Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Galectin-3 in Microglia-Mediated Neuroinflammation: Implications for Central Nervous System Diseases

Author(s): Meng-Meng Ge, Nan Chen, Ya-Qun Zhou, Hui Yang, Yu-Ke Tian* and Da-Wei Ye*

Volume 20, Issue 11, 2022

Published on: 20 May, 2022

Page: [2066 - 2080] Pages: 15

DOI: 10.2174/1570159X20666220201094547

Price: $65

Abstract

Microglial activation is one of the common hallmarks shared by various central nervous system (CNS) diseases. Based on surrounding circumstances, activated microglia play either detrimental or neuroprotective effects. Galectin-3 (Gal-3), a group of β-galactoside-binding proteins, has been cumulatively revealed to be a crucial biomarker for microglial activation after injuries or diseases. In consideration of the important role of Gal-3 in the regulation of microglial activation, it might be a potential target for the treatment of CNS diseases. Recently, Gal-3 expression has been extensively investigated in numerous pathological processes as a mediator of neuroinflammation, as well as in cell proliferation. However, the underlying mechanisms of Gal-3 involved in microgliamediated neuroinflammation in various CNS diseases remain to be further investigated. Moreover, several clinical studies support that the levels of Gal-3 are increased in the serum or cerebrospinal fluid of patients with CNS diseases. Thus, we summarized the roles and underlying mechanisms of Gal-3 in activated microglia, thus providing a better insight into its complexity expression pattern, and contrasting functions in CNS diseases.

Keywords: Galectin-3, microglia, neuroinflammation, central nervous system diseases, chronic pain, galectin-3 inhibitor.

Graphical Abstract
[1]
Block, M.L.; Hong, J.S. Microglia and inflammation-mediated neurodegeneration: Multiple triggers with a common mechanism. Prog. Neurobiol., 2005, 76(2), 77-98.
[http://dx.doi.org/10.1016/j.pneurobio.2005.06.004] [PMID: 16081203]
[2]
Lalancette-Hébert, M.; Gowing, G.; Simard, A.; Weng, Y.C.; Kriz, J. Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J. Neurosci., 2007, 27(10), 2596-2605.
[http://dx.doi.org/10.1523/JNEUROSCI.5360-06.2007] [PMID: 17344397]
[3]
Glass, C.K.; Saijo, K.; Winner, B.; Marchetto, M.C.; Gage, F.H. Mechanisms underlying inflammation in neurodegeneration. Cell, 2010, 140(6), 918-934.
[http://dx.doi.org/10.1016/j.cell.2010.02.016] [PMID: 20303880]
[4]
Rotshenker, S. The role of Galectin-3/MAC-2 in the activation of the innate-immune function of phagocytosis in microglia in injury and disease. J. Mol. Neurosci., 2009, 39(1-2), 99-103.
[http://dx.doi.org/10.1007/s12031-009-9186-7] [PMID: 19253007]
[5]
Fu, R.; Shen, Q.; Xu, P.; Luo, J.J.; Tang, Y. Phagocytosis of microglia in the central nervous system diseases. Mol. Neurobiol., 2014, 49(3), 1422-1434.
[http://dx.doi.org/10.1007/s12035-013-8620-6] [PMID: 24395130]
[6]
Tang, Y.; Le, W. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol. Neurobiol., 2016, 53(2), 1181-1194.
[http://dx.doi.org/10.1007/s12035-014-9070-5] [PMID: 25598354]
[7]
Zhao, H.; Alam, A.; Chen, Q.; Eusman, M.A.; Pal, A.; Eguchi, S.; Wu, L.; Ma, D. The role of microglia in the pathobiology of neuropathic pain development: What do we know? Br. J. Anaesth., 2017, 118(4), 504-516.
[http://dx.doi.org/10.1093/bja/aex006] [PMID: 28403399]
[8]
Chen, S.P.; Sun, J.; Zhou, Y.Q.; Cao, F.; Braun, C.; Luo, F.; Ye, D.W.; Tian, Y.K. Sinomenine attenuates cancer-induced bone pain via suppressing microglial JAK2/STAT3 and neuronal CAMKII/CREB cascades in rat models. Mol. Pain, 2018, 14.
[http://dx.doi.org/10.1177/1744806918793232] [PMID: 30027795]
[9]
Lalancette-Hébert, M.; Swarup, V.; Beaulieu, J.M.; Bohacek, I.; Abdelhamid, E.; Weng, Y.C.; Sato, S.; Kriz, J. Galectin-3 is required for resident microglia activation and proliferation in response to ischemic injury. J. Neurosci., 2012, 32(30), 10383-10395.
[http://dx.doi.org/10.1523/JNEUROSCI.1498-12.2012] [PMID: 22836271]
[10]
Block, M.L.; Zecca, L.; Hong, J.S. Microglia-mediated neurotoxicity: Uncovering the molecular mechanisms. Nat. Rev. Neurosci., 2007, 8(1), 57-69.
[http://dx.doi.org/10.1038/nrn2038] [PMID: 17180163]
[11]
Streit, W.J. Microglia as neuroprotective, immunocompetent cells of the CNS. Glia, 2002, 40(2), 133-139.
[http://dx.doi.org/10.1002/glia.10154] [PMID: 12379901]
[12]
Liu, F.T.; Hsu, D.K.; Zuberi, R.I.; Kuwabara, I.; Chi, E.Y.; Henderson, W.R. Jr. Expression and function of galectin-3, a beta-galactoside-binding lectin, in human monocytes and macrophages. Am. J. Pathol., 1995, 147(4), 1016-1028.
[PMID: 7573347]
[13]
Ramírez Hernández, E.; Sánchez-Maldonado, C.; Mayoral Chávez, M.A.; Hernández-Zimbrón, L.F.; Patricio Martínez, A.; Zenteno, E.; Limón Pérez de León, I.D. The therapeutic potential of galectin-1 and galectin-3 in the treatment of neurodegenerative diseases. Expert Rev. Neurother., 2020, 20(5), 439-448.
[http://dx.doi.org/10.1080/14737175.2020.1750955] [PMID: 32303136]
[14]
Puigdellívol, M.; Allendorf, D.H.; Brown, G.C. Sialylation and galectin-3 in microglia-mediated neuroinflammation and neurodegeneration. Front. Cell. Neurosci., 2020, 14, 162.
[http://dx.doi.org/10.3389/fncel.2020.00162] [PMID: 32581723]
[15]
Dumic, J.; Dabelic, S.; Flögel, M. Galectin-3: An open-ended story. Biochim. Biophys. Acta, Gen. Subj., 2006, 1760(4), 616-635.
[http://dx.doi.org/10.1016/j.bbagen.2005.12.020]
[16]
Sciacchitano, S.; Lavra, L.; Morgante, A.; Ulivieri, A.; Magi, F.; De Francesco, G.; Bellotti, C.; Salehi, L.; Ricci, A. Galectin-3: One mole-cule for an alphabet of diseases, from A to Z. Int. J. Mol. Sci., 2018, 19(2), 379.
[http://dx.doi.org/10.3390/ijms19020379] [PMID: 29373564]
[17]
Suthahar, N.; Meijers, W.C.; Silljé, H.H.W.; Ho, J.E.; Liu, F.T.; de Boer, R.A. Galectin-3 activation and inhibition in heart failure and car-diovascular disease: An update. Theranostics, 2018, 8(3), 593-609.
[http://dx.doi.org/10.7150/thno.22196] [PMID: 29344292]
[18]
Srejovic, I.; Selakovic, D.; Jovicic, N. Jakovljević V.; Lukic, M.L.; Rosic, G. Galectin-3: Roles in neurodevelopment, neuroinflammation, and behavior. Biomolecules, 2020, 10(5), 798.
[http://dx.doi.org/10.3390/biom10050798] [PMID: 32455781]
[19]
Tan, Y.; Zheng, Y.; Xu, D.; Sun, Z.; Yang, H.; Yin, Q. Galectin-3: A key player in microglia-mediated neuroinflammation and Alzheimer’s disease. Cell Biosci., 2021, 11(1), 78.
[http://dx.doi.org/10.1186/s13578-021-00592-7] [PMID: 33906678]
[20]
Krześlak, A.; Lipińska, A. Galectin-3 as a multifunctional protein. Cell. Mol. Biol. Lett., 2004, 9(2), 305-328.
[PMID: 15213811]
[21]
Venkatraman, A.; Hardas, S.; Patel, N.; Singh Bajaj, N.; Arora, G.; Arora, P. Galectin‐3: An emerging biomarker in stroke and cerebro-vascular diseases. Eur. J. Neurol., 2018, 25(2), 238-246.
[http://dx.doi.org/10.1111/ene.13496] [PMID: 29053903]
[22]
Comte, I.; Kim, Y.; Young, C.C.; van der Harg, J.M.; Hockberger, P.; Bolam, P.J.; Poirier, F.; Szele, F.G. Galectin-3 maintains cell motility from the subventricular zone to the olfactory bulb. J. Cell Sci., 2011, 124(14), 2438-2447.
[http://dx.doi.org/10.1242/jcs.079954] [PMID: 21693585]
[23]
Yoo, H.I.; Kim, E.G.; Lee, E.J.; Hong, S.Y.; Yoon, C.S.; Hong, M.J.; Park, S.J.; Woo, R.S.; Baik, T.K.; Song, D.Y. Neuroanatomical distri-bution of galectin-3 in the adult rat brain. J. Mol. Histol., 2017, 48(2), 133-146.
[http://dx.doi.org/10.1007/s10735-017-9712-9] [PMID: 28255782]
[24]
Li, Y.S.; Li, X.T.; Yu, L.G.; Wang, L.; Shi, Z.Y.; Guo, X.L. Roles of galectin-3 in metabolic disorders and tumor cell metabolism. Int. J. Biol. Macromol., 2020, 142, 463-473.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.118] [PMID: 31604080]
[25]
Wang, L.; Guo, X.L. Molecular regulation of galectin-3 expression and therapeutic implication in cancer progression. Biomed. Pharmacother., 2016, 78, 165-171.
[http://dx.doi.org/10.1016/j.biopha.2016.01.014] [PMID: 26898438]
[26]
Sano, H.; Hsu, D.K.; Apgar, J.R.; Yu, L.; Sharma, B.B.; Kuwabara, I.; Izui, S.; Liu, F.T. Critical role of galectin-3 in phagocytosis by mac-rophages. J. Clin. Invest., 2003, 112(3), 389-397.
[http://dx.doi.org/10.1172/JCI200317592] [PMID: 12897206]
[27]
Sano, H.; Hsu, D.K.; Yu, L.; Apgar, J.R.; Kuwabara, I.; Yamanaka, T.; Hirashima, M.; Liu, F.T. Human galectin-3 is a novel chemoattract-ant for monocytes and macrophages. J. Immunol., 2000, 165(4), 2156-2164.
[http://dx.doi.org/10.4049/jimmunol.165.4.2156] [PMID: 10925302]
[28]
Thomas, L.; Pasquini, L.A. Galectin-3-mediated glial crosstalk drives oligodendrocyte differentiation and (Re)myelination. Front. Cell. Neurosci., 2018, 12, 297.
[http://dx.doi.org/10.3389/fncel.2018.00297] [PMID: 30258354]
[29]
Ahmed, H.; Alsadek, D.M.M. Galectin-3 as a potential target to prevent cancer metastasis. Clin. Med. Insights Oncol., 2015, 9, CMO.S29462.
[http://dx.doi.org/10.4137/CMO.S29462] [PMID: 26640395]
[30]
Hara, A.; Niwa, M.; Noguchi, K.; Kanayama, T.; Niwa, A.; Matsuo, M.; Hatano, Y.; Tomita, H. Galectin-3 as a next-generation biomarker for detecting early stage of various diseases. Biomolecules, 2020, 10(3), 389.
[http://dx.doi.org/10.3390/biom10030389] [PMID: 32138174]
[31]
Fernández, G.C.; Ilarregui, J.M.; Rubel, C.J.; Toscano, M.A.; Gómez, S.A.; Beigier, B.M.; Isturiz, M.A.; Rabinovich, G.A.; Palermo, M.S. Galectin-3 and soluble fibrinogen act in concert to modulate neutrophil activation and survival: Involvement of alternative MAPK path-ways. Glycobiol., 2005, 15(5), 519-527.
[http://dx.doi.org/10.1093/glycob/cwi026] [PMID: 15604089]
[32]
Doverhag, C.; Hedtjärn, M.; Poirier, F.; Mallard, C.; Hagberg, H.; Karlsson, A.; Sävman, K. Galectin-3 contributes to neonatal hypoxic–ischemic brain injury. Neurobiol. Dis., 2010, 38(1), 36-46.
[http://dx.doi.org/10.1016/j.nbd.2009.12.024] [PMID: 20053377]
[33]
Hsu, D.K.; Yang, R.Y.; Pan, Z.; Yu, L.; Salomon, D.R.; Fung-Leung, W.P.; Liu, F.T. Targeted disruption of the galectin-3 gene results in attenuated peritoneal inflammatory responses. Am. J. Pathol., 2000, 156(3), 1073-1083.
[http://dx.doi.org/10.1016/S0002-9440(10)64975-9] [PMID: 10702423]
[34]
Kotter, M.R.; Li, W.W.; Zhao, C.; Franklin, R.J. Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differen-tiation. J. Neurosci., 2006, 26(1), 328-332.
[http://dx.doi.org/10.1523/JNEUROSCI.2615-05.2006] [PMID: 16399703]
[35]
Saada, A.; Reichert, F.; Rotshenker, S. Granulocyte macrophage colony stimulating factor produced in lesioned peripheral nerves induces the up-regulation of cell surface expression of MAC-2 by macrophages and Schwann cells. J. Cell Biol., 1996, 133(1), 159-167.
[http://dx.doi.org/10.1083/jcb.133.1.159] [PMID: 8601605]
[36]
Cohen, G.; Makranz, C.; Spira, M.; Kodama, T.; Reichert, F.; Rotshenker, S. Non-PKC DAG/Phorbol-Ester receptor(s) inhibit complement receptor-3 and nPKC inhibit scavenger receptor-AI/II-mediated myelin phagocytosis but cPKC, PI3k, and PLCγ activate myelin phagocy-tosis by both. Glia, 2006, 53(5), 538-550.
[http://dx.doi.org/10.1002/glia.20304] [PMID: 16374778]
[37]
Grommes, C.; Lee, C.Y.D.; Wilkinson, B.L.; Jiang, Q.; Koenigsknecht-Talboo, J.L.; Varnum, B.; Landreth, G.E. Regulation of microglial phagocytosis and inflammatory gene expression by Gas6 acting on the Axl/Mer family of tyrosine kinases. J. Neuroimmune Pharmacol., 2008, 3(2), 130-140.
[http://dx.doi.org/10.1007/s11481-007-9090-2] [PMID: 18247125]
[38]
Caberoy, N.B.; Alvarado, G.; Bigcas, J.L.; Li, W. Galectin-3 is a new MerTK-specific eat-me signal. J. Cell. Physiol., 2012, 227(2), 401-407.
[http://dx.doi.org/10.1002/jcp.22955] [PMID: 21792939]
[39]
Nomura, K.; Vilalta, A.; Allendorf, D.H.; Hornik, T.C.; Brown, G.C. Activated microglia desialylate and phagocytose cells via neuramini-dase, galectin-3, and mer tyrosine kinase. J. Immunol., 2017, 198(12), 4792-4801.
[http://dx.doi.org/10.4049/jimmunol.1502532] [PMID: 28500071]
[40]
Hickman, S.; Izzy, S.; Sen, P.; Morsett, L.; El Khoury, J. Microglia in neurodegeneration. Nat. Neurosci., 2018, 21(10), 1359-1369.
[http://dx.doi.org/10.1038/s41593-018-0242-x] [PMID: 30258234]
[41]
Kumar, V. Toll-like receptors in the pathogenesis of neuroinflammation. J. Neuroimmunol., 2019, 332, 16-30.
[http://dx.doi.org/10.1016/j.jneuroim.2019.03.012] [PMID: 30928868]
[42]
Jouault, T.; El Abed-El Behi, M.; Martínez-Esparza, M.; Breuilh, L.; Trinel, P.A.; Chamaillard, M.; Trottein, F.; Poulain, D. Specific recog-nition of Candida albicans by macrophages requires galectin-3 to discriminate Saccharomyces cerevisiae and needs association with TLR2 for signaling. J. Immunol., 2006, 177(7), 4679-4687.
[http://dx.doi.org/10.4049/jimmunol.177.7.4679] [PMID: 16982907]
[43]
Burguillos, M.A.; Svensson, M.; Schulte, T.; Boza-Serrano, A.; Garcia-Quintanilla, A.; Kavanagh, E.; Santiago, M.; Viceconte, N.; Oliva-Martin, M.J.; Osman, A.M.; Salomonsson, E.; Amar, L.; Persson, A.; Blomgren, K.; Achour, A.; Englund, E.; Leffler, H.; Venero, J.L.; Jo-seph, B.; Deierborg, T. Microglia-secreted galectin-3 acts as a toll-like receptor 4 ligand and contributes to microglial activation. Cell Rep., 2015, 10(9), 1626-1638.
[http://dx.doi.org/10.1016/j.celrep.2015.02.012] [PMID: 25753426]
[44]
Leyns, C.E.G.; Ulrich, J.D.; Finn, M.B.; Stewart, F.R.; Koscal, L.J.; Remolina Serrano, J.; Robinson, G.O.; Anderson, E.; Colonna, M.; Holtzman, D.M. TREM2 deficiency attenuates neuroinflammation and protects against neurodegeneration in a mouse model of tauopathy. Proc. Natl. Acad. Sci. USA, 2017, 114(43), 11524-11529.
[http://dx.doi.org/10.1073/pnas.1710311114] [PMID: 29073081]
[45]
Ulland, T.K.; Colonna, M. TREM2 — a key player in microglial biology and Alzheimer disease. Nat. Rev. Neurol., 2018, 14(11), 667-675.
[http://dx.doi.org/10.1038/s41582-018-0072-1] [PMID: 30266932]
[46]
Yeh, F.L.; Hansen, D.V.; Sheng, M. TREM2, microglia, and neurodegenerative diseases. Trends Mol. Med., 2017, 23(6), 512-533.
[http://dx.doi.org/10.1016/j.molmed.2017.03.008] [PMID: 28442216]
[47]
Lee, C.Y.D.; Daggett, A.; Gu, X.; Jiang, L.L.; Langfelder, P.; Li, X.; Wang, N.; Zhao, Y.; Park, C.S.; Cooper, Y.; Ferando, I.; Mody, I.; Coppola, G.; Xu, H.; Yang, X.W. Elevated TREM2 gene dosage reprograms microglia responsivity and ameliorates pathological pheno-types in Alzheimer’s disease models. Neuron, 2018, 97(5), 1032-1048.e5.
[http://dx.doi.org/10.1016/j.neuron.2018.02.002] [PMID: 29518357]
[48]
Krasemann, S.; Madore, C.; Cialic, R.; Baufeld, C.; Calcagno, N.; El Fatimy, R.; Beckers, L.; O’Loughlin, E.; Xu, Y.; Fanek, Z.; Greco, D.J.; Smith, S.T.; Tweet, G.; Humulock, Z.; Zrzavy, T.; Conde-Sanroman, P.; Gacias, M.; Weng, Z.; Chen, H.; Tjon, E.; Mazaheri, F.; Hartmann, K.; Madi, A.; Ulrich, J.D.; Glatzel, M.; Worthmann, A.; Heeren, J.; Budnik, B.; Lemere, C.; Ikezu, T.; Heppner, F.L.; Litvak, V.; Holtzman, D.M.; Lassmann, H.; Weiner, H.L.; Ochando, J.; Haass, C.; Butovsky, O. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity, 2017, 47(3), 566-581.e9.
[http://dx.doi.org/10.1016/j.immuni.2017.08.008] [PMID: 28930663]
[49]
Boza-Serrano, A.; Ruiz, R.; Sanchez-Varo, R.; García-Revilla, J.; Yang, Y.; Jimenez-Ferrer, I.; Paulus, A.; Wennström, M.; Vilalta, A.; Al-lendorf, D.; Davila, J.C.; Stegmayr, J.; Jiménez, S.; Roca-Ceballos, M.A.; Navarro-Garrido, V.; Swanberg, M.; Hsieh, C.L.; Real, L.M.; En-glund, E.; Linse, S.; Leffler, H.; Nilsson, U.J.; Brown, G.C.; Gutierrez, A.; Vitorica, J.; Venero, J.L.; Deierborg, T. Galectin-3, a novel en-dogenous TREM2 ligand, detrimentally regulates inflammatory response in Alzheimer’s disease. Acta Neuropathol., 2019, 138(2), 251-273.
[http://dx.doi.org/10.1007/s00401-019-02013-z] [PMID: 31006066]
[50]
Mathys, H.; Adaikkan, C.; Gao, F.; Young, J.Z.; Manet, E.; Hemberg, M.; De Jager, P.L.; Ransohoff, R.M.; Regev, A.; Tsai, L.H. Temporal tracking of microglia activation in neurodegeneration at single-cell resolution. Cell Rep., 2017, 21(2), 366-380.
[http://dx.doi.org/10.1016/j.celrep.2017.09.039] [PMID: 29020624]
[51]
Sävman, K.; Wang, W.; Rafati, A.H.; Svedin, P.; Nair, S.; Golubinskaya, V.; Ardalan, M.; Brown, K.L.; Karlsson-Bengtsson, A.; Mallard, C. Galectin-3 modulates microglia inflammation in vitro but not neonatal brain injury in vivo under inflammatory conditions. Dev. Neurosci., 2021, 43(5), 296-311.
[http://dx.doi.org/10.1159/000517687] [PMID: 34130282]
[52]
Rahimian, R.; Lively, S.; Abdelhamid, E.; Lalancette-Hebert, M.; Schlichter, L.; Sato, S.; Kriz, J. Delayed galectin-3-mediated reprogram-ming of microglia after stroke is protective. Mol. Neurobiol., 2019, 56(9), 6371-6385.
[http://dx.doi.org/10.1007/s12035-019-1527-0] [PMID: 30798442]
[53]
Zhou, Y.Q.; Liu, D.Q.; Chen, S.P.; Sun, J.; Wang, X.M.; Tian, Y.K.; Wu, W.; Ye, D.W. Minocycline as a promising therapeutic strategy for chronic pain. Pharmacol. Res., 2018, 134, 305-310.
[http://dx.doi.org/10.1016/j.phrs.2018.07.002] [PMID: 30042091]
[54]
Rahimian, R.; Béland, L.C.; Sato, S.; Kriz, J. Microglia‐derived galectin‐3 in neuroinflammation; a bittersweet ligand? Med. Res. Rev., 2021, 41(4), 2582-2589.
[http://dx.doi.org/10.1002/med.21784] [PMID: 33733487]
[55]
Takasaki, I.; Taniguchi, K.; Komatsu, F.; Sasaki, A.; Andoh, T.; Nojima, H.; Shiraki, K.; Hsu, D.K.; Liu, F.T.; Kato, I.; Hiraga, K.; Kurai-shi, Y. Contribution of spinal galectin-3 to acute herpetic allodynia in mice. Pain, 2012, 153(3), 585-592.
[http://dx.doi.org/10.1016/j.pain.2011.11.022] [PMID: 22197693]
[56]
Ma, Z.; Han, Q.; Wang, X.; Ai, Z.; Zheng, Y. Galectin-3 inhibition is associated with neuropathic pain attenuation after peripheral nerve injury. PLoS One, 2016, 11(2), e0148792.
[http://dx.doi.org/10.1371/journal.pone.0148792] [PMID: 26872020]
[57]
Ren, Z.; Liang, W.; Sheng, J.; Xun, C.; Xu, T.; Cao, R.; Sheng, W. Gal-3 is a potential biomarker for spinal cord injury and Gal-3 deficiency attenuates neuroinflammation through ROS/TXNIP/ NLRP3 signaling pathway. Biosci. Rep., 2019, 39(12), BSR 20192368.
[http://dx.doi.org/10.1042/BSR20192368] [PMID: 31763668]
[58]
Takasaki, I.; Andoh, T.; Shiraki, K.; Kuraishi, Y. Allodynia and hyperalgesia induced by herpes simplex virus type-1 infection in mice. Pain, 2000, 86(1), 95-101.
[http://dx.doi.org/10.1016/S0304-3959(00)00240-2] [PMID: 10779666]
[59]
Sasaki, A.; Mabuchi, T.; Serizawa, K.; Takasaki, I.; Andoh, T.; Shiraki, K.; Ito, S.; Kuraishi, Y. Different roles of nitric oxide synthase-1 and -2 between herpetic and postherpetic allodynia in mice. Neuroscience, 2007, 150(2), 459-466.
[http://dx.doi.org/10.1016/j.neuroscience.2007.09.067] [PMID: 17997045]
[60]
Wang, T.; Fei, Y.; Yao, M.; Tao, J.; Deng, J.; Huang, B. Correlation between Galectin-3 and early herpes zoster neuralgia and postherpetic neuralgia: A retrospective clinical observation. Pain Res. Manag., 2020, 2020, 1-9.
[http://dx.doi.org/10.1155/2020/8730918] [PMID: 32351643]
[61]
Maeda, N.; Kawada, N.; Seki, S.; Arakawa, T.; Ikeda, K.; Iwao, H.; Okuyama, H.; Hirabayashi, J.; Kasai, K.; Yoshizato, K. Stimulation of proliferation of rat hepatic stellate cells by galectin-1 and galectin-3 through different intracellular signaling pathways. J. Biol. Chem., 2003, 278(21), 18938-18944.
[http://dx.doi.org/10.1074/jbc.M209673200] [PMID: 12646584]
[62]
Borges, G.; Berrocoso, E.; Mico, J.A.; Neto, F. ERK1/2: Function, signaling and implication in pain and pain-related anxio-depressive disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2015, 60, 77-92.
[http://dx.doi.org/10.1016/j.pnpbp.2015.02.010] [PMID: 25708652]
[63]
Berta, T.; Qadri, Y.; Tan, P.H.; Ji, R.R. Targeting dorsal root ganglia and primary sensory neurons for the treatment of chronic pain. Expert Opin. Ther. Targets, 2017, 21(7), 695-703.
[http://dx.doi.org/10.1080/14728222.2017.1328057] [PMID: 28480765]
[64]
Zhou, Y.Q.; Liu, D.Q.; Chen, S.P.; Sun, J.; Zhou, X.R.; Luo, F.; Tian, Y.K.; Ye, D.W. Cellular and molecular mechanisms of calci-um/calmodulin-dependent protein kinase II in chronic pain. J. Pharmacol. Exp. Ther., 2017, 363(2), 176-183.
[http://dx.doi.org/10.1124/jpet.117.243048] [PMID: 28855373]
[65]
Mostacada, K.; Oliveira, F.L.; Villa-Verde, D.M.S.; Martinez, A.M.B. Lack of galectin-3 improves the functional outcome and tissue spar-ing by modulating inflammatory response after a compressive spinal cord injury. Exp. Neurol., 2015, 271, 390-400.
[http://dx.doi.org/10.1016/j.expneurol.2015.07.006] [PMID: 26183316]
[66]
Quintá, H.R.; Pasquini, J.M.; Rabinovich, G.A.; Pasquini, L.A. Glycan-dependent binding of galectin-1 to neuropilin-1 promotes axonal regeneration after spinal cord injury. Cell Death Differ., 2014, 21(6), 941-955.
[http://dx.doi.org/10.1038/cdd.2014.14] [PMID: 24561343]
[67]
Kim, D.S.; Jung, S.J.; Nam, T.S.; Jeon, Y.H.; Lee, D.R.; Lee, J.S.; Leem, J.W.; Kim, D.W. Transplantation of GABAergic neurons from ESCs attenuates tactile hypersensitivity following spinal cord injury. Stem Cells, 2010, 28(11), 2099-2108.
[http://dx.doi.org/10.1002/stem.526] [PMID: 20848655]
[68]
Zeng, H.; Liu, N.; Yang, Y.; Xing, H.; Liu, X.; Li, F.; La, G.; Huang, M.; Zhou, M. Lentivirus-mediated downregulation of α-synuclein reduces neuroinflammation and promotes functional recovery in rats with spinal cord injury. J. Neuroinflammation, 2019, 16(1), 283.
[http://dx.doi.org/10.1186/s12974-019-1658-2] [PMID: 31888724]
[69]
Gao, J.; Sun, Z.; Xiao, Z.; Du, Q.; Niu, X.; Wang, G.; Chang, Y.W.; Sun, Y.; Sun, W.; Lin, A.; Bresnahan, J.C.; Maze, M.; Beattie, M.S.; Pan, J.Z. Dexmedetomidine modulates neuroinflammation and improves outcome via alpha2-adrenergic receptor signaling after rat spinal cord injury. Br. J. Anaesth., 2019, 123(6), 827-838.
[http://dx.doi.org/10.1016/j.bja.2019.08.026] [PMID: 31623841]
[70]
Andersson, G.B.J. Epidemiological features of chronic low-back pain. Lancet, 1999, 354(9178), 581-585.
[http://dx.doi.org/10.1016/S0140-6736(99)01312-4] [PMID: 10470716]
[71]
Russo, F.; Ambrosio, L.; Ngo, K.; Vadalà, G.; Denaro, V.; Fan, Y.; Sowa, G.; Kang, J.D.; Vo, N. The role of type I diabetes in interverte-bral disc degeneration. Spine, 2019, 44(17), 1177-1185.
[http://dx.doi.org/10.1097/BRS.0000000000003054] [PMID: 30973512]
[72]
Hu, Y.; Yéléhé-Okouma, M.; Ea, H.K.; Jouzeau, J.Y.; Reboul, P. Galectin-3: A key player in arthritis. Joint Bone Spine, 2017, 84(1), 15-20.
[http://dx.doi.org/10.1016/j.jbspin.2016.02.029] [PMID: 27238188]
[73]
Yun, Z.; Wang, Y.; Feng, W.; Zang, J.; Zhang, D.; Gao, Y. Overexpression of microRNA-185 alleviates intervertebral disc degeneration through inactivation of the Wnt/β-catenin signaling pathway and downregulation of Galectin-3. Mol. Pain, 2020, 16.
[http://dx.doi.org/10.1177/1744806920902559] [PMID: 32090685]
[74]
Tao, C.C.; Cheng, K.M.; Ma, Y.L.; Hsu, W.L.; Chen, Y.C.; Fuh, J.L.; Lee, W.J.; Chao, C.C.; Lee, E.H.Y. Galectin-3 promotes Aβ oligomer-ization and Aβ toxicity in a mouse model of Alzheimer’s disease. Cell Death Differ., 2020, 27(1), 192-209.
[http://dx.doi.org/10.1038/s41418-019-0348-z] [PMID: 31127200]
[75]
Lim, H.; Lee, D.; Choi, W.K.; Choi, S.J.; Oh, W.; Kim, D.H. Galectin-3 secreted by human umbilical cord blood-derived mesenchymal stem cells reduces aberrant tau phosphorylation in an alzheimer disease model. Stem Cells Int., 2020, 2020, 1-14.
[http://dx.doi.org/10.1155/2020/8878412] [PMID: 32733573]
[76]
García-Domínguez, I.; Veselá, K.; García-Revilla, J.; Carrillo-Jiménez, A.; Roca-Ceballos, M.A.; Santiago, M.; de Pablos, R.M.; Venero, J.L. Peripheral inflammation enhances microglia response and nigral dopaminergic cell death in an in vivo MPTP model of Parkinson’s disease. Front. Cell. Neurosci., 2018, 12, 398.
[http://dx.doi.org/10.3389/fncel.2018.00398] [PMID: 30459561]
[77]
Guo, M.; Wang, J.; Zhao, Y.; Feng, Y.; Han, S.; Dong, Q.; Cui, M.; Tieu, K. Microglial exosomes facilitate α-synuclein transmission in Parkinson’s disease. Brain, 2020, 143(5), 1476-1497.
[http://dx.doi.org/10.1093/brain/awaa090] [PMID: 32355963]
[78]
Boza-Serrano, A.; Reyes, J.F.; Rey, N.L.; Leffler, H.; Bousset, L.; Nilsson, U.; Brundin, P.; Venero, J.L.; Burguillos, M.A.; Deierborg, T. The role of Galectin-3 in α-synuclein-induced microglial activation. Acta Neuropathol. Commun., 2014, 2, 156-156.
[PMID: 25387690]
[79]
Nikodemova, M.; Small, A.L.; Smith, S.M.C.; Mitchell, G.S.; Watters, J.J. Spinal but not cortical microglia acquire an atypical phenotype with high VEGF, galectin-3 and osteopontin, and blunted inflammatory responses in ALS rats. Neurobiol. Dis., 2014, 69, 43-53.
[http://dx.doi.org/10.1016/j.nbd.2013.11.009] [PMID: 24269728]
[80]
Lerman, B.J.; Hoffman, E.P.; Sutherland, M.L.; Bouri, K.; Hsu, D.K.; Liu, F.T.; Rothstein, J.D.; Knoblach, S.M. Deletion of galectin‐3 exacerbates microglial activation and accelerates disease progression and demise in a SOD1G93A mouse model of amyotrophic lateral scle-rosis. Brain Behav., 2012, 2(5), 563-575.
[http://dx.doi.org/10.1002/brb3.75] [PMID: 23139902]
[81]
Zhou, J.Y.; Afjehi-Sadat, L.; Asress, S.; Duong, D.M.; Cudkowicz, M.; Glass, J.D.; Peng, J. Galectin-3 is a candidate biomarker for amyo-trophic lateral sclerosis: Discovery by a proteomics approach. J. Proteome Res., 2010, 9(10), 5133-5141.
[http://dx.doi.org/10.1021/pr100409r] [PMID: 20698585]
[82]
Ladeby, R.; Wirenfeldt, M.; Garcia-Ovejero, D.; Fenger, C.; Dissing-Olesen, L.; Dalmau, I.; Finsen, B. Microglial cell population dynamics in the injured adult central nervous system. Brain Res. Brain Res. Rev., 2005, 48(2), 196-206.
[http://dx.doi.org/10.1016/j.brainresrev.2004.12.009] [PMID: 15850658]
[83]
Satoh, K.; Niwa, M.; Goda, W.; Binh, N.H.; Nakashima, M.; Takamatsu, M.; Hara, A. Galectin-3 expression in delayed neuronal death of hippocampal CA1 following transient forebrain ischemia, and its inhibition by hypothermia. Brain Res., 2011, 1382, 266-274.
[http://dx.doi.org/10.1016/j.brainres.2011.01.049] [PMID: 21262205]
[84]
Raza, M.U.; Tufan, T.; Wang, Y.; Hill, C.; Zhu, M.Y. DNA damage in major psychiatric diseases. Neurotox. Res., 2016, 30(2), 251-267.
[http://dx.doi.org/10.1007/s12640-016-9621-9] [PMID: 27126805]
[85]
Cheffer, A.; Castillo, A.R.G.; Corrêa-Velloso, J.; Gonçalves, M.C.B.; Naaldijk, Y.; Nascimento, I.C.; Burnstock, G.; Ulrich, H. Purinergic system in psychiatric diseases. Mol. Psychiatry, 2018, 23(1), 94-106.
[http://dx.doi.org/10.1038/mp.2017.188] [PMID: 28948971]
[86]
Ullah, I.; Awan, H.A.; Aamir, A.; Diwan, M.N.; de Filippis, R.; Awan, S.; Irfan, M.; Fornaro, M.; Ventriglio, A.; Vellante, F.; Pettorruso, M.; Martinotti, G.; Di Giannantonio, M.; De Berardis, D. Role and perspectives of inflammation and C-Reactive Protein (CRP) in psycho-sis: An economic and widespread tool for assessing the disease. Int. J. Mol. Sci., 2021, 22(23), 13032.
[http://dx.doi.org/10.3390/ijms222313032] [PMID: 34884840]
[87]
Orsolini, L.; Sarchione, F.; Vellante, F.; Fornaro, M.; Matarazzo, I.; Martinotti, G.; Valchera, A.; Di Nicola, M.; Carano, A.; Di Giannanto-nio, M.; Perna, G.; Olivieri, L.; De Berardis, D. Protein-C reactive as biomarker predictor of schizophrenia phases of illness? A systematic review. Curr. Neuropharmacol., 2018, 16(5), 583-606.
[http://dx.doi.org/10.2174/1570159X16666180119144538] [PMID: 29357805]
[88]
Stajic, D.; Selakovic, D.; Jovicic, N.; Joksimovic, J.; Arsenijevic, N.; Lukic, M.L.; Rosic, G. The role of galectin-3 in modulation of anxiety state level in mice. Brain Behav. Immun., 2019, 78, 177-187.
[http://dx.doi.org/10.1016/j.bbi.2019.01.019] [PMID: 30682502]
[89]
Wu, L.; Zhao, Q.; Zhu, X.; Peng, M.; Jia, C.; Wu, W.; Zheng, J.; Wu, X.Z. A novel function of microRNA let-7d in regulation of galectin-3 expression in attention deficit hyperactivity disorder rat brain. Brain Pathol., 2010, 20(6), 1042-1054.
[http://dx.doi.org/10.1111/j.1750-3639.2010.00410.x] [PMID: 20557304]
[90]
Song, L.; Tang, J.; Owusu, L.; Sun, M.Z.; Wu, J.; Zhang, J. Galectin-3 in cancer. Clin. Chim. Acta, 2014, 431, 185-191.
[http://dx.doi.org/10.1016/j.cca.2014.01.019] [PMID: 24530298]
[91]
Siew, J.J.; Chen, H.M.; Chen, H.Y.; Chen, H.L.; Chen, C.M.; Soong, B.W.; Wu, Y.R.; Chang, C.P.; Chan, Y.C.; Lin, C.H.; Liu, F.T.; Chern, Y. Galectin-3 is required for the microglia-mediated brain inflammation in a model of Huntington’s disease. Nat. Commun., 2019, 10(1), 3473.
[http://dx.doi.org/10.1038/s41467-019-11441-0] [PMID: 31375685]
[92]
Ashraf, G.M.; Baeesa, S.S. Investigation of Gal-3 expression pattern in serum and cerebrospinal fluid of patients suffering from neuro-degenerative disorders. Front. Neurosci., 2018, 12, 430.
[http://dx.doi.org/10.3389/fnins.2018.00430] [PMID: 30008660]
[93]
Yan, J.; Xu, Y.; Zhang, L.; Zhao, H.; Jin, L.; Liu, W.G.; Weng, L.H.; Li, Z.H.; Chen, L. Increased expressions of plasma Galectin-3 in patients with amyotrophic lateral sclerosis. Chin. Med. J. (Engl.), 2016, 129(23), 2797-2803.
[http://dx.doi.org/10.4103/0366-6999.194656] [PMID: 27900991]
[94]
Yazar, H.O.; Yazar, T.; Cihan, M. A preliminary data: Evaluation of serum Galectin-3 levels in patients with Idiopathic Parkinson’s dis-ease. J. Clin. Neurosci., 2019, 70, 164-168.
[http://dx.doi.org/10.1016/j.jocn.2019.08.032] [PMID: 31471077]
[95]
Cengiz, T. Türkboyları S.; Gençler, O.S.; Anlar, Ö. The roles of galectin-3 and galectin-4 in the idiopatic Parkinson disease and its pro-gression. Clin. Neurol. Neurosurg., 2019, 184, 105373.
[http://dx.doi.org/10.1016/j.clineuro.2019.105373] [PMID: 31147178]
[96]
Yazar, T.; Olgun Yazar, H.; Cihan, M. Evaluation of serum galectin-3 levels at Alzheimer patients by stages: A preliminary report. Acta Neurol. Belg., 2020.
[PMID: 32852752]
[97]
Wang, X.; Zhang, S.; Lin, F.; Chu, W.; Yue, S. Elevated galectin-3 levels in the serum of patients with Alzheimer’s disease. Am. J. Alzheimers Dis. Other Demen., 2015, 30(8), 729-732.
[http://dx.doi.org/10.1177/1533317513495107] [PMID: 23823143]
[98]
Zeng, N.; Wang, A.; Xu, T.; Zhong, C.; Zheng, X.; Zhu, Z.; Peng, Y.; Peng, H.; Li, Q.; Ju, Z.; Geng, D.; Zhang, Y.; He, J. Co-effect of se-rum galectin-3 and high-density lipoprotein cholesterol on the prognosis of acute ischemic stroke. J. Stroke Cerebrovasc. Dis., 2019, 28(7), 1879-1885.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2019.04.007] [PMID: 31085131]
[99]
Wang, A.; Zhong, C.; Zhu, Z.; Xu, T.; Peng, Y.; Xu, T.; Peng, H.; Chen, C.S.; Wang, J.; Ju, Z.; Li, Q.; Geng, D.; Sun, Y.; Zhang, J.; Yuan, X.; Chen, J.; Zhang, Y.; He, J. Serum galectin-3 and poor outcomes among patients with acute ischemic stroke. Stroke, 2018, 49(1), 211-214.
[http://dx.doi.org/10.1161/STROKEAHA.117.019084] [PMID: 29229724]
[100]
Kajitani, K.; Yanagimoto, K.; Nakabeppu, Y. Serum galectin-3, but not galectin-1, levels are elevated in schizophrenia: Implications for the role of inflammation. Psychopharmacology (Berl.), 2017, 234(19), 2919-2927.
[http://dx.doi.org/10.1007/s00213-017-4683-9] [PMID: 28698921]
[101]
Borovcanin, M.M.; Janicijevic, S.M.; Jovanovic, I.P.; Gajovic, N.; Arsenijevic, N.N.; Lukic, M.L. IL-33/ST2 pathway and galectin-3 as a new analytes in pathogenesis and cardiometabolic risk evaluation in psychosis. Front. Psychiatry, 2018, 9, 271.
[http://dx.doi.org/10.3389/fpsyt.2018.00271] [PMID: 29988422]
[102]
Yüksel, R.N.; Göverti, D.; Kahve, A.C.; Çakmak, I.B.; Yücel, Ç.; Göka, E. Galectin-1 and galectin-3 levels in patients with schizophrenia and their unaffected siblings. Psychiatr. Q., 2020, 91(3), 715-725.
[http://dx.doi.org/10.1007/s11126-020-09731-8] [PMID: 32157549]
[103]
King, D.R.; Salako, D.C.; Arthur-Bentil, S.K.; Rubin, A.E.; Italiya, J.B.; Tan, J.S.; Macris, D.G.; Neely, H.K.; Palka, J.M.; Grodin, J.L.; Davis-Bordovsky, K.; Faubion, M.; North, C.S.; Brown, E.S. Relationship between novel inflammatory biomarker galectin-3 and depres-sion symptom severity in a large community-based sample. J. Affect. Disord., 2021, 281, 384-389.
[http://dx.doi.org/10.1016/j.jad.2020.12.050] [PMID: 33352408]
[104]
Melin, E.O.; Dereke, J.; Thunander, M.; Hillman, M. Depression in type 1 diabetes was associated with high levels of circulating galectin-3. Endocr. Connect., 2018, 7(6), 819-828.
[http://dx.doi.org/10.1530/EC-18-0108] [PMID: 29760188]
[105]
Is¸ ık, Ü.; Kılıç, F.; Demirdas¸, A.; Aktepe, E.; Avs¸ ar, P.A˘. Serum galectin-3 levels in children with attention-deficit/hyperactivity disor-der. Psychiatry Investig., 2020, 17(3), 256-261.
[http://dx.doi.org/10.30773/pi.2019.0247] [PMID: 32151128]
[106]
John, C.M.; Leffler, H.; Kahl-Knutsson, B.; Svensson, I.; Jarvis, G.A. Truncated galectin-3 inhibits tumor growth and metastasis in ortho-topic nude mouse model of human breast cancer. Clin. Cancer Res., 2003, 9(6), 2374-2383.
[PMID: 12796408]
[107]
Yao, Y.; Zhou, L.; Liao, W.; Chen, H.; Du, Z.; Shao, C.; Wang, P.; Ding, K. HH1-1, a novel Galectin-3 inhibitor, exerts anti-pancreatic cancer activity by blocking Galectin-3/EGFR/AKT/FOXO3 signaling pathway. Carbohydr. Polym., 2019, 204, 111-123.
[http://dx.doi.org/10.1016/j.carbpol.2018.10.008] [PMID: 30366522]
[108]
Traber, P.G.; Zomer, E. Therapy of experimental NASH and fibrosis with galectin inhibitors. PLoS One, 2013, 8(12), e83481.
[http://dx.doi.org/10.1371/journal.pone.0083481] [PMID: 24367597]
[109]
Chalasani, N.; Abdelmalek, M.F.; Garcia-Tsao, G.; Vuppalanchi, R.; Alkhouri, N.; Rinella, M.; Noureddin, M.; Pyko, M.; Shiffman, M.; Sanyal, A.; Allgood, A.; Shlevin, H.; Horton, R.; Zomer, E.; Irish, W.; Goodman, Z.; Harrison, S.A.; Traber, P.G.; Abdelmalek, M.; Balart, L.; Borg, B.; Chalasani, N.; Charlton, M.; Conjeevaram, H.; Fuchs, M.; Ghalib, R.; Gholam, P.; Halegoua-De Marzio, D.; Harrison, S.; Jue, C.; Kemmer, N.; Kowdley, K.; Lai, M.; Lawitz, E.; Loomba, R.; Noureddin, M.; Paredes, A.; Rinella, M.; Rockey, D.; Rodriguez, M.; Ru-bin, R.; Ryan, M.; Sanyal, A.; Scanga, A.; Sepe, T.; Shiffman, M.; Shiffman, M.; Tetri, B.; Thuluvath, P.; Torres, D.; Vierling, J.; Wattach-eril, J.; Weiland, A.; Zogg, D. Effects of belapectin, an inhibitor of galectin-3, in patients with nonalcoholic steatohepatitis with cirrhosis and portal hypertension. Gastroenterology, 2020, 158(5), 1334-1345.e5.
[http://dx.doi.org/10.1053/j.gastro.2019.11.296] [PMID: 31812510]
[110]
Yin, Q.; Chen, J.; Ma, S.; Dong, C.; Zhang, Y.; Hou, X.; Li, S.; Liu, B. Pharmacological inhibition of galectin-3 ameliorates diabetes-associated cognitive impairment, oxidative stress and neuroinflammation in vivo and in vitro. J. Inflamm. Res., 2020, 13, 533-542.
[http://dx.doi.org/10.2147/JIR.S273858] [PMID: 32982368]
[111]
Xu, G.R.; Zhang, C.; Yang, H.X.; Sun, J.H.; Zhang, Y.; Yao, T.; Li, Y.; Ruan, L.; An, R.; Li, A.Y. Modified citrus pectin ameliorates myo-cardial fibrosis and inflammation via suppressing galectin-3 and TLR4/MyD88/NF-κB signaling pathway. Biomed. Pharmacother., 2020, 126, 110071.
[http://dx.doi.org/10.1016/j.biopha.2020.110071] [PMID: 32172066]
[112]
Bermúdez-Oria, A.; Rodríguez-Gutiérrez, G.; Rubio-Senent, F.; Sánchez-Carbayo, M.; Fernández-Bolaños, J. Antiproliferative activity of olive extract rich in polyphenols and modified pectin on bladder cancer cells. J. Med. Food, 2020, 23(7), 719-727.
[http://dx.doi.org/10.1089/jmf.2019.0136] [PMID: 31939715]
[113]
Zhang, T.; Zheng, Y.; Zhao, D.; Yan, J.; Sun, C.; Zhou, Y.; Tai, G. Multiple approaches to assess pectin binding to galectin-3. Int. J. Biol. Macromol., 2016, 91, 994-1001.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.06.058] [PMID: 27328612]
[114]
Paclik, D.; Werner, L.; Guckelberger, O.; Wiedenmann, B.; Sturm, A. Galectins distinctively regulate central monocyte and macrophage function. Cell. Immunol., 2011, 271(1), 97-103.
[http://dx.doi.org/10.1016/j.cellimm.2011.06.003] [PMID: 21724180]
[115]
Johannes, L.; Jacob, R.; Leffler, H. Galectins at a glance. J. Cell Sci., 2018, 131(9), jcs208884.
[http://dx.doi.org/10.1242/jcs.208884] [PMID: 29717004]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy