Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Review Article

A Combinational Approach for More Efficient miRNA Biosensing

Author(s): Cheolho Lee*

Volume 23, Issue 1, 2022

Published on: 04 February, 2022

Page: [5 - 25] Pages: 21

DOI: 10.2174/1389202923666220204160912

Price: $65

Abstract

MicroRNAs, short single-stranded noncoding RNAs ranging in length from 18 ~ 24 bp, are found in all kingdoms of eukaryotes and even viruses. It was found that miRNAs are involved in a variety of biological processes, and their intracellular aberrant expression is related to diseases and abnormalities in the immune system. Since then, it has been considered essential to develop an efficient miRNA detection system. In this review, the limitations of traditional scheme-based miRNA detection methods are compared and analyzed. In particular, nucleic acid amplification-based miRNA detection methods and nanomaterial-based miRNA detection methods, which are widely used as a biosensing platform because of various features and advantages, such as high sensitivity, specificity, and simplicity, are analyzed. Based on this analysis, the latest examples of a combination of the advantages of nucleic acid amplification and those of nanomaterials are examined to suggest the characteristics of the next-generation miRNA biosensing.

Keywords: miRNA detection system, biosensing platform, next-generation miRNA biosensing, miRNAs, nanomaterial-based miRNA, nucleic acid amplification.

[1]
Ambros, V. The functions of animal microRNAs. Nature, 2004, 431(7006), 350-355.
[http://dx.doi.org/10.1038/nature02871] [PMID: 15372042]
[2]
Moazed, D. Small RNAs in transcriptional gene silencing and genome defence. Nature, 2009, 457(7228), 413-420.
[http://dx.doi.org/10.1038/nature07756] [PMID: 19158787]
[3]
Carthew, R.W.; Sontheimer, E.J. Origins and mechanisms of miRNAs and siRNAs. Cell, 2009, 136(4), 642-655.
[http://dx.doi.org/10.1016/j.cell.2009.01.035] [PMID: 19239886]
[4]
Grosshans, H.; Filipowicz, W. Molecular biology: The expanding world of small RNAs. Nature, 2008, 451(7177), 414-416.
[http://dx.doi.org/10.1038/451414a] [PMID: 18216846]
[5]
Dostie, J.; Mourelatos, Z.; Yang, M.; Sharma, A.; Dreyfuss, G. Numerous microRNPs in neuronal cells containing novel microRNAs. RNA, 2003, 9(2), 180-186.
[http://dx.doi.org/10.1261/rna.2141503] [PMID: 12554860]
[6]
Wang, Y.; Keys, D.N.; Au-Young, J.K.; Chen, C. MicroRNAs in embryonic stem cells. J. Cell. Physiol., 2009, 218(2), 251-255.
[http://dx.doi.org/10.1002/jcp.21607] [PMID: 18821562]
[7]
Xu, P.; Vernooy, S.Y.; Guo, M.; Hay, B.A. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr. Biol., 2003, 13(9), 790-795.
[http://dx.doi.org/10.1016/S0960-9822(03)00250-1] [PMID: 12725740]
[8]
Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2), 281-297.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[9]
Chen, C.Z.; Li, L.; Lodish, H.F.; Bartel, D.P. MicroRNAs modulate hematopoietic lineage differentiation. Science, 2004, 303(5654), 83-86.
[http://dx.doi.org/10.1126/science.1091903] [PMID: 14657504]
[10]
Hatfield, S.D.; Shcherbata, H.R.; Fischer, K.A.; Nakahara, K.; Carthew, R.W.; Ruohola-Baker, H. Stem cell division is regulated by the microRNA pathway. Nature, 2005, 435(7044), 974-978.
[http://dx.doi.org/10.1038/nature03816] [PMID: 15944714]
[11]
Cho, W.C.S. MicroRNAs in cancer - from research to therapy. Biochim. Biophys. Acta, 2010, 1805(2), 209-217.
[PMID: 19931352]
[12]
Ruan, K.; Fang, X.; Ouyang, G. MicroRNAs: Novel regulators in the hallmarks of human cancer. Cancer Lett., 2009, 285(2), 116-126.
[http://dx.doi.org/10.1016/j.canlet.2009.04.031] [PMID: 19464788]
[13]
Kocerha, J.; Kauppinen, S.; Wahlestedt, C. microRNAs in CNS disorders. Neuromolecular Med., 2009, 11(3), 162-172.
[http://dx.doi.org/10.1007/s12017-009-8066-1] [PMID: 19536656]
[14]
Pandey, A.K.; Agarwal, P.; Kaur, K.; Datta, M. MicroRNAs in diabetes: Tiny players in big disease. Cell. Physiol. Biochem., 2009, 23(4-6), 221-232.
[http://dx.doi.org/10.1159/000218169] [PMID: 19471090]
[15]
Chen, X.M. MicroRNA signatures in liver diseases. World J. Gastroenterol., 2009, 15(14), 1665-1672.
[http://dx.doi.org/10.3748/wjg.15.1665] [PMID: 19360909]
[16]
Feng, M.J.; Shi, F.; Qiu, C.; Peng, W.K. MicroRNA-181a, -146a and -146b in spleen CD4+ T lymphocytes play proinflammatory roles in a murine model of asthma. Int. Immunopharmacol., 2012, 13(3), 347-353.
[http://dx.doi.org/10.1016/j.intimp.2012.05.001] [PMID: 22580216]
[17]
Tsitsiou, E.; Lindsay, M.A. microRNAs and the immune response. Curr. Opin. Pharmacol., 2009, 9(4), 514-520.
[http://dx.doi.org/10.1016/j.coph.2009.05.003] [PMID: 19525145]
[18]
Johnson, S.M.; Grosshans, H.; Shingara, J.; Byrom, M.; Jarvis, R.; Cheng, A.; Labourier, E.; Reinert, K.L.; Brown, D.; Slack, F.J. RAS is regulated by the let-7 microRNA family. Cell, 2005, 120(5), 635-647.
[http://dx.doi.org/10.1016/j.cell.2005.01.014] [PMID: 15766527]
[19]
Cummins, J.M.; Velculescu, V.E. Implications of micro-RNA profiling for cancer diagnosis. Oncogene, 2006, 25(46), 6220-6227.
[http://dx.doi.org/10.1038/sj.onc.1209914] [PMID: 17028602]
[20]
Di Leva, G.; Garofalo, M.; Croce, C.M. MicroRNAs in cancer. Annu. Rev. Pathol., 2014, 9(1), 287-314.
[http://dx.doi.org/10.1146/annurev-pathol-012513-104715] [PMID: 24079833]
[21]
Stahlhut Espinosa, C.E.; Slack, F.J. The role of microRNAs in cancer. Yale J. Biol. Med., 2006, 79(3-4), 131-140.
[PMID: 17940623]
[22]
Michael, M.Z.; O’ Connor, S.M.; van Holst Pellekaan, N.G.; Young, G.P.; James, R.J. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol. Cancer Res., 2003, 1(12), 882-891.
[PMID: 14573789]
[23]
Asangani, I.A.; Rasheed, S.A.; Nikolova, D.A.; Leupold, J.H.; Colburn, N.H.; Post, S.; Allgayer, H. MicroRNA-21 (miR-21) post- transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene, 2008, 27(15), 2128-2136.
[http://dx.doi.org/10.1038/sj.onc.1210856] [PMID: 17968323]
[24]
Cottonham, C.L.; Kaneko, S.; Xu, L. miR-21 and miR-31 converge on TIAM1 to regulate migration and invasion of colon carcinoma cells. J. Biol. Chem., 2010, 285(46), 35293-35302.
[http://dx.doi.org/10.1074/jbc.M110.160069] [PMID: 20826792]
[25]
de Planell-Saguer, M.; Rodicio, M.C. Analytical aspects of microRNA in diagnostics: A review. Anal. Chim. Acta, 2011, 699(2), 134-152.
[http://dx.doi.org/10.1016/j.aca.2011.05.025] [PMID: 21704768]
[26]
Segura, M.F.; Belitskaya-Lévy, I.; Rose, A.E.; Zakrzewski, J.; Gaziel, A.; Hanniford, D.; Darvishian, F.; Berman, R.S.; Shapiro, R.L.; Pavlick, A.C.; Osman, I.; Hernando, E. Melanoma MicroRNA signature predicts post-recurrence survival. Clin. Cancer Res., 2010, 16(5), 1577-1586.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-2721] [PMID: 20179230]
[27]
Kosaka, N.; Iguchi, H.; Ochiya, T. Circulating microRNA in body fluid: A new potential biomarker for cancer diagnosis and prognosis. Cancer Sci., 2010, 101(10), 2087-2092.
[http://dx.doi.org/10.1111/j.1349-7006.2010.01650.x] [PMID: 20624164]
[28]
Cortez, M.A.; Bueso-Ramos, C.; Ferdin, J.; Lopez-Berestein, G.; Sood, A.K.; Calin, G.A. MicroRNAs in body fluids-the mix of hormones and biomarkers. Nat. Rev. Clin. Oncol., 2011, 8(8), 467-477.
[http://dx.doi.org/10.1038/nrclinonc.2011.76] [PMID: 21647195]
[29]
Esquela-Kerscher, A.; Slack, F.J. Oncomirs - microRNAs with a role in cancer. Nat. Rev. Cancer, 2006, 6(4), 259-269.
[http://dx.doi.org/10.1038/nrc1840] [PMID: 16557279]
[30]
Calin, G.A.; Croce, C.M. MicroRNA signatures in human cancers. Nat. Rev. Cancer, 2006, 6(11), 857-866.
[http://dx.doi.org/10.1038/nrc1997] [PMID: 17060945]
[31]
Zhang, J.; Cui, D. Nanoparticle-based optical detection of MicroRNA. Nano Biomed. Eng., 2013, 5(1), 1-10.
[http://dx.doi.org/10.5101/nbe.v5i1.p1-10]
[32]
Wang, J.; Chen, J.; Sen, S. MicroRNA as biomarkers and diagnostics. J. Cell. Physiol., 2016, 231(1), 25-30.
[http://dx.doi.org/10.1002/jcp.25056] [PMID: 26031493]
[33]
Cissell, K.A.; Deo, S.K. Trends in microRNA detection. Anal. Bioanal. Chem., 2009, 394(4), 1109-1116.
[http://dx.doi.org/10.1007/s00216-009-2744-6] [PMID: 19367400]
[34]
Lim, L.P.; Lau, N.C.; Weinstein, E.G.; Abdelhakim, A.; Yekta, S.; Rhoades, M.W.; Burge, C.B.; Bartel, D.P. The microRNAs of Caenorhabditis elegans. Genes Dev., 2003, 17(8), 991-1008.
[http://dx.doi.org/10.1101/gad.1074403] [PMID: 12672692]
[35]
Benes, V.; Castoldi, M. Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available. Methods, 2010, 50(4), 244-249.
[http://dx.doi.org/10.1016/j.ymeth.2010.01.026] [PMID: 20109550]
[36]
Shen, Y.; Tian, F.; Chen, Z.; Li, R.; Ge, Q.; Lu, Z. Amplification-based method for microRNA detection. Biosens. Bioelectron., 2015, 71, 322-331.
[http://dx.doi.org/10.1016/j.bios.2015.04.057] [PMID: 25930002]
[37]
Chen, F.; Zhang, F.; Liu, Y.; Cai, C. Simply and sensitively simultaneous detection hepatocellular carcinoma markers AFP and miRNA-122 by a label-free resonance light scattering sensor. Talanta, 2018, 186, 473-480.
[http://dx.doi.org/10.1016/j.talanta.2018.04.060] [PMID: 29784390]
[38]
Cheng, Y.; Lei, J.; Chen, Y.; Ju, H. Highly selective detection of microRNA based on distance-dependent electrochemiluminescence resonance energy transfer between CdTe nanocrystals and Au nanoclusters. Biosens. Bioelectron., 2014, 51, 431-436.
[http://dx.doi.org/10.1016/j.bios.2013.08.014] [PMID: 24011844]
[39]
Degliangeli, F.; Pompa, P.P.; Fiammengo, R. Nanotechnology-based strategies for the detection and quantification of microRNA. Chemistry, 2014, 20(31), 9476-9492.
[http://dx.doi.org/10.1002/chem.201402649] [PMID: 24989446]
[40]
Dong, H.; Zhang, J.; Ju, H.; Lu, H.; Wang, S.; Jin, S.; Hao, K.; Du, H.; Zhang, X. Highly sensitive multiple microRNA detection based on fluorescence quenching of graphene oxide and isothermal strand-displacement polymerase reaction. Anal. Chem., 2012, 84(10), 4587-4593.
[http://dx.doi.org/10.1021/ac300721u] [PMID: 22510208]
[41]
Kalogianni, D.P.; Kalligosfyri, P.M.; Kyriakou, I.K.; Christopoulos, T.K. Advances in microRNA analysis. Anal. Bioanal. Chem., 2018, 410(3), 695-713.
[http://dx.doi.org/10.1007/s00216-017-0632-z] [PMID: 29032457]
[42]
Kilic, T.; Erdem, A.; Ozsoz, M.; Carrara, S. microRNA biosensors: Opportunities and challenges among conventional and commercially available techniques. Biosens. Bioelectron., 2018, 99, 525-546.
[http://dx.doi.org/10.1016/j.bios.2017.08.007] [PMID: 28823978]
[43]
Labib, M.; Berezovski, M.V. Electrochemical sensing of microRNAs: Avenues and paradigms. Biosens. Bioelectron., 2015, 68, 83-94.
[http://dx.doi.org/10.1016/j.bios.2014.12.026] [PMID: 25562735]
[44]
Tian, Q.; Wang, Y.; Deng, R.; Lin, L.; Liu, Y.; Li, J. Carbon nanotube enhanced label-free detection of microRNAs based on hairpin probe triggered solid-phase rolling-circle amplification. Nanoscale, 2015, 7(3), 987-993.
[http://dx.doi.org/10.1039/C4NR05243A] [PMID: 25470558]
[45]
Koscianska, E.; Starega-Roslan, J.; Sznajder, L.J.; Olejniczak, M.; Galka-Marciniak, P.; Krzyzosiak, W.J. Northern blotting analysis of microRNAs, their precursors and RNA interference triggers. BMC Mol. Biol., 2011, 12(14), 14.
[http://dx.doi.org/10.1186/1471-2199-12-14] [PMID: 21481235]
[46]
Mocellin, S.; Rossi, C.R.; Pilati, P.; Nitti, D.; Marincola, F.M. Quantitative real-time PCR: A powerful ally in cancer research. Trends Mol. Med., 2003, 9(5), 189-195.
[http://dx.doi.org/10.1016/S1471-4914(03)00047-9] [PMID: 12763523]
[47]
Shingara, J.; Keiger, K.; Shelton, J.; Laosinchai-Wolf, W.; Powers, P.; Conrad, R.; Brown, D.; Labourier, E. An optimized isolation and labeling platform for accurate microRNA expression profiling. RNA, 2005, 11(9), 1461-1470.
[http://dx.doi.org/10.1261/rna.2610405] [PMID: 16043497]
[48]
Nielsen, B.S. MicroRNA in situ hybridization. Methods Mol. Biol., 2012, 822, 67-84.
[http://dx.doi.org/10.1007/978-1-61779-427-8_5] [PMID: 22144192]
[49]
Pall, G.S.; Codony-Servat, C.; Byrne, J.; Ritchie, L.; Hamilton, A. Carbodiimide-mediated cross-linking of RNA to nylon membranes improves the detection of siRNA, miRNA and piRNA by northern blot. Nucleic Acids Res., 2007, 35(8), e60.
[http://dx.doi.org/10.1093/nar/gkm112] [PMID: 17405769]
[50]
Pall, G.S.; Hamilton, A.J. Improved northern blot method for enhanced detection of small RNA. Nat. Protoc., 2008, 3(6), 1077-1084.
[http://dx.doi.org/10.1038/nprot.2008.67] [PMID: 18536652]
[51]
Válóczi, A.; Hornyik, C.; Varga, N.; Burgyán, J.; Kauppinen, S.; Havelda, Z. Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res., 2004, 32(22), e175.
[http://dx.doi.org/10.1093/nar/gnh171] [PMID: 15598818]
[52]
Ramkissoon, S.H.; Mainwaring, L.A.; Sloand, E.M.; Young, N.S.; Kajigaya, S. Nonisotopic detection of microRNA using digoxigenin labeled RNA probes. Mol. Cell. Probes, 2006, 20(1), 1-4.
[http://dx.doi.org/10.1016/j.mcp.2005.07.004] [PMID: 16146683]
[53]
Chen, C.; Ridzon, D.A.; Broomer, A.J.; Zhou, Z.; Lee, D.H.; Nguyen, J.T.; Barbisin, M.; Xu, N.L.; Mahuvakar, V.R.; Andersen, M.R.; Lao, K.Q.; Livak, K.J.; Guegler, K.J. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res., 2005, 33(20), e179.
[http://dx.doi.org/10.1093/nar/gni178] [PMID: 16314309]
[54]
Yang, H.; Schmuke, J.J.; Flagg, L.M.; Roberts, J.K.; Allen, E.M.; Ivashuta, S.; Gilbertson, L.A.; Armstrong, T.A.; Christian, A.T. A novel real-time polymerase chain reaction method for high throughput quantification of small regulatory RNAs. Plant Biotechnol. J., 2009, 7(7), 621-630.
[http://dx.doi.org/10.1111/j.1467-7652.2009.00429.x] [PMID: 19619184]
[55]
Wan, G.; Lim, Q.E.; Too, H.P. High-performance quantification of mature microRNAs by real-time RT-PCR using deoxyuridine-incorporated oligonucleotides and hemi-nested primers. RNA, 2010, 16(7), 1436-1445.
[http://dx.doi.org/10.1261/rna.2001610] [PMID: 20547774]
[56]
Sharbati-Tehrani, S.; Kutz-Lohroff, B.; Bergbauer, R.; Scholven, J.; Einspanier, R. miR-Q: A novel quantitative RT-PCR approach for the expression profiling of small RNA molecules such as miRNAs in a complex sample. BMC Mol. Biol., 2008, 9(34), 34.
[http://dx.doi.org/10.1186/1471-2199-9-34] [PMID: 18400113]
[57]
Politz, J.C.R.; Zhang, F.; Pederson, T. MicroRNA-206 colocalizes with ribosome-rich regions in both the nucleolus and cytoplasm of rat myogenic cells. Proc. Natl. Acad. Sci. USA, 2006, 103(50), 18957-18962.
[http://dx.doi.org/10.1073/pnas.0609466103] [PMID: 17135348]
[58]
Lu, J.; Tsourkas, A. Imaging individual microRNAs in single mammalian cells in situ. Nucleic Acids Res., 2009, 37(14), e100.
[http://dx.doi.org/10.1093/nar/gkp482] [PMID: 19515934]
[59]
Bostjancic, E.; Zidar, N.; Glavac, D. MicroRNA microarray expression profiling in human myocardial infarction. Dis. Markers, 2009, 27(6), 255-268.
[http://dx.doi.org/10.1155/2009/641082] [PMID: 20075508]
[60]
Wu, F.; Zhang, S.; Dassopoulos, T.; Harris, M. L.; Bayless, T. M.; Meltzer, S. J.; Brant, S. R.; Kwon, J. H. Identification of microRNAs associated with ileal and colonic Crohn's disease. Inflamm. Bowel Dis., 2010, 16(10), 1729-1738.
[61]
Chen, Y.X.; Wu, X.; Huang, K.J. A sandwich-type electrochemical biosensing platform for microRNA-21 detection using carbon sphere-MoS2 and catalyzed hairpin assembly for signal amplification. Sens. Actuators B Chem., 2018, 270, 179-186.
[http://dx.doi.org/10.1016/j.snb.2018.05.031]
[62]
Van Ness, J.; Van Ness, L.K.; Galas, D.J. Isothermal reactions for the amplification of oligonucleotides. Proc. Natl. Acad. Sci. USA, 2003, 100(8), 4504-4509.
[http://dx.doi.org/10.1073/pnas.0730811100] [PMID: 12679520]
[63]
Jia, H.; Li, Z.; Liu, C.; Cheng, Y. Ultrasensitive detection of microRNAs by exponential isothermal amplification. Angew. Chem. Int. Ed. Engl., 2010, 49(32), 5498-5501.
[http://dx.doi.org/10.1002/anie.201001375] [PMID: 20602382]
[64]
Duan, R.; Zuo, X.; Wang, S.; Quan, X.; Chen, D.; Chen, Z.; Jiang, L.; Fan, C.; Xia, F. Lab in a tube: Ultrasensitive detection of microRNAs at the single-cell level and in breast cancer patients using quadratic isothermal amplification. J. Am. Chem. Soc., 2013, 135(12), 4604-4607.
[http://dx.doi.org/10.1021/ja311313b] [PMID: 23445447]
[65]
Dhama, K.; Karthik, K.; Chakraborty, S.; Tiwari, R.; Kapoor, S.; Kumar, A.; Thomas, P. Loop-mediated isothermal amplification of DNA (LAMP): A new diagnostic tool lights the world of diagnosis of animal and human pathogens: A review. Pak. J. Biol. Sci., 2014, 17(2), 151-166.
[http://dx.doi.org/10.3923/pjbs.2014.151.166] [PMID: 24783797]
[66]
Li, C.; Li, Z.; Jia, H.; Yan, J. One-step ultrasensitive detection of microRNAs with loop-mediated isothermal amplification (LAMP). Chem. Commun. (Camb.), 2011, 47(9), 2595-2597.
[http://dx.doi.org/10.1039/C0CC03957H] [PMID: 21173961]
[67]
Ma, F.; Liu, M.; Tang, B.; Zhang, C.Y. Sensitive quantification of microRNAs by isothermal helicase-dependent amplification. Anal. Chem., 2017, 89(11), 6182-6187.
[http://dx.doi.org/10.1021/acs.analchem.7b01113] [PMID: 28492307]
[68]
Wang, X.P.; Yin, B.C.; Wang, P.; Ye, B.C. Highly sensitive detection of microRNAs based on isothermal exponential amplification-assisted generation of catalytic G-quadruplex DNAzyme. Biosens. Bioelectron., 2013, 42, 131-135.
[http://dx.doi.org/10.1016/j.bios.2012.10.097] [PMID: 23202342]
[69]
Xu, Y.; Li, D.; Cheng, W.; Hu, R.; Sang, Y.; Yin, Y.; Ding, S.; Ju, H. Chemiluminescence imaging for microRNA detection based on cascade exponential isothermal amplification machinery. Anal. Chim. Acta, 2016, 936, 229-235.
[http://dx.doi.org/10.1016/j.aca.2016.07.007] [PMID: 27566360]
[70]
Lagunavicius, A.; Merkiene, E.; Kiveryte, Z.; Savaneviciute, A.; Zimbaite-Ruskuliene, V.; Radzvilavicius, T.; Janulaitis, A. Novel application of Phi29 DNA polymerase: RNA detection and analysis in vitro and in situ by target RNA-primed RCA. RNA, 2009, 15(5), 765-771.
[http://dx.doi.org/10.1261/rna.1279909] [PMID: 19244362]
[71]
Neubacher, S.; Arenz, C. Rolling-circle amplification: Unshared advantages in miRNA detection. ChemBioChem, 2009, 10(8), 1289-1291.
[http://dx.doi.org/10.1002/cbic.200900116] [PMID: 19373796]
[72]
Jonstrup, S.P.; Koch, J.; Kjems, J. A microRNA detection system based on padlock probes and rolling circle amplification. RNA, 2006, 12(9), 1747-1752.
[http://dx.doi.org/10.1261/rna.110706] [PMID: 16888321]
[73]
Yao, B.; Li, J.; Huang, H.; Sun, C.; Wang, Z.; Fan, Y.; Chang, Q.; Li, S.; Xi, J. Quantitative analysis of zeptomole microRNAs based on isothermal ramification amplification. RNA, 2009, 15(9), 1787-1794.
[http://dx.doi.org/10.1261/rna.1555209] [PMID: 19620236]
[74]
Wen, Y.; Xu, Y.; Mao, X.; Wei, Y.; Song, H.; Chen, N.; Huang, Q.; Fan, C.; Li, D. DNAzyme-based rolling-circle amplification DNA machine for ultrasensitive analysis of microRNA in Drosophila larva. Anal. Chem., 2012, 84(18), 7664-7669.
[http://dx.doi.org/10.1021/ac300616z] [PMID: 22928468]
[75]
Liu, H.; Li, L.; Duan, L.; Wang, X.; Xie, Y.; Tong, L.; Wang, Q.; Tang, B. High specific and ultrasensitive isothermal detection of microRNA by padlock probe-based exponential rolling circle amplification. Anal. Chem., 2013, 85(16), 7941-7947.
[http://dx.doi.org/10.1021/ac401715k] [PMID: 23855808]
[76]
Zhang, L.R.; Zhu, G.; Zhang, C.Y. Homogeneous and label-free detection of microRNAs using bifunctional strand displacement amplification-mediated hyperbranched rolling circle amplification. Anal. Chem., 2014, 86(13), 6703-6709.
[http://dx.doi.org/10.1021/ac501645x] [PMID: 24903889]
[77]
Shagin, D.A.; Rebrikov, D.V.; Kozhemyako, V.B.; Altshuler, I.M.; Shcheglov, A.S.; Zhulidov, P.A.; Bogdanova, E.A.; Staroverov, D.B.; Rasskazov, V.A.; Lukyanov, S. A novel method for SNP detection using a new duplex-specific nuclease from crab hepatopancreas. Genome Res., 2002, 12(12), 1935-1942.
[http://dx.doi.org/10.1101/gr.547002] [PMID: 12466298]
[78]
Yin, B.C.; Liu, Y.Q.; Ye, B.C. One-step, multiplexed fluorescence detection of microRNAs based on duplex-specific nuclease signal amplification. J. Am. Chem. Soc., 2012, 134(11), 5064-5067.
[http://dx.doi.org/10.1021/ja300721s] [PMID: 22394262]
[79]
Zhao, Y.; Zhou, L.; Tang, Z. Cleavage-based signal amplification of RNA. Nat. Commun., 2013, 4(1), 1493.
[http://dx.doi.org/10.1038/ncomms2492] [PMID: 23422661]
[80]
Lin, X.; Zhang, C.; Huang, Y.; Zhu, Z.; Chen, X.; Yang, C.J. Backbone-modified molecular beacons for highly sensitive and selective detection of microRNAs based on duplex specific nuclease signal amplification. Chem. Commun. (Camb.), 2013, 49(65), 7243-7245.
[http://dx.doi.org/10.1039/c3cc43224f] [PMID: 23842896]
[81]
Yan, J.; Li, Z.; Liu, C.; Cheng, Y. Simple and sensitive detection of microRNAs with ligase chain reaction. Chem. Commun. (Camb.), 2010, 46(14), 2432-2434.
[http://dx.doi.org/10.1039/b923521c] [PMID: 20379549]
[82]
Zhang, P.; Zhang, J.; Wang, C.; Liu, C.; Wang, H.; Li, Z. Highly sensitive and specific multiplexed microRNA quantification using size-coded ligation chain reaction. Anal. Chem., 2014, 86(2), 1076-1082.
[http://dx.doi.org/10.1021/ac4026384] [PMID: 24364819]
[83]
Yuan, Z.; Zhou, Y.; Gao, S.; Cheng, Y.; Li, Z. Homogeneous and sensitive detection of microRNA with ligase chain reaction and lambda exonuclease-assisted cationic conjugated polymer biosensing. ACS Appl. Mater. Interfaces, 2014, 6(9), 6181-6185.
[http://dx.doi.org/10.1021/am500883q] [PMID: 24773186]
[84]
Liu, L.; Song, C.; Zhang, Z.; Yang, J.; Zhou, L.; Zhang, X.; Xie, G. Ultrasensitive electrochemical detection of microRNA-21 combining layered nanostructure of oxidized single-walled carbon nanotubes and nanodiamonds by hybridization chain reaction. Biosens. Bioelectron., 2015, 70, 351-357.
[http://dx.doi.org/10.1016/j.bios.2015.03.051] [PMID: 25841119]
[85]
Zhai, Q.; He, Y.; Li, X.; Guo, J.; Li, S.; Yi, G. A simple and ultrasensitive electrochemical biosensor for detection of microRNA based on hybridization chain reaction amplification. J. Electroanal. Chem. (Lausanne), 2015, 758, 20-25.
[http://dx.doi.org/10.1016/j.jelechem.2015.10.010]
[86]
Li, B.; Jiang, Y.; Chen, X.; Ellington, A.D. Probing spatial organization of DNA strands using enzyme-free hairpin assembly circuits. J. Am. Chem. Soc., 2012, 134(34), 13918-13921.
[http://dx.doi.org/10.1021/ja300984b] [PMID: 22894754]
[87]
Hou, T.; Li, W.; Liu, X.; Li, F. Label-free and enzyme-free homogeneous electrochemical biosensing strategy based on hybridization chain reaction: A facile, sensitive, and highly specific microRNA assay. Anal. Chem., 2015, 87(22), 11368-11374.
[http://dx.doi.org/10.1021/acs.analchem.5b02790] [PMID: 26523931]
[88]
Bhadra, S.; Ellington, A.D. Design and application of cotranscriptional non-enzymatic RNA circuits and signal transducers. Nucleic Acids Res., 2014, 42(7), e58.
[http://dx.doi.org/10.1093/nar/gku074] [PMID: 24493736]
[89]
Jiang, Y.S.; Bhadra, S.; Li, B.; Ellington, A.D. Mismatches improve the performance of strand-displacement nucleic acid circuits. Angew. Chem. Int. Ed. Engl., 2014, 53(7), 1845-1848.
[http://dx.doi.org/10.1002/anie.201307418] [PMID: 24402831]
[90]
Liu, C.; Lv, S.; Gong, H.; Chen, C.; Chen, X.; Cai, C. 2-aminopurine probe in combination with catalyzed hairpin assembly signal amplification for simple and sensitive detection of microRNA. Talanta, 2017, 174, 336-340.
[http://dx.doi.org/10.1016/j.talanta.2017.06.028] [PMID: 28738589]
[91]
Zhang, H.; Wang, Q.; Yang, X.; Wang, K.; Li, Q.; Li, Z.; Gao, L.; Nie, W.; Zheng, Y. An isothermal electrochemical biosensor for the sensitive detection of microRNA based on a catalytic hairpin assembly and supersandwich amplification. Analyst (Lond.), 2017, 142(2), 389-396.
[http://dx.doi.org/10.1039/C6AN02390H] [PMID: 28009023]
[92]
Wu, X.Y.; Chai, Y.Q.; Yuan, R.; Zhuo, Y.; Chen, Y. Dual signal amplification strategy for enzyme-free electrochemical detection of microRNAs. Sens. Actuators B Chem., 2014, 203, 296-302.
[http://dx.doi.org/10.1016/j.snb.2014.06.131]
[93]
Zhang, P.; Wu, X.; Chai, Y.; Yuan, R. An electrochemiluminescent microRNA biosensor based on hybridization chain reaction coupled with hemin as the signal enhancer. Analyst (Lond.), 2014, 139(11), 2748-2753.
[http://dx.doi.org/10.1039/C4AN00284A] [PMID: 24722579]
[94]
Yan, Y.; Shen, B.; Wang, H.; Sun, X.; Cheng, W.; Zhao, H.; Ju, H.; Ding, S. A novel and versatile nanomachine for ultrasensitive and specific detection of microRNAs based on molecular beacon initiated strand displacement amplification coupled with catalytic hairpin assembly with DNAzyme formation. Analyst (Lond.), 2015, 140(16), 5469-5474.
[http://dx.doi.org/10.1039/C5AN00920K] [PMID: 26134555]
[95]
Deng, R.; Tang, L.; Tian, Q.; Wang, Y.; Lin, L.; Li, J. Toehold-initiated rolling circle amplification for visualizing individual microRNAs in situ in single cells. Angew. Chem. Int. Ed. Engl., 2014, 53(9), 2389-2393.
[http://dx.doi.org/10.1002/anie.201309388] [PMID: 24469913]
[96]
Fan, Y.; Chen, X.; Trigg, A.D.; Tung, C.H.; Kong, J.; Gao, Z. Detection of MicroRNAs using target-guided formation of conducting polymer nanowires in nanogaps. J. Am. Chem. Soc., 2007, 129(17), 5437-5443.
[http://dx.doi.org/10.1021/ja067477g] [PMID: 17411036]
[97]
Cardoso, A.R.; Moreira, F.T.C.; Fernandes, R.; Sales, M.G.F. Novel and simple electrochemical biosensor monitoring attomolar levels of miRNA-155 in breast cancer. Biosens. Bioelectron., 2016, 80, 621-630.
[http://dx.doi.org/10.1016/j.bios.2016.02.035] [PMID: 26901459]
[98]
Lee, H.; Park, J.E.; Nam, J.M. Bio-barcode gel assay for microRNA. Nat. Commun., 2014, 5(1), 3367.
[http://dx.doi.org/10.1038/ncomms4367] [PMID: 24569571]
[99]
Labib, M.; Khan, N.; Ghobadloo, S.M.; Cheng, J.; Pezacki, J.P.; Berezovski, M.V. Three-mode electrochemical sensing of ultralow microRNA levels. J. Am. Chem. Soc., 2013, 135(8), 3027-3038.
[http://dx.doi.org/10.1021/ja308216z] [PMID: 23362834]
[100]
Hosseini, M.; Akbari, A.; Ganjali, M.R.; Dadmehr, M.; Rezayan, A.H. A novel label-free microRNA-155 detection on the basis of fluorescent silver nanoclusters. J. Fluoresc., 2015, 25(4), 925-929.
[http://dx.doi.org/10.1007/s10895-015-1574-5] [PMID: 25953605]
[101]
Chi, B.Z.; Liang, R.P.; Qiu, W.B.; Yuan, Y.H.; Qiu, J.D. Direct fluorescence detection of microRNA based on enzymatically engineered primer extension poly-thymine (EPEPT) reaction using copper nanoparticles as nano-dye. Biosens. Bioelectron., 2017, 87, 216-221.
[http://dx.doi.org/10.1016/j.bios.2016.08.042] [PMID: 27566394]
[102]
Borghei, Y.S.; Hosseini, M.; Ganjali, M.R.; Hosseinkhani, S. Label-free fluorescent detection of microRNA-155 based on synthesis of hairpin DNA-templated copper nanoclusters by etching (top-down approach). Sens. Actuators B Chem., 2017, 248, 133-139.
[http://dx.doi.org/10.1016/j.snb.2017.03.148]
[103]
Medintz, I.L.; Uyeda, H.T.; Goldman, E.R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater., 2005, 4(6), 435-446.
[http://dx.doi.org/10.1038/nmat1390] [PMID: 15928695]
[104]
Huang, X.; Ren, J. “Nanomaterial-based chemiluminescence resonance energy transfer: A strategy to develop new analytical methods,” TrAc-Trend. Anal. Chem., 2012, 40, 77-89.
[105]
Chen, Y.; Xiang, Y.; Yuan, R.; Chai, Y. Intercalation of quantum dots as the new signal acquisition and amplification platform for sensitive electrochemiluminescent detection of microRNA. Anal. Chim. Acta, 2015, 891, 130-135.
[http://dx.doi.org/10.1016/j.aca.2015.07.059] [PMID: 26388371]
[106]
Deng, H.; Liu, Q.; Wang, X.; Huang, R.; Liu, H.; Lin, Q.; Zhou, X.; Xing, D. Quantum dots-labeled strip biosensor for rapid and sensitive detection of microRNA based on target-recycled nonenzymatic amplification strategy. Biosens. Bioelectron., 2017, 87, 931-940.
[http://dx.doi.org/10.1016/j.bios.2016.09.043] [PMID: 27664413]
[107]
Lv, S.; Chen, F.; Chen, C.; Chen, X.; Gong, H.; Cai, C. A novel CdTe quantum dots probe amplified resonance light scattering signals to detect microRNA-122. Talanta, 2017, 165, 659-663.
[http://dx.doi.org/10.1016/j.talanta.2017.01.020] [PMID: 28153313]
[108]
Lim, S.Y.; Shen, W.; Gao, Z. Carbon quantum dots and their applications. Chem. Soc. Rev., 2015, 44(1), 362-381.
[http://dx.doi.org/10.1039/C4CS00269E] [PMID: 25316556]
[109]
Zhu, J.; Tang, Y.; Wang, G.; Mao, J.; Liu, Z.; Sun, T.; Wang, M.; Chen, D.; Yang, Y.; Li, J.; Deng, Y.; Yang, S. Green, rapid, and universal preparation approach of graphene quantum dots under ultraviolet irradiation. ACS Appl. Mater. Interfaces, 2017, 9(16), 14470-14477.
[http://dx.doi.org/10.1021/acsami.6b11525] [PMID: 28394560]
[110]
Zhang, N.; Zhang, L.; Ruan, Y.F.; Zhao, W.W.; Xu, J.J.; Chen, H.Y. Quantum-dots-based photoelectrochemical bioanalysis highlighted with recent examples. Biosens. Bioelectron., 2017, 94, 207-218.
[http://dx.doi.org/10.1016/j.bios.2017.03.011] [PMID: 28285198]
[111]
Zhao, H.; Ding, R.; Zhao, X.; Li, Y.; Qu, L.; Pei, H.; Yildirimer, L.; Wu, Z.; Zhang, W. Graphene-based nanomaterials for drug and/or gene delivery, bioimaging, and tissue engineering. Drug Discov. Today, 2017, 22(9), 1302-1317.
[http://dx.doi.org/10.1016/j.drudis.2017.04.002] [PMID: 28869820]
[112]
Zhang, H.; Wang, Y.; Zhao, D.; Zeng, D.; Xia, J.; Aldalbahi, A.; Wang, C.; San, L.; Fan, C.; Zuo, X.; Mi, X. Universal fluorescence biosensor platform based on graphene quantum dots and pyrene-functionalized molecular beacons for detection of microRNAs. ACS Appl. Mater. Interfaces, 2015, 7(30), 16152-16156.
[http://dx.doi.org/10.1021/acsami.5b04773] [PMID: 26200323]
[113]
Lim, C.S.; Hola, K.; Ambrosi, A.; Zboril, R.; Pumera, M. Graphene and carbon quantum dots electrochemistry. Electrochem. Commun., 2015, 52, 75-79.
[http://dx.doi.org/10.1016/j.elecom.2015.01.023]
[114]
Zhang, T.; Zhao, H.; Fan, G.; Li, Y.; Li, L.; Quan, X. Electrolytic exfoliation synthesis of boron doped graphene quantum dots: A new luminescent material for electrochemiluminescence detection of oncogene microRNA-20a. Electrochim. Acta, 2016, 190, 1150-1158.
[http://dx.doi.org/10.1016/j.electacta.2015.12.155]
[115]
Baker, S.N.; Baker, G.A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem. Int. Ed. Engl., 2010, 49(38), 6726-6744.
[http://dx.doi.org/10.1002/anie.200906623] [PMID: 20687055]
[116]
Wolfbeis, O.S. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev., 2015, 44(14), 4743-4768.
[http://dx.doi.org/10.1039/C4CS00392F] [PMID: 25620543]
[117]
Khakbaz, F.; Mahani, M. Micro-RNA detection based on fluorescence resonance energy transfer of DNA-carbon quantum dots probes. Anal. Biochem., 2017, 523, 32-38.
[http://dx.doi.org/10.1016/j.ab.2017.01.025] [PMID: 28159568]
[118]
Tetsuka, H.; Asahi, R.; Nagoya, A.; Okamoto, K.; Tajima, I.; Ohta, R.; Okamoto, A. Optically tunable amino-functionalized graphene quantum dots. Adv. Mater., 2012, 24(39), 5333-5338.
[http://dx.doi.org/10.1002/adma.201201930] [PMID: 22833282]
[119]
Wu, Z.L.; Zhang, P.; Gao, M.X.; Liu, C.F.; Wang, W.; Leng, F.; Huang, C.Z. One-pot hydrothermal synthesis of highly luminescent nitrogen-doped amphoteric carbon dots for bioimaging from Bombyx mori silk - natural proteins. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(22), 2868-2873.
[http://dx.doi.org/10.1039/c3tb20418a] [PMID: 32260873]
[120]
Thangaraj, B.; Solomon, P.R.; Ranganathan, S. Synthesis of carbon quantum dots with special reference to biomass as a source - A review. Curr. Pharm. Des., 2019, 25(13), 1455-1476.
[http://dx.doi.org/10.2174/1381612825666190618154518] [PMID: 31258064]
[121]
Liu, Q.; Ma, C.; Liu, X.P.; Wei, Y.P.; Mao, C.J.; Zhu, J.J. A novel electrochemiluminescence biosensor for the detection of microRNAs based on a DNA functionalized nitrogen doped carbon quantum dots as signal enhancers. Biosens. Bioelectron., 2017, 92, 273-279.
[http://dx.doi.org/10.1016/j.bios.2017.02.027] [PMID: 28235734]
[122]
Kumar, V.B.; Sheinberger, J.; Porat, Z.; Shav-Tal, Y.; Gedanken, A. A hydrothermal reaction of an aqueous solution of BSA yields highly fluorescent N doped C-dots used for imaging of live mammalian cells. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(17), 2913-2920.
[http://dx.doi.org/10.1039/C6TB00519E] [PMID: 32262969]
[123]
Xiong, C.; Liang, W.; Wang, H.; Zheng, Y.; Zhuo, Y.; Chai, Y.; Yuan, R. In situ electro-polymerization of nitrogen doped carbon dots and their application in an electrochemiluminescence biosensor for the detection of intracellular lead ions. Chem. Commun. (Camb.), 2016, 52(32), 5589-5592.
[http://dx.doi.org/10.1039/C6CC01078D] [PMID: 27026491]
[124]
Costa-Fernández, J.M.; Pereiro, R.; Sanz-Medel, A. The use of luminescent quantum dots for optical sensing. Trends Analyt. Chem., 2006, 25(3), 207-218.
[http://dx.doi.org/10.1016/j.trac.2005.07.008]
[125]
He, Y.; Wang, H.F.; Yan, X.P. Exploring Mn-doped ZnS quantum dots for the room-temperature phosphorescence detection of enoxacin in biological fluids. Anal. Chem., 2008, 80(10), 3832-3837.
[http://dx.doi.org/10.1021/ac800100y] [PMID: 18407673]
[126]
Wu, P.; He, Y.; Wang, H.F.; Yan, X.P. Conjugation of glucose oxidase onto Mn-doped ZnS quantum dots for phosphorescent sensing of glucose in biological fluids. Anal. Chem., 2010, 82(4), 1427-1433.
[http://dx.doi.org/10.1021/ac902531g] [PMID: 20092317]
[127]
Traviesa-Alvarez, J.M.; Sánchez-Barragán, I.; Costa-Fernández, J.M.; Pereiro, R.; Sanz-Medel, A. Room temperature phosphorescence optosensing of benzo[a]pyrene in water using halogenated molecularly imprinted polymers. Analyst (Lond.), 2007, 132(3), 218-223.
[http://dx.doi.org/10.1039/B616919H] [PMID: 17325754]
[128]
Lv, J.; Miao, Y.; Yan, G. Detection of tumor marker miRNA21 based on phosphorescent resonance energy transfer of Mn–ZnS QDs. RSC Advances, 2017, 7(65), 41063-41069.
[http://dx.doi.org/10.1039/C7RA04521B]
[129]
Li, F.; Peng, J.; Zheng, Q.; Guo, X.; Tang, H.; Yao, S. Carbon nanotube-polyamidoamine dendrimer hybrid-modified electrodes for highly sensitive electrochemical detection of microRNA24. Anal. Chem., 2015, 87(9), 4806-4813.
[http://dx.doi.org/10.1021/acs.analchem.5b00093] [PMID: 25874968]
[130]
Azimzadeh, M.; Rahaie, M.; Nasirizadeh, N.; Ashtari, K.; Naderi- Manesh, H. An electrochemical nanobiosensor for plasma miRNA-155, based on graphene oxide and gold nanorod, for early detection of breast cancer. Biosens. Bioelectron., 2016, 77, 99-106.
[http://dx.doi.org/10.1016/j.bios.2015.09.020] [PMID: 26397420]
[131]
Kamal, M.M.; Islam, M.N.; Haque, M.H.; Tanaka, S.; Gopalan, V.; Alici, G.; Nguyen, N.T.; Lam, A.K.; Hossain, M.S.A.; Yamauchi, Y.; Shiddiky, M.J.A. Gold-loaded nanoporous superparamagnetic nanocubes for catalytic signal amplification in detecting miRNA. Chem. Commun. (Camb.), 2017, 53(58), 8231-8234.
[http://dx.doi.org/10.1039/C7CC04789D] [PMID: 28681881]
[132]
Li, F.; Peng, J.; Wang, J.; Tang, H.; Tan, L.; Xie, Q.; Yao, S. Carbon nanotube-based label-free electrochemical biosensor for sensitive detection of miRNA-24. Biosens. Bioelectron., 2014, 54, 158-164.
[http://dx.doi.org/10.1016/j.bios.2013.10.061] [PMID: 24270466]
[133]
Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 2009, 131(17), 6050-6051.
[http://dx.doi.org/10.1021/ja809598r] [PMID: 19366264]
[134]
Frost, J.M.; Butler, K.T.; Brivio, F.; Hendon, C.H.; van Schilfgaarde, M.; Walsh, A. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett., 2014, 14(5), 2584-2590.
[http://dx.doi.org/10.1021/nl500390f] [PMID: 24684284]
[135]
Niu, G.; Guo, X.; Wang, L. Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(17), 8970-8980.
[http://dx.doi.org/10.1039/C4TA04994B]
[136]
Abrusci, A.; Stranks, S.D.; Docampo, P.; Yip, H.L.; Jen, A.K.Y.; Snaith, H.J. High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers. Nano Lett., 2013, 13(7), 3124-3128.
[http://dx.doi.org/10.1021/nl401044q] [PMID: 23772773]
[137]
Pang, X.; Qi, J.; Zhang, Y.; Ren, Y.; Su, M.; Jia, B.; Wang, Y.; Wei, Q.; Du, B. Ultrasensitive photoelectrochemical aptasensing of miR-155 using efficient and stable CH3NH3PbI3 quantum dots sensitized ZnO nanosheets as light harvester. Biosens. Bioelectron., 2016, 85, 142-150.
[http://dx.doi.org/10.1016/j.bios.2016.04.099] [PMID: 27162145]
[138]
Fang, S.; Lee, H.J.; Wark, A.W.; Corn, R.M. Attomole microarray detection of microRNAs by nanoparticle-amplified SPR imaging measurements of surface polyadenylation reactions. J. Am. Chem. Soc., 2006, 128(43), 14044-14046.
[http://dx.doi.org/10.1021/ja065223p] [PMID: 17061884]
[139]
Hu, T.; Zhang, L.; Wen, W.; Zhang, X.; Wang, S. Enzyme catalytic amplification of miRNA-155 detection with graphene quantum dot-based electrochemical biosensor. Biosens. Bioelectron., 2016, 77, 451-456.
[http://dx.doi.org/10.1016/j.bios.2015.09.068] [PMID: 26453906]
[140]
Li, B.; Yin, H.; Zhou, Y.; Wang, M.; Wang, J.; Ai, S. Photoelectrochemical detection of miRNA-319a in rice leaf responding to phytohormones treatment based on CuO-CuWO4 and rolling circle amplification. Sens. Actuators B Chem., 2018, 255(2), 1744-1752.
[http://dx.doi.org/10.1016/j.snb.2017.08.192]
[141]
Ma, H.; Xue, N.; Li, Z.; Xing, K.; Miao, X. Ultrasensitive detection of miRNA-155 using multi-walled carbonnanotube-gold nanocomposites as a novel fluorescence quenching platform. Sens. Actuators B Chem., 2018, 266, 221-227.
[http://dx.doi.org/10.1016/j.snb.2018.03.071]
[142]
Xi, Q.; Zhou, D.M.; Kan, Y.Y.; Ge, J.; Wu, Z.K.; Yu, R.Q.; Jiang, J.H. Highly sensitive and selective strategy for microRNA detection based on WS2 nanosheet mediated fluorescence quenching and duplex-specific nuclease signal amplification. Anal. Chem., 2014, 86(3), 1361-1365.
[http://dx.doi.org/10.1021/ac403944c] [PMID: 24446758]
[143]
Tian, B.; Ma, J.; Qiu, Z.; Zardán Gómez de la Torre, T.; Donolato, M.; Hansen, M.F.; Svedlindh, P.; Strömberg, M. Optomagnetic detection of MicroRNA based on duplex-specific nuclease-assisted target recycling and multilayer core-satellite magnetic superstructures. ACS Nano, 2017, 11(2), 1798-1806.
[http://dx.doi.org/10.1021/acsnano.6b07763] [PMID: 28177611]
[144]
Zhang, Y.; Zhang, C.Y. Sensitive detection of microRNA with isothermal amplification and a single-quantum-dot-based nanosensor. Anal. Chem., 2012, 84(1), 224-231.
[http://dx.doi.org/10.1021/ac202405q] [PMID: 22103863]
[145]
Bo, B.; Zhang, T.; Jiang, Y.; Cui, H.; Miao, P. Triple signal amplification strategy for ultrasensitive determination of miRNA based on duplex specific nuclease and bridge DNA-Gold nanoparticles. Anal. Chem., 2018, 90(3), 2395-2400.
[http://dx.doi.org/10.1021/acs.analchem.7b05447] [PMID: 29308636]
[146]
Tian, B.; Qiu, Z.; Ma, J.; Donolato, M.; Hansen, M.F.; Svedlindh, P.; Strömberg, M. On-particle rolling circle amplification-based core-satellite magnetic superstructures for microRNA detection. ACS Appl. Mater. Interfaces, 2018, 10(3), 2957-2964.
[http://dx.doi.org/10.1021/acsami.7b16293] [PMID: 29266917]
[147]
Yan, L.; Zhou, J.; Zheng, Y.; Gamson, A.S.; Roembke, B.T.; Nakayama, S.; Sintim, H.O. Isothermal amplified detection of DNA and RNA. Mol. Biosyst., 2014, 10(5), 970-1003.
[http://dx.doi.org/10.1039/c3mb70304e] [PMID: 24643211]
[148]
Yuan, R.; Yu, X.; Zhang, Y.; Xu, L.; Cheng, W.; Tu, Z.; Ding, S. Target-triggered DNA nanoassembly on quantum dots and DNAzyme-modulated double quenching for ultrasensitive microRNA biosensing. Biosens. Bioelectron., 2017, 92, 342-348.
[http://dx.doi.org/10.1016/j.bios.2016.11.002] [PMID: 27836609]
[149]
Yang, J.J.; Zhang, Z.F.; Yan, G.Q. Facile detection of microRNA based on phosphorescence resonance energy transfer and duplex-specific nuclease-assisted signal amplification. Anal. Biochem., 2017, 539, 127-133.
[http://dx.doi.org/10.1016/j.ab.2017.10.021] [PMID: 29107578]
[150]
Jing, T.; Xue, X.; Li, C.H.; Chen, M.; Zhen, S.J. A new graphene oxide enhanced fluorescence anisotropy strategy for microRNA detection. Scientia Sinica Chimica, 2018, 48(1), 85-92.
[http://dx.doi.org/10.1360/N032017-00126]
[151]
Wang, Y.H.; Huang, K.J.; Wu, X. Recent advances in transition-metal dichalcogenides based electrochemical biosensors: A review. Biosens. Bioelectron., 2017, 97, 305-316.
[http://dx.doi.org/10.1016/j.bios.2017.06.011] [PMID: 28618367]
[152]
Xiao, M.; Man, T.; Zhu, C.; Pei, H.; Shi, J.; Li, L.; Qu, X.; Shen, X.; Li, J. MoS2 nanoprobe for microRNA quantification based on duplex-specific nuclease signal amplification. ACS Appl. Mater. Interfaces, 2018, 10(9), 7852-7858.
[http://dx.doi.org/10.1021/acsami.7b18984] [PMID: 29431420]
[153]
Shuai, H.L.; Huang, K.J.; Chen, Y.X.; Fang, L.X.; Jia, M.P. Au nanoparticles/hollow molybdenum disulfide microcubes based biosensor for microRNA-21 detection coupled with duplex-specific nuclease and enzyme signal amplification. Biosens. Bioelectron., 2017, 89(Pt 2), 989-997.
[http://dx.doi.org/10.1016/j.bios.2016.10.051] [PMID: 27825521]
[154]
Shuai, H.L.; Huang, K.J.; Xing, L.L.; Chen, Y.X. Ultrasensitive electrochemical sensing platform for microRNA based on tungsten oxide-graphene composites coupling with catalyzed hairpin assembly target recycling and enzyme signal amplification. Biosens. Bioelectron., 2016, 86, 337-345.
[http://dx.doi.org/10.1016/j.bios.2016.06.057] [PMID: 27392235]
[155]
Yu, N.; Wang, Z.; Wang, C.; Han, J.; Bu, H. Combining padlock exponential rolling circle amplification with CoFe2O4 magnetic nanoparticles for microRNA detection by nanoelectrocatalysis without a substrate. Anal. Chim. Acta, 2017, 962, 24-31.
[http://dx.doi.org/10.1016/j.aca.2017.01.069] [PMID: 28231877]
[156]
Lu, J.; Wu, L.; Hu, Y.; Wang, S.; Guo, Z. Ultrasensitive Faraday cage-type electrochemiluminescence assay for femtomolar miRNA-141 via graphene oxide and hybridization chain reaction-assisted cascade amplification. Biosens. Bioelectron., 2018, 109, 13-19.
[http://dx.doi.org/10.1016/j.bios.2018.02.062] [PMID: 29522969]
[157]
Shuai, H.L.; Huang, K.J.; Zhang, W.J.; Cao, X.; Jia, M.P. Sandwich-type microRNA biosensor based on magnesium oxide nanoflower and graphene oxide–gold nanoparticles hybrids coupling with enzyme signal amplification. Sens. Actuators B Chem., 2017, 243, 403-411.
[http://dx.doi.org/10.1016/j.snb.2016.12.001]
[158]
Zhao, Q.; Piao, J.; Peng, W.; Wang, Y.; Zhang, B.; Gong, X.; Chang, J. Simple and sensitive quantification of microRNAs via PS@Au microspheres-based DNA probes and DSN-assisted signal amplification platform. ACS Appl. Mater. Interfaces, 2018, 10(4), 3324-3332.
[http://dx.doi.org/10.1021/acsami.7b16733] [PMID: 29300448]
[159]
Wang, H.; Jian, Y.; Kong, Q.; Liu, H.; Lan, F.; Liang, L.; Ge, S.; Yu, J. Ultrasensitive electrochemical paper-based biosensor for microRNA via strand displacement reaction and metal-organic frameworks. Sens. Actuators B Chem., 2018, 257, 561-569.
[http://dx.doi.org/10.1016/j.snb.2017.10.188]
[160]
Xu, S.; Nie, Y.; Jiang, L.; Wang, J.; Xu, G.; Wang, W.; Luo, X. Polydopamine nanosphere/gold nanocluster (Au NC)-based nanoplatform for dual color simultaneous detection of multiple tumor-related microRNAs with DNase-I-assisted target recycling amplification. Anal. Chem., 2018, 90(6), 4039-4045.
[http://dx.doi.org/10.1021/acs.analchem.7b05253] [PMID: 29488383]
[161]
Zhang, Y.; Shuai, Z.; Zhou, H.; Luo, Z.; Liu, B.; Zhang, Y.; Zhang, L.; Chen, S.; Chao, J.; Weng, L.; Fan, Q.; Fan, C.; Huang, W.; Wang, L. Single-molecule analysis of microRNA and logic operations using a smart plasmonic nanobiosensor. J. Am. Chem. Soc., 2018, 140(11), 3988-3993.
[http://dx.doi.org/10.1021/jacs.7b12772] [PMID: 29504757]
[162]
Zeng, K.; Li, H.; Peng, Y. Gold nanoparticle enhanced surface plasmon resonance imaging of microRNA-155 using a functional nucleic acid-based amplification machine. Mikrochim. Acta, 2017, 4(8), 1-8.
[http://dx.doi.org/10.1007/s00604-017-2276-2]
[163]
Jebelli, A.; Oroojalian, F.; Fathi, F.; Mokhtarzadeh, A.; Guardia, M. Recent advances in surface plasmon resonance biosensors for microRNAs detection. Biosens. Bioelectron., 2020, 169, 112599.
[http://dx.doi.org/10.1016/j.bios.2020.112599] [PMID: 32931990]
[164]
Singh, M.K.; Pal, S.; Prajapati, Y.K.; Saini, J.P. Highly sensitive antimonene based SPR biosensor for miRNA detection. Mater. Today Proc., 2020, 28, 1776-1780.
[http://dx.doi.org/10.1016/j.matpr.2020.05.183]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy