Abstract
Epigenetic mechanisms affecting chromatin structure contribute to regulate gene expression and assure the inheritance of information, which are essential for the proper expression of key regulatory genes in healthy cells, tissues and organs. In the medical field, an increasing body of evidence indicates that altered gene expression or de-regulated gene function lead to disease. Cancer cells also suffer a profound change in the genomic methylation patterns and chromatin status. Aberrant DNA methylation patterns, changes in chromatin structure and in gene expression are common in all kind of tumor types. However, studies on leukemias have provided paradigmatic examples for the functional implications of the epigenetic alterations in cancer development and progression as well as their relevance for therapeutical targeting.
Keywords: MDS, AML, HDAC inhibitors, hypomethylating agents, epigenetics
Current Medicinal Chemistry
Title: Epigenetic Treatment of Myelodysplastic Syndromes and Acute Myeloid Leukemias
Volume: 15 Issue: 13
Author(s): Giuseppe Leone, Francesco D'Alo, Giuseppe Zardo, Maria Teresa Voso and Clara Nervi
Affiliation:
Keywords: MDS, AML, HDAC inhibitors, hypomethylating agents, epigenetics
Abstract: Epigenetic mechanisms affecting chromatin structure contribute to regulate gene expression and assure the inheritance of information, which are essential for the proper expression of key regulatory genes in healthy cells, tissues and organs. In the medical field, an increasing body of evidence indicates that altered gene expression or de-regulated gene function lead to disease. Cancer cells also suffer a profound change in the genomic methylation patterns and chromatin status. Aberrant DNA methylation patterns, changes in chromatin structure and in gene expression are common in all kind of tumor types. However, studies on leukemias have provided paradigmatic examples for the functional implications of the epigenetic alterations in cancer development and progression as well as their relevance for therapeutical targeting.
Export Options
About this article
Cite this article as:
Leone Giuseppe, D'Alo Francesco, Zardo Giuseppe, Voso Teresa Maria and Nervi Clara, Epigenetic Treatment of Myelodysplastic Syndromes and Acute Myeloid Leukemias, Current Medicinal Chemistry 2008; 15 (13) . https://dx.doi.org/10.2174/092986708784534947
DOI https://dx.doi.org/10.2174/092986708784534947 |
Print ISSN 0929-8673 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-533X |
Call for Papers in Thematic Issues
Advances in Medicinal Chemistry: From Cancer to Chronic Diseases.
The broad spectrum of the issue will provide a comprehensive overview of emerging trends, novel therapeutic interventions, and translational insights that impact modern medicine. The primary focus will be diseases of global concern, including cancer, chronic pain, metabolic disorders, and autoimmune conditions, providing a broad overview of the advancements in ...read more
Approaches to the Treatment of Chronic Inflammation
Chronic inflammation is a hallmark of numerous diseases, significantly impacting global health. Although chronic inflammation is a hot topic, not much has been written about approaches to its treatment. This thematic issue aims to showcase the latest advancements in chronic inflammation treatment and foster discussion on future directions in this ...read more
Cellular and Molecular Mechanisms of Non-Infectious Inflammatory Diseases: Focus on Clinical Implications
The Special Issue covers the results of the studies on cellular and molecular mechanisms of non-infectious inflammatory diseases, in particular, autoimmune rheumatic diseases, atherosclerotic cardiovascular disease and other age-related disorders such as type II diabetes, cancer, neurodegenerative disorders, etc. Review and research articles as well as methodology papers that summarize ...read more
Chalcogen-modified nucleic acid analogues
Chalcogen-modified nucleosides, nucleotides and oligonucleotides have been of great interest to scientific research for many years. The replacement of oxygen in the nucleobase, sugar or phosphate backbone by chalcogen atoms (sulfur, selenium, tellurium) gives these biomolecules unique properties resulting from their altered physical and chemical properties. The continuing interest in ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements