: 21644922]
[59]
Soto F, Chrostowski R. Frontiers of medical micro/nanorobotics: In vivo applications and commercialization perspectives toward clinical uses. Front Bioeng Biotechnol 2018; 6: 170-81.
[http://dx.doi.org/10.3389/fbioe.2018.00170] [PMID: 30488033]
[60]
Shandilya N, Capron I. Safer-by-design hybrid nanostructures: An alternative to conventional titanium dioxide UV filters in skin care products. RSC Advances 2017; 7: 20430-9.
[http://dx.doi.org/10.1039/C7RA02506H]
[61]
Jeong YI, Na HS, Seo DH, et al. Ciprofloxacin-encapsulated poly(DL-lactide-co-glycolide) nanoparticles and its antibacterial activity. Int J Pharm 2008; 352(1-2): 317-23.
[http://dx.doi.org/10.1016/j.ijpharm.2007.11.001] [PMID: 18160236]
[62]
Sood A, Granick MS, Tomaselli NL. Wound dressings and comparative effectiveness data. Adv Wound Care (New Rochelle) 2014; 3(8): 511-29.
[http://dx.doi.org/10.1089/wound.2012.0401] [PMID: 25126472]
[63]
Zarrabi A, Alipoor Amro Abadi M, Khorasani S, et al. Nanoliposomes and tocosomes as multifunctional nanocarriers for the encapsulation of nutraceutical and dietary molecules. Molecules 2020; 25(3): 638-60.
[http://dx.doi.org/10.3390/molecules25030638] [PMID: 32024189]
[64]
Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 2021; 20(2): 101-24.
[http://dx.doi.org/10.1038/s41573-020-0090-8] [PMID: 33277608]
[65]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71-85.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[66]
Kourinou KM, Mazonakis M, Lyraraki E, Stratakis J, Damilakis J. Scattered dose to radiosensitive organs and associated risk for cancer development from head and neck radiotherapy in pediatric patients. Phys Med 2013; 29(6): 650-5.
[http://dx.doi.org/10.1016/j.ejmp.2012.08.001] [PMID: 22921884]
[67]
Bagale UD, Sonawane SH. Synthesis of nanocapsules using safflower oil for self-healing material. Nanomater Energy 2019; 8(1): 42-50.
[http://dx.doi.org/10.1680/jnaen.18.00014]
[68]
Mao HQ, Roy K, Troung-Le VL, et al. Chitosan-DNA nanoparticles as gene carriers: Synthesis, characterization and transfection efficiency. J Control Release 2001; 70(3): 399-421.
[http://dx.doi.org/10.1016/S0168-3659(00)00361-8] [PMID: 11182210]
[69]
Irvine DJ, Dane EL. Enhancing cancer immunotherapy with nanomedicine. Nat Rev Immunol 2020; 20(5): 321-34.
[http://dx.doi.org/10.1038/s41577-019-0269-6] [PMID: 32005979]
[70]
Shakiba S, Astete CE, Paudel S, Sablivo CM, Rodrigues DB, Louie SM. Emerging investigator series: Polymeric nanocarriers for agricultural applications: synthesis, characterization, and environmental and biological interactions. Environ Sci Nano 2020; 7: 37-67.
[http://dx.doi.org/10.1039/C9EN01127G]
[71]
Sekharan TR, Tamilvanan S. Advances in nanocapsule: Types, preparation methods and characterization. Int J Pharm Sci Nanotechnol 2019; 12(4): 4573-9.
[72]
Saddiq AAN, Mousa SA, Mousa DS. Nanocapsule containing a bioactive compound and a method of reducing toxicity resulting from cancer therapy. US Patent US20190125684A1 2019.
[73]
Chiang C-S, Hu S-H, Chen S-Y. Antibody-conjugated double emulsion nanocapsule and preparation methods thereof. CA Patent CA2910076C, 2017.
[74]
Yi Q, Ma J, Kangke GZ. Drug-loaded nanocapsule with tumor cell bioreductive microenvironment sensitivity and preparation method thereof. CN Patent CN107095859B, 2020.
[75]
Choi W-I, Kim S-H, Shin Y-C, Lee J-H, Kim J-H, Yoon Y-S. Nanocapsule coated with chitosan and use thereof. KR Patent KR20200077438A, 2020.
[76]
June CH, Kalos MD, Levine BL, Milone MC, Porter DL. Use of chimeric antigen receptor-modified t cells to treat cancer. AU Patent AU2020200767 A1, 2020.
[77]
Goodacre SC, Labadie S, Daniel JL, et al. Tetrahydro-pyrido[3,4-b] indole estrogen receptor modulators and uses thereof. AU Patent AU2020200407 A1, 2020.
[78]
Gu T-L, Guo A. Translocation and mutant ROS kinase in human non-small cell lung carcinoma. US Patent US20200080159A1, 2020.
[79]
Kowanetz M, Chen DS-Y, Koeppen H. Biomarkers and methods of treating pd-1 and pd-l1 related conditions. US Patent US20200041520 A1, 2020.
[80]
Hegde P, Kowanetz M, Fine G, Mariathasan S, Bourgon R. Therapeutic and diagnostic methods for cancer. US Patent US20200031936A1, 2020.
[81]
Agresta S, Klencke B. Methods of treating metastatic breast cancer with trastuzumab-mcc-dm1. US Patent US20200069694 A1, 2020.
[82]
Gao AC, Liu C, Lou W, Pan C-X. Treatment of metastatic prostate cancer. US Patent US20200041516 A1, 2020.
[83]
Sliwkowski MX, Holden S, Lutzker S, Tibbitts J, Jumbe NL. Combinations of an anti-her2 antibody-drug conjugate and chemotherapeutic agents, and methods of use. US Patent US20190374547 A1, 2020.
[84]
Yu J, Hofmeister C, Chu J. Cs1-specific chimeric antigen receptor engineered immune effector cells. US Patent US20200002418 A1, 2020.
[85]
Birse C, Ruben S, Lewis M, Mesri M. Lung cancer markers and uses thereof. US Patent US20200064347A1, 2020.
[86]
Brinker CJ, Butler K, Durfee PN. Active targeting of cells by monosized protocells. US Patent US20200009264A1, 2020.
[87]
Fernandez MJA, Osorio DT, Valiño CMT, Pires AC. . Drug delivery systems and methods comprising polysialic acid and/or other polymers. WO Patent WO2019086627A1, 2019.
[88]
Zapotoczny S, Szafraniec J, Kamiński K, Janik M. Nanocapsule with liquid oil core, its preparation method and application. WO Patent WO2019194692A1, 2019.
[89]
Kurzrock R, Li L, Mehta L, Aggarwal BB. Liposomal curcumin for treatment of cancer. US Patent US20190105287A1, 2019.
[90]
Farokhzad OC, Moon J, Son S. Particles for delivery of biomolecules. US Patent US20190374479A1, 2019.
[91]
Pitorre M, Bastiat G, Bejaud J, Benoit J-P. Nanocapsules comprising modified nucleobases and/or nucleosides, hydrogels and oleogels comprising them and uses thereof. WO Patent WO2019048649A1, 2019.
[92]
Sukhorukov G, Nazarenko I, Tarakanchikova Y, et al. Biodegradable multilayer nanocapsules for the delivery of biologically active agents in target cells. WO Patent WO2019020665A1, 2019.
[93]
Quay SC. Intraductal methods of treatment of breast disorders. WO Patent WO2019126538A1, 2019.
[94]
Quay S. In situ methods of inducing of immune response. WO Patent WO2019177991 A1, 2019.
[95]
Kurzrock R, Li L, Mehta K, Aggarwal BB, Helson L. Liposomal curcumin for treatment of diseases. US Patent US10004687B2, 2018.
[96]
Singh M, Sandhu M. Pharmaceutical compositions for the delivery of substantially water-insoluble drugs. US Patent US9895322B2, 2018.
[97]
Yuan X, Kang C, Lu Y. Tumour-targeted nanocapsule, preparation method therefor and use thereof. WO Patent WO2018228464A1, 2018.
[98]
Lu Y, Chen ISY, Yan M, Liang M, Kamata M, Wen J. RNAi molecule delivery platform based on single-siRNA and shRNA nanocapsules. US Patent US9782357B2, 2017.
[99]
McWherter JF, Reiss U. Methods of stabilizing the extracellular matrix and compositions therefor. US Patent US9610258B2, 2017.
[100]
Bar-Or D. Treatment of diseases. US Patent US20200016152A1, 2020.
[101]
Mathiowitz E. Compositions and methods for improving the bioavailability of glp1 and analogues thereof. WO Patent WO2020028907A1, 2020.
[102]
Ling L, Lindhout DA. Methods and compositions for the treatment of metabolic disorders and diseases. US Patent US20200054714A1, 2020.
[103]
Hadcock JR. Use of sGC stimulators for the treatment of mitochonrial disorders. WO Patent WO2020014504A1, 2020.
[104]
Gesualdo L, Pontrelli P. 2019. Combination of a ubiquitin-coniuqatinq enzyme complex inhibitor and antihypertensive and/or hypoglycemic drugs in diabetic kidney disease. WO Patent WO2019186442A1,
[105]
Hasilo C, Leushner J, Haworth DN, et al. Methods and devices for cellular transplantation. US Patent US10207026B2, 2019.
[106]
Ingber DE, Korin N, Kanapathipillai M. Shear controlled release of thrombolytic therapies for stenotic lesions. EP Patent EP2611466B1, 2019.
[107]
Li J. Method for preventing and treating diabetic nephropathy. US Patent US20190015485A1, 2019.
[108]
Nelms K, Schwartz B, Jackson B, Banwell M, Hammond E. Heparanase inhibitors and use thereof. US Patent EP3555051A1, 2019.
[109]
Duan H, Xue B, Xie J, Zhang Z. Double gene-modified stem cell and use thereof. WO Patent WO2019119673A1, 2019.
[110]
Falb D, Isabella VM, Kotula JW, Miller PF. Bacteria engineered to treat diseases that benefit from reduced gut inflammation and/or tighten gut mucosal barrier. US Patent US20180273956A1, 2018.
[111]
Gleghorn M, Maquat L, Fasan R. Compositions and methods for inhibiting CBP80 binding to PGC1 family of co-activators. US Patent US20180362587A1, 2018.
[112]
Liu H. Compositions and methods for treating metabolic diseases. WO Patent WO2017206898A1, 2017.
[113]
Crawford JJ, Autwayn DF, Wei B, Yang WB. Heteroaryl pyridone and aza-pyridone compounds as inhibitors of BTK activity. CN Patent CN107011348B, 2020.
[114]
Altschul RL, Theise ND, Rapkin M, O’Brien R. System and method for diagnosis and treatment. US Patent US10537586B2, 2020.
[115]
Holland C, Shekhar H, Palaniappan A. Gas-encapsulated acoustically responsive stabilized microbubbles and methods for treating cardiovascular disease. US Patent US20200000945A1, 2020.
[116]
Zhang L, Yu X, Zhang Y, Lin Z. siRNA capable of silencing Pcsk9 protein, nano delivery system and application thereof. CN Patent CN110638788A, 2020.
[117]
Satin A. Inhibitors of glucose-6-phosphate dehydrogenase for treating cardiovascular and pulmonary diseases. JP Patent JP2019535826A, 2019.
[118]
Sawa Y, Miyagawa S, Sakai Y, Yanagi Y. Medicinal composition for treating intractable heart disease. EP Patent EP3569249A1, 2019.
[119]
Kole R, Collins FS, Michael RE, Cao K, Leslie G. Method for treating progeroid laminopathy using oligonucleotide analogues targeting human lmna. JP Patent JP2019172691A, 2019.
[120]
Riel S. Methods of treating and/or preventing cardiovascular disease. US Patent US10130585B2, 2018.
[121]
Fan P, Kang J, Mikels-Vigdal A, Yao L, Zhong H. Methods for treating cardiovascular diseases. AU Patent AU2018203309A1, 2018.
[122]
Gao G, Xie J, Zamore PD. Aav-based treatment of cholesterolrelated disorders. EP Patent EP2561075B1, 2018.
[123]
Tardi P, Harasym T, Webb M, et al. Compositions for delivery of drug combinations. US Patent US20180338917A1, 2018.
[124]
Atala A, Yoo J. Production of tissue engineered heart valves. US Patent US9801713B2, 2017.
[125]
Kleidon W. Methods and compositions for potentiating stem cell therapies. AU Patent AU2017286656A1, 2017.
[126]
Altschul RL, Theise ND, Rapkin M, O'Brien R. System and method for diagnosis and treatment. WO Patent WO2017180086A1, 2017.
[127]
Isenberg JS, Roberts DD. Prevention of tissue ischemia and related methods. US Patent US20160222097A1, 2016.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy