Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Short Communication

Revisiting the Synthesis of Betti Bases: Facile, One-pot, and Efficient Synthesis of Betti Bases Promoted by FeCl3•6H2O

Author(s): Ramsha Iftikhar, Ameer Fawad Zahoor*, Sajjad Ahmad, Atta ul Haq and Shazia Naheed

Volume 19, Issue 5, 2022

Published on: 22 April, 2022

Page: [569 - 577] Pages: 9

DOI: 10.2174/1570179419666220127144352

Price: $65

Abstract

Background: Betti bases are pharmaceutically and synthetically important scaffolds due to their diverse range of biological activities and applications in key synthetic transformations in organic synthesis.

Objective: This work has been sought to contribute to the development, design, and implementation of an improved green methodology with higher atom economy and lower E-factor values for the synthesis of Betti bases.

Methods: To realize our objectives, we screened out different catalysts and reaction conditions using one-pot multicomponent modified Mannich reaction/Betti reaction by employing 2-naphthol, benzaldehyde and pyrrolidine as model substrates.

Results: The developed methodology afforded functionalized Betti bases in 60-100% yields via FeCl3•6H2O catalyzed one-pot multi-component Betti reaction under neat conditions at 110 °C (5-15 min) using several aromatic aldehydes and secondary amines.

Conclusion: A facile synthetic methodology with higher atom economy and lower E-factor values to synthesize Betti bases via FeCl3•6H2O catalyzed one-pot multicomponent Betti reaction of 2-naphthol, aromatic aldehydes, and secondary amines under neat conditions at 110 °C has been reported. The developed methodology offers various advantages, such as excellent yields (60-100%), short reaction time (5-15 min), wide substrate scope (12 examples), green reaction conditions, use of readily available catalyst, and easy purification (without column chromatography).

Keywords: Betti bases, One-pot reaction, scaffolds, biological activites, organic synthesis, aromatic aldehydes.

Next »
Graphical Abstract
[1]
de Graaff, C.; Ruijter, E.; Orru, R.V.A. Recent developments in asymmetric multicomponent reactions. Chem. Soc. Rev., 2012, 41(10), 3969-4009.
[http://dx.doi.org/10.1039/c2cs15361k] [PMID: 22546840]
[2]
Zahoor, A.F.; Thies, S.; Kazmaier, U. A straightforward approach towards combined α-amino and α-hydroxy acids based on Passerini reactions. Beilstein J. Org. Chem., 2011, 7(1), 1299-1303.
[http://dx.doi.org/10.3762/bjoc.7.151] [PMID: 21977215]
[3]
Olyaei, A.; Sadeghpour, M. Recent advances in the synthesis and synthetic applications of Betti base (aminoalkylnaphthol) and bis-Betti base derivatives. RSC Advances, 2019, 9(32), 18467-18497.
[http://dx.doi.org/10.1039/C9RA02813G]
[4]
Hanee, A.; Rahman, M.R.; Matin, M.M. Synthesis, PASS, in silico ADMET, and thermodynamic studies of some galactopyranoside es-ters. Phys. Chem. Res., 2021, 9(4), 591-603.
[http://dx.doi.org/10.22036/pcr.2021.282956.1911]
[5]
Muhammad, D.; Matin, M.M.; Miah, S.M.R.; Devi, P. Synthesis, antimicrobial, and DFT studies of some benzyl 4-O-acyl-α-L-rhamnopyranosides. Orbital. Electron. J. Chem, 2021, 13(3), 250-258.
[http://dx.doi.org/10.17807/orbital.v13i3.1614]
[6]
Cardellicchio, C.; Capozzi, A.M.M.; Francesco, N. The Betti base: the awakening of a sleeping beauty. Tetrahedron Asymmetry, 2010, 21(5), 507-517.
[http://dx.doi.org/10.1016/j.tetasy.2010.03.020]
[7]
Shi, S.; Qiu, W.; Miao, P.; Li, R.; Lin, X.; Sun, Z. Three-component radical homo Mannich reaction. Nat. Commun., 2021, 12(1), 1006.
[http://dx.doi.org/10.1038/s41467-021-21303-3] [PMID: 33579948]
[8]
Subramaniapillai, S.G. Mannich reaction: A versatile and convenient approach to bioactive skeletons. J. Chem. Sci., 2013, 125(3), 467-482.
[http://dx.doi.org/10.1007/s12039-013-0405-y]
[9]
Karimi, B.; Enders, D.; Jafari, E. Recent advances in metal-catalyzed asymmetric Mannich reactions. Synthesis, 2013, 45(20), 2769-2812.
[http://dx.doi.org/10.1055/s-0033-1339479]
[10]
Shen, A.Y.; Tsai, C.T.; Chen, C.L. Synthesis and cardiovascular evaluation of N-substituted 1-aminomethyl-2-naphthols. Eur. J. Med. Chem., 1999, 34(10), 877-882.
[http://dx.doi.org/10.1016/S0223-5234(99)00204-4]
[11]
Gyémánt, N.; Engi, H.; Schelz, Z.; Szatmári, I.; Tóth, D.; Fülöp, F.; Molnár, J.; de Witte, P.A. In vitro and in vivo multidrug resistance re-versal activity by a Betti-base derivative of tylosin. Br. J. Cancer, 2010, 103(2), 178-185.
[http://dx.doi.org/10.1038/sj.bjc.6605716] [PMID: 20551959]
[12]
Cardellina, J.H., II; Vieira, R.C.; Eccard, V.; Skerry, J.; Montgomery, V.; Campbell, Y.; Roxas-Duncan, V.; Leister, W.; Leclair, C.A.; Maloney, D.J.; Padula, D.; Pescitelli, G.; Khavrutskii, I.; Hu, X.; Wallqvist, A.; Smith, L.A.; Hu, X.; Wallqvist, A.; Smith, L. Separation of Betti reaction product enantiomers: Absolute configuration and inhibition of botulinum neurotoxin A. ACS Med. Chem. Lett., 2011, 2(5), 396-401.
[http://dx.doi.org/10.1021/ml200028z] [PMID: 22102940]
[13]
Thinnes, C.C.; Tumber, A.; Yapp, C.; Scozzafava, G.; Yeh, T.; Chan, M.C.; Tran, T.A.; Hsu, K.; Tarhonskaya, H.; Walport, L.J.; Wilkins, S.E.; Martinez, E.D.; Müller, S.; Pugh, C.W.; Ratcliffe, P.J.; Brennan, P.E.; Kawamura, A.; Schofield, C.J. Betti reaction enables efficient synthesis of 8-hydroxyquinoline inhibitors of 2-oxoglutarate oxygenases. Chem. Commun. (Camb.), 2015, 51(84), 15458-15461.
[http://dx.doi.org/10.1039/C5CC06095H] [PMID: 26345662]
[14]
Karatas, H.; Akbarzadeh, M.; Adihou, H.; Hahne, G.; Pobbati, A.V.; Yihui Ng, E.; Guéret, S.M.; Sievers, S.; Pahl, A.; Metz, M.; Zinken, S.; Dötsch, L.; Nowak, C.; Thavam, S.; Friese, A.; Kang, C.; Hong, W.; Waldmann, H.; Waldmann, H. Discovery of covalent inhibitors targeting the transcriptional enhanced associate domain central pocket. J. Med. Chem., 2020, 63(20), 11972-11989.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01275] [PMID: 32907324]
[15]
Iftikhar, R.; Zahoor, A.F.; Irfan, M.; Rasul, A.; Rao, F. Synthetic molecules targeting yes associated protein activity as chemotherapeu-tics against cancer. Chem. Biol. Drug Des., 2021, 98(6), 1025-1037.
[http://dx.doi.org/10.1111/cbdd.13960] [PMID: 34587361]
[16]
Mohanram, I.; Meshram, J. Synthesis and biological activities of 4-aminoantipyrine derivatives derived from betti-type reaction. ISRN Org. Chem., 2014, 2014, 639392.
[http://dx.doi.org/10.1155/2014/639392] [PMID: 24955256]
[17]
Anand Raghunath, S.; Nandibeoor Mathada, K. Synthesis and biological evaluation of aminonaphthols incorporated indole derivatives. Int. J. Med. Chem., 2014, 2014, 673206.
[http://dx.doi.org/10.1155/2014/673206] [PMID: 25383220]
[18]
Muralidharan, V.P.; Alagumuthu, M.; Iyer, S.K. Iodine catalyzed three component synthesis of 1-((2-hydroxy naphthalen-1-yl)(phenyl)(methyl))pyrrolidin-2-one derivatives: Rationale as potent PI3K inhibitors and anticancer agents. Bioorg. Med. Chem. Lett., 2017, 27(11), 2510-2514.
[http://dx.doi.org/10.1016/j.bmcl.2017.03.093] [PMID: 28462836]
[19]
Mansouri, S.; Zali-Boeini, H.; Zomorodian, K.; Khalvati, B.; Pargali, R.; Dehshahri, A.; Rudbari, H.; Sahihi, M.; Chavoshpour, Z. Syn-thesis of novel naphtho [1, 2-e][1, 3] oxazines bearing an arylsulfonamide moiety and their anticancer and antifungal activity evalua-tions. Arab. J. Chem., 2020, 13(1), 1271-1282.
[http://dx.doi.org/10.1016/j.arabjc.2017.10.009]
[20]
Khandarkar, K.M.; Shanti, M.D.; Ahmed, M.; Meshram, J.S. Facile green synthesis and potent antimicrobial efficacy of β-aminoheteronapthol via tailored Betti’s protocol and their bis-aryl hydrazone click products. J. Chem. Sci., 2013, 125(6), 1573-1594.
[http://dx.doi.org/10.1007/s12039-013-0509-4]
[21]
Sahu, P.K.; Sahu, P.K.; Thavaselvam, D.; Alafeefy, A.M.; Agarwal, D.D. One-pot facile and mild construction of densely functionalized pyrimidines in water via consecutive C–C and C–S bonds formation. RSC Advances, 2015, 8(59), 33952-33959.
[http://dx.doi.org/10.1039/C8RA04363A]
[22]
Pegu, C.; Nasrin, S.; Deb, M.; Das, D.; Saikia, K.; Baruah, P. CAN-catalyzed microwave promoted reaction of indole with Betti bases under solvent-free condition and evaluation of antibacterial activity of the products. Synth. Commun., 2017, 47(21), 2007-2014.
[http://dx.doi.org/10.1080/00397911.2017.1360912]
[23]
Zanetti, A.; Chaumont-Olive, P.; Schwertz, G.; Nascimento de Oliveira, M.; Gomez Fernandez, M.A.; Amara, Z.; Cossy, J. Cossy, crys-tallization-induced diastereoisomer transformation of dihydroartemisinic aldehyde with the Betti Base. J. Org. Process Res. Dev., 2020, 24(5), 850-855.
[http://dx.doi.org/10.1021/acs.oprd.9b00481] [PMID: 32454580]
[24]
Schmitz, C.; Holthusen, K.; Leitner, W.; Franciò, G. Highly regio-and enantioselective hydroformylation of vinyl esters using bidentate phosphine, P-chiral phosphorodiamidite ligands. ACS Catal., 2016, 6(3), 1584-1589.
[http://dx.doi.org/10.1021/acscatal.5b02846]
[25]
Cardellicchio, C.G.; Ciccarella, G.; Naso, F.; Perna, F.; Tortorella, P. Use of readily available chiral compounds related to the Betti base in the enantioselective addition of diethylzinc to aryl aldehydes. Tetrahedron, 1999, 55(51), 14685-14692.
[http://dx.doi.org/10.1016/S0040-4020(99)00914-X]
[26]
Dikova, K.; Kostova, K.; Simova, S.; Linden, A.; Chimov, A.; Dimitrov, V. Synthesis and crystal structures of chiral ferrocene and ruthenocene substituted aminomethylnaphthols obtained through Betti-condensation. Polyhedron, 2019, 165, 177-187.
[http://dx.doi.org/10.1016/j.poly.2019.03.019]
[27]
Yousaf, M.; Zahoor, A.F.; Akhtar, R.; Ahmad, M.; Naheed, S. Development of green methodologies for Heck, Chan-Lam, Stille and Su-zuki cross-coupling reactions. Mol. Divers., 2020, 24(3), 821-839.
[http://dx.doi.org/10.1007/s11030-019-09988-7] [PMID: 31463833]
[28]
Chaudhary, A.; Bedekar, A. 1‐(α‐Aminobenzyl)‐2‐naphthol as phosphine‐free ligand for Pd‐catalyzed Suzuki and one‐pot Wit-tig‐Suzuki reaction. Appl. Organomet. Chem., 2012, 26(8), 430-437.
[http://dx.doi.org/10.1002/aoc.2877]
[29]
Wang, Y.; Yang, Q.; Yang, Q.; Shi, L.J.; Zhang, M. A novel N–O ligand for palladium-catalyzed Mizoroki–Heck reaction in neat water. Tetrahedron Lett., 2013, 54(39), 5314-5317.
[http://dx.doi.org/10.1016/j.tetlet.2013.07.097]
[30]
Rigotti, T.; Righi, P.; Marotta, E.; Paolucci, C. Synthesis and preliminary results on the catalytic activity of metal complexes obtained from C2‐symmetric ligands derived from R‐(+)‐Betti base. ChemistrySelect, 2016, 1(11), 2624-2629.
[http://dx.doi.org/10.1002/slct.201600547]
[31]
Bellal, Y.; Benghanem, F.; Keraghel, S. A new corrosion inhibitor for steel rebar in concrete: Synthesis, electrochemical and theoretical studies. J. Mol. Struct., 2021, 1225, 129257.
[http://dx.doi.org/10.1016/j.molstruc.2020.129257]
[32]
Teimuri-Mofrad, R.; Ahadzadeh, I.; Gholamhosseini-Nazari, M.; Esmati, S.; Shahrisa, A. Synthesis of betti base derivatives catalyzed by nano-CuO-ionic liquid and experimental and quantum chemical studies on corrosion inhibition performance of them. Res. Chem. Intermed., 2018, 44(4), 2913-2927.
[http://dx.doi.org/10.1007/s11164-018-3287-2]
[33]
Saidi, M.; Azizi, N.; Naimi-Jamal, M. Lithium perchlorate assisted one-pot three-component aminoalkylation of electron-rich aromatic compounds. Tetrahedron Lett., 2001, 42(45), 8111-8113.
[http://dx.doi.org/10.1016/S0040-4039(01)01732-4]
[34]
Jha, A.; Paul, N.; Trikha, S.; Cameron, T. Novel synthesis of 2-naphthol Mannich bases and their NMR behaviour. Can. J. Chem., 2006, 84(6), 843-853.
[http://dx.doi.org/10.1139/v06-081]
[35]
Shahrisa, A.; Teimuri-Mofrad, R.; Gholamhosseini-Nazari, M. Synthesis of a new class of Betti bases by the Mannich-type reaction: ef-ficient, facile, solvent-free and one-pot protocol. Mol. Divers., 2015, 19(1), 87-101.
[http://dx.doi.org/10.1007/s11030-014-9559-x] [PMID: 25528441]
[36]
Kumar, A.; Gupta, M.; Kumar, M. Non-ionic surfactant catalyzed synthesis of Betti base in water. Tetrahedron Lett., 2010, 51(12), 1582-1584.
[http://dx.doi.org/10.1016/j.tetlet.2010.01.056]
[37]
Mukhopadhyay, C.; Rana, S.; Butcher, R. An ionic liquid [secbmim]+ Br—as a “dual reagent catalyst” for the multicomponent synthesis of (quinolinyl-and isoquinolinyl-amino) alkylnaphthols, their bis-analogs and a facile route to naphthoxazines. ARKIVOC, 2010, 2010, 291-304.
[http://dx.doi.org/10.3998/ark.5550190.0011.a24]
[38]
Mou, J.; Gao, G.; Chen, C.; Liu, J.; Gao, J.; Liu, Y.; Pei, D. Highly efficient one-pot three-component Betti reaction in water using re-verse zinc oxide micelles as a recoverable and reusable catalyst. RSC Advances, 2017, 7(23), 13868-13875.
[http://dx.doi.org/10.1039/C6RA28599F]
[39]
Karmakar, B.; Banerji, J. A competent pot and atom-efficient synthesis of Betti bases over nanocrystalline MgO involving a modified Mannich type reaction. Tetrahedron Lett., 2011, 52(38), 4957-4960.
[http://dx.doi.org/10.1016/j.tetlet.2011.07.075]
[40]
Shaterian, H.; Mohammadnia, M. Nanocrystalline TiO2–HClO4 catalyzed three-component preparation of derivatives of 1-amidoalkyl-2-naphthol, 1-carbamato-alkyl-2-naphthol, 1-(α-aminoalkyl)-2-naphthol, and 12-aryl-8, 9, 10, 12-tetrahydrobenzo [a]-xanthen-11-one. Res. Chem. Intermed., 2012, 39(9), 4221-4237.
[http://dx.doi.org/10.1007/s11164-012-0938-6]
[41]
Teimuri-Mofrad, R.; Gholamhosseini-Nazari, M.; Esmati, S.; Shahrisa, A. An efficient and green method for the synthesis of Betti base employing nano-SiO2–H3BO3 as a novel recyclable heterogeneous catalyst. Res. Chem. Intermed., 2017, 43(12), 6845-6861.
[http://dx.doi.org/10.1007/s11164-017-3024-2]
[42]
Bosica, G.; Abdilla, R.; Demanuele, K. Revisiting the Betti Synthesis: Using a Cheap, Readily Available, Recyclable Clay Catalyst under Solventless Conditions. Eur. J. Org. Chem., 2018, 2018(44), 6127-6133.
[http://dx.doi.org/10.1002/ejoc.201800826]
[43]
Faiz, S.; Zahoor, A.F.; Rasool, N.; Ajmal, M.; Irfan, M. Tetra-n-Butyl ammonium iodide catalyzed ring opening of epoxides with sodium saccharin. Warasan Khana Witthayasat Maha Witthayalai Chiang Mai, 2019, 46(6), 1229-1233.
[44]
Sikandar, S.; Zahoor, A.F.; Ahmad, S.; Anjum, M.N.; Ahmad, M.N.; Shah, M.S.U. L-Cysteine catalyzed environmentally benign one-pot multicomponent approach towards the synthesis of dihydropyrano[2,3-c]pyrazole derivatives. Curr. Org. Synth., 2020, 17(6), 457-463.
[http://dx.doi.org/10.2174/1570179417666200511092332] [PMID: 32392115]
[45]
Bauer, I.; Knölker, H.J. Iron catalysis in organic synthesis. Chem. Rev., 2015, 115(9), 3170-3387.
[http://dx.doi.org/10.1021/cr500425u] [PMID: 25751710]
[46]
Sharifi, A.; Mojtaba, M.; Naimi-Jamal, M. Solvent-free aminoalkylation of phenols and indoles assisted by microwave irradiation. Monatsh. Chem., 2001, 132(7), 875-880.
[http://dx.doi.org/10.1007/s007060170077]
[47]
Nayak, P.S.; Barik, B.; Achary, L.S.K.; Kumar, A.; Dash, P. Gold nanoparticles deposited on MnO2 nanorods modified graphene oxide composite: A potential ternary nanocatalyst for efficient synthesis of Betti bases and bisamides. Mol. Catal., 2019, 474, 110415.
[http://dx.doi.org/10.1016/j.mcat.2019.110415]
[48]
Mukhopadhyay, C.; Rana, S.; Butcher, R. Catalyst-free, one-pot, expeditious synthesis of aminoalkylnaphthols at room temperature. Synth. Commun., 2012, 42(20), 3077-3088.
[http://dx.doi.org/10.1080/00397911.2011.575524]
[49]
Cimarelli, C.; Palmieri, G.; Volpini, E. A practical stereoselective synthesis of secondary and tertiary aminonaphthols: chiral ligands for enantioselective catalysts in the addition of diethylzinc to benzaldehyde. Tetrahedron Asymmetry, 2002, 13(22), 2417-2426.
[http://dx.doi.org/10.1016/S0957-4166(02)00651-1]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy