Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Neuroinflammation: The Role of Anthocyanins as Neuroprotectants

Author(s): Otilia J.F. Banji*, David Banji, Hafiz A. Makeen, Saad S. Alqahtani and Saeed Alshahrani

Volume 20, Issue 11, 2022

Published on: 30 March, 2022

Page: [2156 - 2174] Pages: 19

DOI: 10.2174/1570159X20666220119140835

Price: $65

Abstract

Neuroinflammation is a trigger for several neurodegenerative and neuropsychiatric disorders. Exposure to noxious external stimuli induces homeostatic disturbances resulting in morphological changes in microglia, their activation, and elaboration of pro-inflammatory mediators. This leads to neuroinflammation with the progressive loss of neurons. Nutraceuticals such as anthocyanins are a class of brightly colored bioactive compounds present in fruits and vegetables with purported health benefits. They interfere with the activation of several signaling cascades that have a prominent role in preventing neuroinflammation. More importantly, anthocyanins can cross the blood-brain barrier and are safe. Hence, the current review focuses on the bioavailability of anthocyanins, clinical and in vitro evidence on their role in impeding the activation of transcription factors, modulating the immune milieu within the central nervous system, preventing the activation of microglia, and averting neuroinflammation.

Keywords: Anthocyanins, microglia, oxidative stress, signaling pathways, neuroinflammation, bioavailability.

Graphical Abstract
[1]
Feigin, V.L.; Abajobir, A.A.; Abate, K.H.; Abd-Allah, F.; Abdulle, A.M.; Abera, S.F.; Abyu, G.Y.; Ahmed, M.B.; Aichour, A.N.; Aichour, I.; Aichour, M.T.E.; Akinyemi, R.O.; Alabed, S.; Al-Raddadi, R.; Alvis-Guzman, N.; Amare, A.T.; Ansari, H.; Anwari, P.; Ärnlöv, J.; Asayesh, H.; Asgedom, S.W.; Atey, T.M.; Avila-Burgos, L.; Frinel, E.; Avokpaho, G.A.; Azarpazhooh, M.R.; Barac, A.; Barboza, M.; Barker-Collo, S.L.; Bärnighausen, T.; Bedi, N.; Beghi, E.; Bennett, D.A.; Bensenor, I.M.; Berhane, A.; Betsu, B.D.; Bhaumik, S.; Birlik, S.M.; Biryukov, S.; Boneya, D.J.; Bulto, L.N.B.; Carabin, H.; Casey, D.; Castañeda-Orjuela, C.A.; Catalá-López, F.; Chen, H.; Chitheer, A.A.; Chowdhury, R.; Christensen, H.; Dandona, L.; Dandona, R.; de Veber, G.A.; Dharmaratne, S.D.; Do, H.P.; Dokova, K.; Dorsey, E.R.; Ellenbogen, R.G.; Eskandarieh, S.; Farvid, M.S.; Fereshtehnejad, S-M.; Fischer, F.; Foreman, K.J.; Geleijnse, J.M.; Gillum, R.F.; Giussani, G.; Goldberg, E.M.; Gona, P.N.; Goulart, A.C.; Gugnani, H.C.; Gupta, R.; Hachinski, V.; Gupta, R.; Hamadeh, R.R.; Hambisa, M.; Hankey, G.J.; Hareri, H.A.; Havmoeller, R.; Hay, S.I.; Heydarpour, P.; Hotez, P.J.; Jakovljevic, M.B.; Javanbakht, M.; Jeemon, P.; Jo-nas, J.B.; Kalkonde, Y.; Kandel, A.; Karch, A.; Kasaeian, A.; Kastor, A.; Keiyoro, P.N.; Khader, Y.S.; Khalil, I.A.; Khan, E.A.; Khang, Y-H.; Tawfih, A.; Khoja, A.; Khubchandani, J.; Kulkarni, C.; Kim, D.; Kim, Y.J.; Kivimaki, M.; Kokubo, Y.; Kosen, S.; Kravchenko, M.; Krishnamurthi, R.V.; Defo, B.K.; Kumar, G.A.; Kumar, R.; Kyu, H.H.; Larsson, A.; Lavados, P.M.; Li, Y.; Liang, X.; Liben, M.L.; Lo, W.D.; Logroscino, G.; Lotufo, P.A.; Loy, C.T.; Mackay, M.T.; El Razek, H.M.A.; El Razek, M.M.A.; Majeed, A.; Malekzadeh, R.; Man-hertz, T.; Mantovani, L.G.; Massano, J.; Mazidi, M.; McAlinden, C.; Mehata, S.; Mehndiratta, M.M.; Memish, Z.A.; Mendoza, W.; Men-gistie, M.A.; Mensah, G.A.; Meretoja, A.; Mezgebe, H.B.; Miller, T.R.; Mishra, S.R.; Ibrahim, N.M.; Mohammadi, A.; Mohammed, K.E.; Mohammed, S.; Mokdad, A.H.; Moradi-Lakeh, M.; Velasquez, I.M.; Musa, K.I.; Naghavi, M.; Ngunjiri, J.W.; Nguyen, C.T.; Nguyen, G.; Le Nguyen, Q.; Nguyen, T.H.; Nichols, E.; Ningrum, D.N.A.; Nong, V.M.; Norrving, B.; Noubiap, J.J.N.; Ogbo, F.A.; Owolabi, M.O.; Pan-dian, J.D.; Parmar, P.G.; Pereira, D.M.; Petzold, M.; Phillips, M.R.; Piradov, M.A.; Poulton, R.G.; Pourmalek, F.; Qorbani, M.; Rafay, A.; Rahman, M.; Rahman, M.H.; Rai, R.K.; Rajsic, S.; Ranta, A.; Rawaf, S.; Renzaho, A.M.N.; Rezai, M.S.; Roth, G.A.; Roshandel, G.; Ruba-gotti, E.; Sachdev, P.; Safiri, S.; Sahathevan, R.; Sahraian, M.A.; Samy, A.M.; Santalucia, P.; Santos, I.S.; Sartorius, B.; Satpathy, M.; Sawhney, M.; Saylan, M.I.; Sepanlou, S.G.; Shaikh, M.A.; Shakir, R.; Shamsizadeh, M.; Sheth, K.N.; Shigematsu, M.; Shoman, H.; Silva, D.A.S.; Smith, M.; Sobngwi, E.; Sposato, L.A.; Stanaway, J.D.; Stein, D.J.; Steiner, T.J.; Stovner, L.J.; Abdulkader, R.S.; Ei Szoeke, C.; Tabarés-Seisdedos, R.; Tanne, D.; Theadom, A.M.; Thrift, A.G.; Tirschwell, D.L.; Topor-Madry, R.; Tran, B.X.; Truelsen, T.; Tuem, K.B.; Ukwaja, K.N.; Uthman, O.A.; Varakin, Y.Y.; Vasankari, T.; Venketasubramanian, N.; Vlassov, V.V.; Wadilo, F.; Wakayo, T.; Wallin, M.T.; Weiderpass, E.; Westerman, R.; Wijeratne, T.; Wiysonge, C.S.; Woldu, M.A.; Wolfe, C.D.A.; Xavier, D.; Xu, G.; Yano, Y.; Yimam, H.H.; Yonemoto, N.; Yu, C.; Zaidi, Z.; El Sayed Zaki, M.; Zunt, J.R.; Murray, C.J.L.; Vos, T. Global, regional, and national burden of neu-rological disorders during 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol., 2017, 16(11), 877-897.
[http://dx.doi.org/10.1016/S1474-4422(17)30299-5] [PMID: 28931491]
[2]
Streit, W.J.; Mrak, R.E.; Griffin, W.S.T. Microglia and neuroinflammation: a pathological perspective. J. Neuroinflammation, 2004, 1(1), 14.
[http://dx.doi.org/10.1186/1742-2094-1-14] [PMID: 15285801]
[3]
Degan, D.; Ornello, R.; Tiseo, C.; Carolei, A.; Sacco, S.; Pistoia, F. The role of inflammation in neurological disorders. Curr. Pharm. Des., 2018, 24(14), 1485-1501.
[http://dx.doi.org/10.2174/1381612824666180327170632] [PMID: 29589534]
[4]
Glass, C.K.; Saijo, K.; Winner, B.; Marchetto, M.C.; Gage, F.H. Mechanisms underlying inflammation in neurodegeneration. Cell, 2010, 140(6), 918-934.
[http://dx.doi.org/10.1016/j.cell.2010.02.016] [PMID: 20303880]
[5]
Adzic, M.; Brkic, Z.; Mitic, M.; Francija, E.; Jovicic, M.J.; Radulovic, J.; Maric, N.P. Therapeutic strategies for treatment of inflammation-related depression. Curr. Neuropharmacol., 2018, 16(2), 176-209.
[http://dx.doi.org/10.2174/1570159X15666170828163048] [PMID: 28847294]
[6]
Felger, J.C. Imaging the role of inflammation in mood and anxiety-related disorders. Curr. Neuropharmacol., 2018, 16(5), 533-558.
[http://dx.doi.org/10.2174/1570159X15666171123201142] [PMID: 29173175]
[7]
Orsolini, L.; Sarchione, F.; Vellante, F.; Fornaro, M.; Matarazzo, I.; Martinotti, G.; Valchera, A.; Di Nicola, M.; Carano, A.; Di Giannanto-nio, M.; Perna, G.; Olivieri, L.; De Berardis, D. Protein-C Reactive as biomarker predictor of schizophrenia phases of illness? A systematic review. Curr. Neuropharmacol., 2018, 16(5), 583-606.
[http://dx.doi.org/10.2174/1570159X16666180119144538] [PMID: 29357805]
[8]
Haarman, B.C.; Burger, H.; Doorduin, J.; Renken, R.J.; Sibeijn-Kuiper, A.J.; Marsman, J.B.; de Vries, E.F.; de Groot, J.C.; Drexhage, H.A.; Mendes, R.; Nolen, W.A.; Riemersma-Van der Lek, R.F. Volume, metabolites and neuroinflammation of the hippocampus in bipolar dis-order - A combined magnetic resonance imaging and positron emission tomography study. Brain Behav. Immun., 2016, 56, 21-33.
[http://dx.doi.org/10.1016/j.bbi.2015.09.004] [PMID: 26348581]
[9]
Savitz, J.B.; Price, J.L.; Drevets, W.C. Neuropathological and neuromorphometric abnormalities in bipolar disorder: view from the medial prefrontal cortical network. Neurosci. Biobehav. Rev., 2014, 42, 132-147.
[http://dx.doi.org/10.1016/j.neubiorev.2014.02.008] [PMID: 24603026]
[10]
Vasupanrajit, A.; Jirakran, K.; Tunvirachaisakul, C.; Maes, M. Suicide attempts are associated with activated immune-inflammatory, nitro-oxidative, and neurotoxic pathways: A systematic review and meta-analysis. J. Affect. Disord., 2021, 295, 80-92.
[http://dx.doi.org/10.1016/j.jad.2021.08.015] [PMID: 34416621]
[11]
Medina-Remón, A.; Casas, R.; Tressserra-Rimbau, A.; Ros, E.; Martínez-González, M.A.; Fitó, M.; Corella, D.; Salas-Salvadó, J.; Lamuela-Raventos, R.M.; Estruch, R.; Investigators, P.S. Polyphenol intake from a Mediterranean diet decreases inflammatory biomarkers related to atherosclerosis: a substudy of the PREDIMED trial. Br. J. Clin. Pharmacol., 2017, 83(1), 114-128.
[http://dx.doi.org/10.1111/bcp.12986] [PMID: 27100393]
[12]
Dangles, O.; Fenger, J.A. The chemical reactivity of anthocyanins and its consequences in food science and nutrition. Molecules, 2018, 23(8), E1970.
[http://dx.doi.org/10.3390/molecules23081970] [PMID: 30087225]
[13]
Talavéra, S.; Felgines, C.; Texier, O.; Besson, C.; Gil-Izquierdo, A.; Lamaison, J.L.; Rémésy, C. Anthocyanin metabolism in rats and their distribution to digestive area, kidney, and brain. J. Agric. Food Chem., 2005, 53(10), 3902-3908.
[http://dx.doi.org/10.1021/jf050145v] [PMID: 15884815]
[14]
Kay, C.D. Aspects of anthocyanin absorption, metabolism and pharmacokinetics in humans. Nutr. Res. Rev., 2006, 19(1), 137-146.
[http://dx.doi.org/10.1079/NRR2005116] [PMID: 19079881]
[15]
Wang, W.Y.; Tan, M.S.; Yu, J.T.; Tan, L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann. Transl. Med., 2015, 3(10), 136.
[PMID: 26207229]
[16]
Kraft, A.D.; Harry, G.J. Features of microglia and neuroinflammation relevant to environmental exposure and neurotoxicity. Int. J. Environ. Res. Public Health, 2011, 8(7), 2980-3018.
[http://dx.doi.org/10.3390/ijerph8072980] [PMID: 21845170]
[17]
Alekseeva, O.S.; Kirik, O.V.; Gilerovich, E.G.; Korzhevskii, D.E. Microglia of the brain: Origin, structure, functions. J. Evol. Biochem. Physiol., 2019, 55(4), 257-268.
[http://dx.doi.org/10.1134/S002209301904001X]
[18]
Carvalho, V.V.L.; Gonçalves, J.O.; Silva, A.; Cadaval, T.R., Jr; Pinto, L.A.A.; Lopes, T.J. Separation of anthocyanins extracted from red cabbage by adsorption onto chitosan films. Int. J. Biol. Macromol., 2019, 131, 905-911.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.03.145] [PMID: 30914365]
[19]
Fang, J. Bioavailability of anthocyanins. Drug Metab. Rev., 2014, 46(4), 508-520.
[http://dx.doi.org/10.3109/03602532.2014.978080] [PMID: 25347327]
[20]
Wallace, T.C.; Giusti, M.M. Anthocyanins. Adv. Nutr., 2015, 6(5), 620-622.
[http://dx.doi.org/10.3945/an.115.009233] [PMID: 26374184]
[21]
Mazza, G.; Kay, C.D.; Cottrell, T.; Holub, B.J. Absorption of anthocyanins from blueberries and serum antioxidant status in human sub-jects. J. Agric. Food Chem., 2002, 50(26), 7731-7737.
[http://dx.doi.org/10.1021/jf020690l] [PMID: 12475297]
[22]
McGhie, T.K.; Ainge, G.D.; Barnett, L.E.; Cooney, J.M.; Jensen, D.J. Anthocyanin glycosides from berry fruit are absorbed and excreted unmetabolized by both humans and rats. J. Agric. Food Chem., 2003, 51(16), 4539-4548.
[http://dx.doi.org/10.1021/jf026206w] [PMID: 14705874]
[23]
Tian, L.; Tan, Y.; Chen, G.; Wang, G.; Sun, J.; Ou, S.; Chen, W.; Bai, W. Metabolism of anthocyanins and consequent effects on the gut microbiota. Crit. Rev. Food Sci. Nutr., 2019, 59(6), 982-991.
[http://dx.doi.org/10.1080/10408398.2018.1533517] [PMID: 30595029]
[24]
Peng, Y.; Yan, Y.; Wan, P.; Chen, D.; Ding, Y.; Ran, L.; Mi, J.; Lu, L.; Zhang, Z.; Li, X.; Zeng, X.; Cao, Y. Gut microbiota modulation and anti-inflammatory properties of anthocyanins from the fruits of Lycium ruthenicum Murray in dextran sodium sulfate-induced colitis in mice. Free Radic. Biol. Med., 2019, 136, 96-108.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.04.005] [PMID: 30959170]
[25]
Marques, C.; Fernandes, I.; Meireles, M.; Faria, A.; Spencer, J.P.E.; Mateus, N.; Calhau, C. Gut microbiota modulation accounts for the neuroprotective properties of anthocyanins. Sci. Rep., 2018, 8(1), 11341.
[http://dx.doi.org/10.1038/s41598-018-29744-5] [PMID: 30054537]
[26]
Yi, L.; Chen, C.Y.; Jin, X.; Mi, M.T.; Yu, B.; Chang, H.; Ling, W.H.; Zhang, T. Structural requirements of anthocyanins in relation to inhi-bition of endothelial injury induced by oxidized low-density lipoprotein and correlation with radical scavenging activity. FEBS Lett., 2010, 584(3), 583-590.
[http://dx.doi.org/10.1016/j.febslet.2009.12.006] [PMID: 20004199]
[27]
Gao, S.; Hu, M. Bioavailability challenges associated with development of anti-cancer phenolics. Mini Rev. Med. Chem., 2010, 10(6), 550-567.
[http://dx.doi.org/10.2174/138955710791384081] [PMID: 20370701]
[28]
Kalt, W. Anthocyanins and their C6-C3-C6 metabolites in humans and animals. Molecules, 2019, 24(22), E4024.
[http://dx.doi.org/10.3390/molecules24224024] [PMID: 31703276]
[29]
Fernandes, I.; Faria, A.; Calhau, C.; de Freitas, V.; Mateus, N. Bioavailability of anthocyanins and derivatives. J. Funct. Foods, 2014, 7, 54-66.
[http://dx.doi.org/10.1016/j.jff.2013.05.010]
[30]
Kamonpatana, K.; Giusti, M.M.; Chitchumroonchokchai, C. MorenoCruz, M.; Riedl, K.M.; Kumar, P.; Failla, M.L. Susceptibility of an-thocyanins to ex vivo degradation in human saliva. Food Chem., 2012, 135(2), 738-747.
[http://dx.doi.org/10.1016/j.foodchem.2012.04.110] [PMID: 22868153]
[31]
Mallery, S.R.; Budendorf, D.E.; Larsen, M.P.; Pei, P.; Tong, M.; Holpuch, A.S.; Larsen, P.E.; Stoner, G.D.; Fields, H.W.; Chan, K.K.; Ling, Y.; Liu, Z. Effects of human oral mucosal tissue, saliva, and oral microflora on intraoral metabolism and bioactivation of black raspberry anthocyanins. Cancer Prev. Res. (Phila.), 2011, 4(8), 1209-1221.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0040] [PMID: 21558412]
[32]
Fernandes, I.; Marques, C.; Évora, A.; Faria, A.; Calhau, C.; Mateus, N.; de Freitas, V. Anthocyanins: Nutrition and Health. In: Bioactive Molecules in Food; Mérillon, J-M.; Ramawat, K.G., Eds.; Springer International Publishing: Cham, 2018, pp. 1-37.
[http://dx.doi.org/10.1007/978-3-319-54528-8_79-1]
[33]
Nicolin, V.; Grill, V.; Micali, F.; Narducci, P.; Passamonti, S. Immunolocalisation of bilitranslocase in mucosecretory and parietal cells of the rat gastric mucosa. J. Mol. Histol., 2005, 36(1-2), 45-50.
[http://dx.doi.org/10.1007/s10735-004-2920-0] [PMID: 15703998]
[34]
Cao, G.; Muccitelli, H.U.; Sánchez-Moreno, C.; Prior, R.L. Anthocyanins are absorbed in glycated forms in elderly women: a pharmacoki-netic study. Am. J. Clin. Nutr., 2001, 73(5), 920-926.
[http://dx.doi.org/10.1093/ajcn/73.5.920] [PMID: 11333846]
[35]
Prior, R.L.; Wu, X. Anthocyanins: structural characteristics that result in unique metabolic patterns and biological activities. Free Radic. Res., 2006, 40(10), 1014-1028.
[http://dx.doi.org/10.1080/10715760600758522] [PMID: 17015246]
[36]
Mueller, D.; Jung, K.; Winter, M.; Rogoll, D.; Melcher, R.; Richling, E. Human intervention study to investigate the intestinal accessibility and bioavailability of anthocyanins from bilberries. Food Chem., 2017, 231, 275-286.
[http://dx.doi.org/10.1016/j.foodchem.2017.03.130] [PMID: 28450007]
[37]
Ludwig, I.A.; Mena, P.; Calani, L.; Borges, G.; Pereira-Caro, G.; Bresciani, L.; Del Rio, D.; Lean, M.E.; Crozier, A. New insights into the bioavailability of red raspberry anthocyanins and ellagitannins. Free Radic. Biol. Med., 2015, 89, 758-769.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.10.400] [PMID: 26475039]
[38]
He, J.; Wallace, T.C.; Keatley, K.E.; Failla, M.L.; Giusti, M.M. Stability of black raspberry anthocyanins in the digestive tract lumen and transport efficiency into gastric and small intestinal tissues in the rat. J. Agric. Food Chem., 2009, 57(8), 3141-3148.
[http://dx.doi.org/10.1021/jf900567t] [PMID: 19317488]
[39]
Xiao, D.; Sandhu, A.; Huang, Y.; Park, E.; Edirisinghe, I.; Burton-Freeman, B.M. The effect of dietary factors on strawberry anthocyanins oral bioavailability. Food Funct., 2017, 8(11), 3970-3979.
[http://dx.doi.org/10.1039/C7FO00885F] [PMID: 28979957]
[40]
Fernandes, A.; Sousa, A.; Azevedo, J.; Mateus, N.; Freitas, V. Effect of cyclodextrins on the thermodynamic and kinetic properties of cyanidin-3-O-glucoside. Food Res. Int., 2013, 51(2), 748-755.
[http://dx.doi.org/10.1016/j.foodres.2013.01.037]
[41]
Aura, A.M.; Martin-Lopez, P.; O’Leary, K.A.; Williamson, G.; Oksman-Caldentey, K.M.; Poutanen, K.; Santos-Buelga, C. In vitro metabo-lism of anthocyanins by human gut microflora. Eur. J. Nutr., 2005, 44(3), 133-142.
[http://dx.doi.org/10.1007/s00394-004-0502-2] [PMID: 15309431]
[42]
Le Roy, J.; Huss, B.; Creach, A.; Hawkins, S.; Neutelings, G. Glycosylation is a major regulator of phenylpropanoid availability and bio-logical activity in plants. Front. Plant Sci., 2016, 7(735), 735.
[http://dx.doi.org/10.3389/fpls.2016.00735] [PMID: 27303427]
[43]
Neyrinck, A.M.; Van Hée, V.F.; Bindels, L.B.; De Backer, F.; Cani, P.D.; Delzenne, N.M. Polyphenol-rich extract of pomegranate peel alleviates tissue inflammation and hypercholesterolaemia in high-fat diet-induced obese mice: potential implication of the gut microbiota. Br. J. Nutr., 2013, 109(5), 802-809.
[http://dx.doi.org/10.1017/S0007114512002206] [PMID: 22676910]
[44]
Queipo-Ortuño, M.I.; Boto-Ordóñez, M.; Murri, M.; Gomez-Zumaquero, J.M.; Clemente-Postigo, M.; Estruch, R.; Cardona Diaz, F. An-drés-Lacueva, C.; Tinahones, F.J. Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical bi-omarkers. Am. J. Clin. Nutr., 2012, 95(6), 1323-1334.
[http://dx.doi.org/10.3945/ajcn.111.027847] [PMID: 22552027]
[45]
Fernandes, I.; Faria, A.; de Freitas, V.; Calhau, C.; Mateus, N. Multiple-approach studies to assess anthocyanin bioavailability. Phytochem. Rev., 2015, 14(6), 899-919.
[http://dx.doi.org/10.1007/s11101-015-9415-3]
[46]
Faria, A.; Fernandes, I.; Norberto, S.; Mateus, N.; Calhau, C. Interplay between anthocyanins and gut microbiota. J. Agric. Food Chem., 2014, 62(29), 6898-6902.
[http://dx.doi.org/10.1021/jf501808a] [PMID: 24915058]
[47]
Wang, D.; Xia, M.; Yan, X.; Li, D.; Wang, L.; Xu, Y.; Jin, T.; Ling, W. Gut microbiota metabolism of anthocyanin promotes reverse cho-lesterol transport in mice via repressing miRNA-10b. Circ. Res., 2012, 111(8), 967-981.
[http://dx.doi.org/10.1161/CIRCRESAHA.112.266502] [PMID: 22821931]
[48]
Jennings, A.; Koch, M.; Jensen, M.K.; Bang, C.; Kassubek, J.; Müller, H-P.; Nöthlings, U.; Franke, A.; Lieb, W.; Cassidy, A. The role of the gut microbiome in the association between habitual anthocyanin intake and visceral abdominal fat in population-level analysis. Am. J. Clin. Nutr., 2020, 111(2), 340-350.
[http://dx.doi.org/10.1093/ajcn/nqz299] [PMID: 31826255]
[49]
Puupponen-Pimiä, R.; Seppänen-Laakso, T.; Kankainen, M.; Maukonen, J.; Törrönen, R.; Kolehmainen, M.; Leppänen, T.; Moilanen, E.; Nohynek, L.; Aura, A.M.; Poutanen, K.; Tómas-Barberán, F.A.; Espín, J.C.; Oksman-Caldentey, K.M. Effects of ellagitannin-rich berries on blood lipids, gut microbiota, and urolithin production in human subjects with symptoms of metabolic syndrome. Mol. Nutr. Food Res., 2013, 57(12), 2258-2263.
[http://dx.doi.org/10.1002/mnfr.201300280] [PMID: 23934737]
[50]
Boto-Ordóñez, M.; Urpi-Sarda, M.; Queipo-Ortuño, M.I.; Tulipani, S.; Tinahones, F.J.; Andres-Lacueva, C. High levels of Bifidobacteria are associated with increased levels of anthocyanin microbial metabolites: a randomized clinical trial. Food Funct., 2014, 5(8), 1932-1938.
[http://dx.doi.org/10.1039/C4FO00029C] [PMID: 24958563]
[51]
Sakakibara, H.; Ogawa, T.; Koyanagi, A.; Kobayashi, S.; Goda, T.; Kumazawa, S.; Kobayashi, H.; Shimoi, K. Distribution and excretion of bilberry anthocyanins [corrected] in mice. J. Agric. Food Chem., 2009, 57(17), 7681-7686.
[http://dx.doi.org/10.1021/jf901341b] [PMID: 19663426]
[52]
Vanzo, A.; Terdoslavich, M.; Brandoni, A.; Torres, A.M.; Vrhovsek, U.; Passamonti, S. Uptake of grape anthocyanins into the rat kidney and the involvement of bilitranslocase. Mol. Nutr. Food Res., 2008, 52(10), 1106-1116.
[http://dx.doi.org/10.1002/mnfr.200700505] [PMID: 18655007]
[53]
Andres-Lacueva, C.; Shukitt-Hale, B.; Galli, R.L.; Jauregui, O.; Lamuela-Raventos, R.M.; Joseph, J.A. Anthocyanins in aged blueberry-fed rats are found centrally and may enhance memory. Nutr. Neurosci., 2005, 8(2), 111-120.
[http://dx.doi.org/10.1080/10284150500078117] [PMID: 16053243]
[54]
Chen, Y.; Chen, H.; Zhang, W.; Ding, Y.; Zhao, T.; Zhang, M.; Mao, G.; Feng, W.; Wu, X.; Yang, L. Bioaccessibility and biotransformation of anthocyanin monomers following in vitro simulated gastric-intestinal digestion and in vivo metabolism in rats. Food Funct., 2019, 10(9), 6052-6061.
[http://dx.doi.org/10.1039/C9FO00871C] [PMID: 31486446]
[55]
Ke, Z.; Liu, Y.; Wang, X.; Fan, Z.; Chen, G.; Xu, M.; Bower, K.A.; Frank, J.A.; Ou, X.; Shi, X.; Luo, J. Cyanidin-3-glucoside ameliorates ethanol neurotoxicity in the developing brain. J. Neurosci. Res., 2011, 89(10), 1676-1684.
[http://dx.doi.org/10.1002/jnr.22689] [PMID: 21671257]
[56]
Fornasaro, S.; Ziberna, L.; Gasperotti, M.; Tramer, F.; Vrhovšek, U.; Mattivi, F.; Passamonti, S. Determination of cyanidin 3-glucoside in rat brain, liver and kidneys by UPLC/MS-MS and its application to a short-term pharmacokinetic study. Sci. Rep., 2016, 6(1), 22815.
[http://dx.doi.org/10.1038/srep22815] [PMID: 26965389]
[57]
Gutierres, J.M.; Carvalho, F.B.; Schetinger, M.R.C.; Rodrigues, M.V.; Schmatz, R.; Pimentel, V.C.; Vieira, J.M.; Rosa, M.M.; Marisco, P.; Ribeiro, D.A.; Leal, C.; Rubin, M.A.; Mazzanti, C.M.; Spanevello, R. Protective effects of anthocyanins on the ectonucleotidase activity in the impairment of memory induced by scopolamine in adult rats. Life Sci., 2012, 91(23-24), 1221-1228.
[http://dx.doi.org/10.1016/j.lfs.2012.09.013] [PMID: 23044227]
[58]
Milbury, P.E.; Kalt, W. Xenobiotic metabolism and berry flavonoid transport across the blood-brain barrier. J. Agric. Food Chem., 2010, 58(7), 3950-3956.
[http://dx.doi.org/10.1021/jf903529m] [PMID: 20128604]
[59]
Williams, C.M.; El Mohsen, M.A.; Vauzour, D.; Rendeiro, C.; Butler, L.T.; Ellis, J.A.; Whiteman, M.; Spencer, J.P. Blueberry-induced changes in spatial working memory correlate with changes in hippocampal CREB phosphorylation and brain-derived neurotrophic factor (BDNF) levels. Free Radic. Biol. Med., 2008, 45(3), 295-305.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.04.008] [PMID: 18457678]
[60]
Winter, A.N.; Ross, E.K.; Khatter, S.; Miller, K.; Linseman, D.A. Chemical basis for the disparate neuroprotective effects of the anthocya-nins, callistephin and kuromanin, against nitrosative stress. Free Radic. Biol. Med., 2017, 103, 23-34.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.12.012] [PMID: 27986528]
[61]
Celli, G.B.; Ghanem, A.; Brooks, M.S. A theoretical physiologically based pharmacokinetic approach for modeling the fate of anthocya-nins in vivo. Crit. Rev. Food Sci. Nutr., 2017, 57(15), 3197-3207.
[http://dx.doi.org/10.1080/10408398.2015.1104290] [PMID: 27002538]
[62]
Forester, S.C.; Waterhouse, A.L. Identification of Cabernet Sauvignon anthocyanin gut microflora metabolites. J. Agric. Food Chem., 2008, 56(19), 9299-9304.
[http://dx.doi.org/10.1021/jf801309n] [PMID: 18767860]
[63]
de Ferrars, R.M.; Czank, C.; Zhang, Q.; Botting, N.P.; Kroon, P.A.; Cassidy, A.; Kay, C.D. The pharmacokinetics of anthocyanins and their metabolites in humans. Br. J. Pharmacol., 2014, 171(13), 3268-3282.
[http://dx.doi.org/10.1111/bph.12676] [PMID: 24602005]
[64]
Wu, X.; Cao, G.; Prior, R.L. Absorption and metabolism of anthocyanins in elderly women after consumption of elderberry or blueberry. J. Nutr., 2002, 132(7), 1865-1871.
[http://dx.doi.org/10.1093/jn/132.7.1865] [PMID: 12097661]
[65]
Czank, C.; Cassidy, A.; Zhang, Q.; Morrison, D.J.; Preston, T.; Kroon, P.A.; Botting, N.P.; Kay, C.D. Human metabolism and elimination of the anthocyanin, cyanidin-3-glucoside: a (13)C-tracer study. Am. J. Clin. Nutr., 2013, 97(5), 995-1003.
[http://dx.doi.org/10.3945/ajcn.112.049247] [PMID: 23604435]
[66]
Carvalho, F.B.; Gutierres, J.M.; Bueno, A.; Agostinho, P.; Zago, A.M.; Vieira, J.; Frühauf, P.; Cechella, J.L.; Nogueira, C.W.; Oliveira, S.M.; Rizzi, C.; Spanevello, R.M.; Duarte, M.M.F.; Duarte, T.; Dellagostin, O.A.; Andrade, C.M. Anthocyanins control neuroinflammation and consequent memory dysfunction in mice exposed to lipopolysaccharide. Mol. Neurobiol., 2017, 54(5), 3350-3367.
[http://dx.doi.org/10.1007/s12035-016-9900-8] [PMID: 27167130]
[67]
Pisani, L.P.; Estadella, D.; Ribeiro, D.A. The role of Toll Like Receptors (TLRs) in oral carcinogenesis. Anticancer Res., 2017, 37(10), 5389-5394.
[PMID: 28982847]
[68]
Reed-Geaghan, E.G.; Savage, J.C.; Hise, A.G.; Landreth, G.E. CD14 and toll-like receptors 2 and 4 are required for fibrillar Abeta-stimulated microglial activation. J. Neurosci., 2009, 29(38), 11982-11992.
[http://dx.doi.org/10.1523/JNEUROSCI.3158-09.2009] [PMID: 19776284]
[69]
Minghetti, L. Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J. Neuropathol. Exp. Neurol., 2004, 63(9), 901-910.
[http://dx.doi.org/10.1093/jnen/63.9.901] [PMID: 15453089]
[70]
Henry, C.J.; Huang, Y.; Wynne, A.; Hanke, M.; Himler, J.; Bailey, M.T.; Sheridan, J.F.; Godbout, J.P. Minocycline attenuates lipopolysac-charide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia. J. Neuroinflammation, 2008, 5(1), 15.
[http://dx.doi.org/10.1186/1742-2094-5-15] [PMID: 18477398]
[71]
Lau, F.C.; Joseph, J.A.; McDonald, J.E.; Kalt, W. Attenuation of iNOS and COX2 by blueberry polyphenols is mediated through the sup-pression of NF-κB activation. J. Funct. Foods, 2009, 1(3), 274-283.
[http://dx.doi.org/10.1016/j.jff.2009.05.001]
[72]
Jeong, J.W.; Lee, W.S.; Shin, S.C.; Kim, G.Y.; Choi, B.T.; Choi, Y.H. Anthocyanins downregulate lipopolysaccharide-induced inflammato-ry responses in BV2 microglial cells by suppressing the NF-κB and Akt/MAPKs signaling pathways. Int. J. Mol. Sci., 2013, 14(1), 1502-1515.
[http://dx.doi.org/10.3390/ijms14011502] [PMID: 23344054]
[73]
Goyarzu, P.; Malin, D.H.; Lau, F.C.; Taglialatela, G.; Moon, W.D.; Jennings, R.; Moy, E.; Moy, D.; Lippold, S.; Shukitt-Hale, B.; Joseph, J.A. Blueberry supplemented diet: effects on object recognition memory and nuclear factor-kappa B levels in aged rats. Nutr. Neurosci., 2004, 7(2), 75-83.
[http://dx.doi.org/10.1080/10284150410001710410] [PMID: 15279493]
[74]
Simonyi, A.; Chen, Z.; Jiang, J.; Zong, Y.; Chuang, D.Y.; Gu, Z.; Lu, C.H.; Fritsche, K.L.; Greenlief, C.M.; Rottinghaus, G.E.; Thomas, A.L.; Lubahn, D.B.; Sun, G.Y. Inhibition of microglial activation by elderberry extracts and its phenolic components. Life Sci., 2015, 128, 30-38.
[http://dx.doi.org/10.1016/j.lfs.2015.01.037] [PMID: 25744406]
[75]
Tarafdar, A.; Pula, G. The role of NADPH oxidases and oxidative stress in neurodegenerative disorders. Int. J. Mol. Sci., 2018, 19(12), E3824.
[http://dx.doi.org/10.3390/ijms19123824] [PMID: 30513656]
[76]
Jiang, J.M.; Zong, Y.; Chuang, D.Y.; Lei, W.; Lu, C.H.; Gu, Z.; Fritsche, K.L.; Thomas, A.L.; Lubahn, D.B.; Simonyi, A.; Sun, G.Y. Ef-fects of elderberry juice from different genotypes on oxidative and inflammatory responses in microglial cells. Acta Hortic., 2015, 1061(1061), 281-288.
[http://dx.doi.org/10.17660/ActaHortic.2015.1061.31] [PMID: 27158184]
[77]
Zhao, L.; Chen, S.; Liu, T.; Wang, X.; Huang, H.; Liu, W. Callistephin enhances the protective effects of isoflurane on microglial injury through downregulation of inflammation and apoptosis. Mol. Med. Rep., 2019, 20(1), 802-812.
[http://dx.doi.org/10.3892/mmr.2019.10282] [PMID: 31180517]
[78]
Carlsen, H.; Myhrstad, M.C.; Thoresen, M.; Moskaug, J.Ø.; Blomhoff, R. Berry intake increases the activity of the gamma-glutamylcysteine synthetase promoter in transgenic reporter mice. J. Nutr., 2003, 133(7), 2137-2140.
[http://dx.doi.org/10.1093/jn/133.7.2137] [PMID: 12840168]
[79]
Min, S.W.; Ryu, S.N.; Kim, D.H. Anti-inflammatory effects of black rice, cyanidin-3-O-beta-D-glycoside, and its metabolites, cyanidin and protocatechuic acid. Int. Immunopharmacol., 2010, 10(8), 959-966.
[http://dx.doi.org/10.1016/j.intimp.2010.05.009] [PMID: 20669401]
[80]
Kaewmool, C.; Kongtawelert, P.; Phitak, T.; Pothacharoen, P.; Udomruk, S. Protocatechuic acid inhibits inflammatory responses in LPS-activated BV2 microglia via regulating SIRT1/NF-κB pathway contributed to the suppression of microglial activation-induced PC12 cell apoptosis. J. Neuroimmunol., 2020, 341, 577164.
[http://dx.doi.org/10.1016/j.jneuroim.2020.577164] [PMID: 32007785]
[81]
Khan, M.S.; Ali, T.; Kim, M.W.; Jo, M.H.; Jo, M.G.; Badshah, H.; Kim, M.O. Anthocyanins protect against LPS-induced oxidative stress-mediated neuroinflammation and neurodegeneration in the adult mouse cortex. Neurochem. Int., 2016, 100, 1-10.
[http://dx.doi.org/10.1016/j.neuint.2016.08.005] [PMID: 27522965]
[82]
Chien, K-J.; Su, C-H.; Ho, Y-C.; Lee, S-S.; Horng, C-T.; Yang, M-L.; Kuan, Y-H. MAPKs-NF-kappaB Pathway Plays a Crucial Role in the Antiinflammatory Effects of Amentoflavone in Lipopolysaccharide-treated BV2 Microglia. Indian J. Pharm. Sci., 2018, 80, 204-210.
[83]
Alhosin, M.; Anselm, E.; Rashid, S.; Kim, J.H.; Madeira, S.V.; Bronner, C.; Schini-Kerth, V.B. Redox-sensitive up-regulation of eNOS by purple grape juice in endothelial cells: role of PI3-kinase/Akt, p38 MAPK, JNK, FoxO1 and FoxO3a. PLoS One, 2013, 8(3), e57883.
[http://dx.doi.org/10.1371/journal.pone.0057883] [PMID: 23533577]
[84]
Erusalimsky, J.D.; Moncada, S. Nitric oxide and mitochondrial signaling: from physiology to pathophysiology. Arterioscler. Thromb. Vasc. Biol., 2007, 27(12), 2524-2531.
[http://dx.doi.org/10.1161/ATVBAHA.107.151167] [PMID: 17885213]
[85]
Zhao, R.Z.; Jiang, S.; Zhang, L.; Yu, Z.B. Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int. J. Mol. Med., 2019, 44(1), 3-15.
[http://dx.doi.org/10.3892/ijmm.2019.4188] [PMID: 31115493]
[86]
Kim, S.M.; Chung, M.J.; Ha, T.J.; Choi, H.N.; Jang, S.J.; Kim, S.O.; Chun, M.H.; Do, S.I.; Choo, Y.K.; Park, Y.I. Neuroprotective effects of black soybean anthocyanins via inactivation of ASK1-JNK/p38 pathways and mobilization of cellular sialic acids. Life Sci., 2012, 90(21-22), 874-882.
[http://dx.doi.org/10.1016/j.lfs.2012.04.025] [PMID: 22575822]
[87]
Pergola, C.; Rossi, A.; Dugo, P.; Cuzzocrea, S.; Sautebin, L. Inhibition of nitric oxide biosynthesis by anthocyanin fraction of blackberry extract. Nitric Oxide, 2006, 15(1), 30-39.
[http://dx.doi.org/10.1016/j.niox.2005.10.003] [PMID: 16517190]
[88]
Zhang, Y.; Meng, Q.; Yin, J.; Zhang, Z.; Bao, H.; Wang, X. Anthocyanins attenuate neuroinflammation through the suppression of MLK3 activation in a mouse model of perioperative neurocognitive disorders. Brain Res., 2020, 1726, 146504.
[http://dx.doi.org/10.1016/j.brainres.2019.146504] [PMID: 31654642]
[89]
Manea, S-A.; Constantin, A.; Manda, G.; Sasson, S.; Manea, A. Regulation of Nox enzymes expression in vascular pathophysiology: Fo-cusing on transcription factors and epigenetic mechanisms. Redox Biol., 2015, 5, 358-366.
[http://dx.doi.org/10.1016/j.redox.2015.06.012] [PMID: 26133261]
[90]
Peters, C.; Bascuñán, D.; Opazo, C.; Aguayo, L.G. Differential membrane toxicity of amyloid-β fragments by pore forming mechanisms. J. Alzheimers Dis., 2016, 51(3), 689-699.
[http://dx.doi.org/10.3233/JAD-150896] [PMID: 26890761]
[91]
Qin, L.; Zhang, J.; Qin, M. Protective effect of cyanidin 3-O-glucoside on beta-amyloid peptide-induced cognitive impairment in rats. Neurosci. Lett., 2013, 534, 285-288.
[http://dx.doi.org/10.1016/j.neulet.2012.12.023] [PMID: 23274703]
[92]
Yamakawa, M.Y.; Uchino, K.; Watanabe, Y.; Adachi, T.; Nakanishi, M.; Ichino, H.; Hongo, K.; Mizobata, T.; Kobayashi, S.; Nakashima, K.; Kawata, Y. Anthocyanin suppresses the toxicity of Aβ deposits through diversion of molecular forms in in vitro and in vivo models of Alzheimer’s disease. Nutr. Neurosci., 2016, 19(1), 32-42.
[http://dx.doi.org/10.1179/1476830515Y.0000000042] [PMID: 26304685]
[93]
Thummayot, S.; Tocharus, C.; Pinkaew, D.; Viwatpinyo, K.; Sringarm, K.; Tocharus, J. Neuroprotective effect of purple rice extract and its constituent against amyloid beta-induced neuronal cell death in SK-N-SH cells. Neurotoxicology, 2014, 45, 149-158.
[http://dx.doi.org/10.1016/j.neuro.2014.10.010] [PMID: 25451968]
[94]
Kim, M.J.; Rehman, S.U.; Amin, F.U.; Kim, M.O. Enhanced neuroprotection of anthocyanin-loaded PEG-gold nanoparticles against Aβ1-42-induced neuroinflammation and neurodegeneration via the NF-KB/JNK/GSK3β signaling pathway. Nanomedicine, 2017, 13(8), 2533-2544.
[http://dx.doi.org/10.1016/j.nano.2017.06.022] [PMID: 28736294]
[95]
Song, N.; Zhang, L.; Chen, W.; Zhu, H.; Deng, W.; Han, Y.; Guo, J.; Qin, C. Cyanidin 3-O-β-glucopyranoside activates peroxisome prolif-erator-activated receptor-γ and alleviates cognitive impairment in the APP(swe)/PS1(ΔE9) mouse model. Biochim. Biophys. Acta, 2016, 1862(9), 1786-1800.
[http://dx.doi.org/10.1016/j.bbadis.2016.05.016] [PMID: 27240542]
[96]
Li, J.; Zhao, R.; Jiang, Y.; Xu, Y.; Zhao, H.; Lyu, X.; Wu, T. Bilberry anthocyanins improve neuroinflammation and cognitive dysfunction in APP/PSEN1 mice via the CD33/TREM2/TYROBP signaling pathway in microglia. Food Funct., 2020, 11(2), 1572-1584.
[http://dx.doi.org/10.1039/C9FO02103E] [PMID: 32003387]
[97]
Fagone, P.; Patti, F.; Mangano, K.; Mammana, S.; Coco, M.; Touil-Boukoffa, C.; Chikovani, T.; Di Marco, R.; Nicoletti, F. Heme oxygen-ase-1 expression in peripheral blood mononuclear cells correlates with disease activity in multiple sclerosis. J. Neuroimmunol., 2013, 261(1-2), 82-86.
[http://dx.doi.org/10.1016/j.jneuroim.2013.04.013] [PMID: 23714423]
[98]
Drew, P.D.; Johnson, J.W.; Douglas, J.C.; Phelan, K.D.; Kane, C.J. Pioglitazone blocks ethanol induction of microglial activation and im-mune responses in the hippocampus, cerebellum, and cerebral cortex in a mouse model of fetal alcohol spectrum disorders. Alcohol. Clin. Exp. Res., 2015, 39(3), 445-454.
[http://dx.doi.org/10.1111/acer.12639] [PMID: 25703036]
[99]
Shah, S.A.; Yoon, G.H.; Kim, M.O. Protection of the developing brain with anthocyanins against ethanol-induced oxidative stress and neurodegeneration. Mol. Neurobiol., 2015, 51(3), 1278-1291.
[http://dx.doi.org/10.1007/s12035-014-8805-7] [PMID: 24997566]
[100]
Badshah, H.; Ali, T.; Ahmad, A.; Kim, M.J.; Abid, N.B.; Shah, S.A.; Yoon, G.H.; Lee, H.Y.; Kim, M.O. Co-treatment with anthocyanins and vitamin C ameliorates ethanol-induced neurodegeneration via modulation of GABAB receptor signaling in the adult rat brain. CNS Neurol. Disord. Drug Targets, 2015, 14(6), 791-803.
[http://dx.doi.org/10.2174/1871527314666150225142919] [PMID: 25714970]
[101]
Spohr, L.; Soares, M.S.P.; Oliveira, P.S.; da Silveira de Mattos, B.; Bona, N.P.; Pedra, N.S.; Teixeira, F.C.; do Couto, C.A.T.; Chaves, V.C.; Reginatto, F.H.; Lisboa, M.T.; Ribeiro, A.S.; Lencina, C.L.; Stefanello, F.M.; Spanevello, R.M. Combined actions of blueberry extract and lithium on neurochemical changes observed in an experimental model of mania: exploiting possible synergistic effects. Metab. Brain Dis., 2019, 34(2), 605-619.
[http://dx.doi.org/10.1007/s11011-018-0353-9] [PMID: 30535659]
[102]
Cavaliere, G.; Trinchese, G.; Penna, E.; Cimmino, F.; Pirozzi, C.; Lama, A.; Annunziata, C.; Catapano, A.; Mattace Raso, G.; Meli, R.; Monda, M.; Messina, G.; Zammit, C.; Crispino, M.; Mollica, M.P. High-fat diet induces neuroinflammation and mitochondrial impairment in mice cerebral cortex and synaptic fraction. Front. Cell. Neurosci., 2019, 13(509), 509.
[http://dx.doi.org/10.3389/fncel.2019.00509] [PMID: 31798417]
[103]
Meireles, M.; Marques, C.; Norberto, S.; Fernandes, I.; Mateus, N.; Rendeiro, C.; Spencer, J.P.; Faria, A.; Calhau, C. The impact of chronic blackberry intake on the neuroinflammatory status of rats fed a standard or high-fat diet. J. Nutr. Biochem., 2015, 26(11), 1166-1173.
[http://dx.doi.org/10.1016/j.jnutbio.2015.05.008] [PMID: 26315997]
[104]
Sandoval-Salazar, C.; Oviedo-Solís, C.I.; Lozoya-Gloria, E.; Aguilar-Zavala, H.; Solís-Ortiz, M.S.; Pérez-Vázquez, V.; Balcón-Pacheco, C.D.; Ramírez-Emiliano, J. Strawberry intake ameliorates oxidative stress and decreases GABA levels induced by high-fat diet in frontal cortex of rats. Antioxidants, 2019, 8(3), 70.
[http://dx.doi.org/10.3390/antiox8030070] [PMID: 30897746]
[105]
Moghaddam, M.H.; Bayat, A-H.; Eskandari, N.; Abdollahifar, M.A.; Fotouhi, F.; Forouzannia, A.; Rafiei, R.; Hatari, S.; Seraj, A.; Shahidi, A.M.E.J.; Ghorbani, Z.; Peyvandi, A.A.; Aliaghaei, A. Elderberry diet ameliorates motor function and prevents oxidative stress-induced cell death in rat models of Huntington disease. Brain Res., 2021, 1762, 147444.
[http://dx.doi.org/10.1016/j.brainres.2021.147444] [PMID: 33745925]
[106]
Shah, S.A.; Amin, F.U.; Khan, M.; Abid, M.N.; Rehman, S.U.; Kim, T.H.; Kim, M.W.; Kim, M.O. Anthocyanins abrogate glutamate-induced AMPK activation, oxidative stress, neuroinflammation, and neurodegeneration in postnatal rat brain. J. Neuroinflammation, 2016, 13(1), 286.
[http://dx.doi.org/10.1186/s12974-016-0752-y] [PMID: 27821173]
[107]
Ullah, I.; Park, H.Y.; Kim, M.O. Anthocyanins protect against kainic acid-induced excitotoxicity and apoptosis via ROS-activated AMPK pathway in hippocampal neurons. CNS Neurosci. Ther., 2014, 20(4), 327-338.
[http://dx.doi.org/10.1111/cns.12218] [PMID: 24393263]
[108]
Shukitt-Hale, B.; Lau, F.C.; Carey, A.N.; Galli, R.L.; Spangler, E.L.; Ingram, D.K.; Joseph, J.A. Blueberry polyphenols attenuate kainic acid-induced decrements in cognition and alter inflammatory gene expression in rat hippocampus. Nutr. Neurosci., 2008, 11(4), 172-182.
[http://dx.doi.org/10.1179/147683008X301487] [PMID: 18681986]
[109]
Duffy, K.B.; Spangler, E.L.; Devan, B.D.; Guo, Z.; Bowker, J.L.; Janas, A.M.; Hagepanos, A.; Minor, R.K.; DeCabo, R.; Mouton, P.R.; Shukitt-Hale, B.; Joseph, J.A.; Ingram, D.K. A blueberry-enriched diet provides cellular protection against oxidative stress and reduces a kainate-induced learning impairment in rats. Neurobiol. Aging, 2008, 29(11), 1680-1689.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.04.002] [PMID: 17524525]
[110]
Di Giacomo, C.; Acquaviva, R.; Santangelo, R.; Sorrenti, V.; Vanella, L.; Li Volti, G.; D’Orazio, N.; Vanella, A.; Galvano, F. Effect of treatment with cyanidin-3-O-β-D-glucoside on rat ischemic/reperfusion brain damage. Evid. Based Complement. Alternat. Med., 2012, 2012, 285750.
[http://dx.doi.org/10.1155/2012/285750] [PMID: 23008739]
[111]
Carvalho, F.B.; Gutierres, J.M.; Bohnert, C.; Zago, A.M.; Abdalla, F.H.; Vieira, J.M.; Palma, H.E.; Oliveira, S.M.; Spanevello, R.M.; Duarte, M.M.; Lopes, S.T.A.; Aiello, G.; Amaral, M.G.; Pippi, N.L.; Andrade, C.M. Anthocyanins suppress the secretion of proinflammatory me-diators and oxidative stress, and restore ion pump activities in demyelination. J. Nutr. Biochem., 2015, 26(4), 378-390.
[http://dx.doi.org/10.1016/j.jnutbio.2014.11.006] [PMID: 25632845]
[112]
Sherer, T.B.; Betarbet, R.; Testa, C.M.; Seo, B.B.; Richardson, J.R.; Kim, J.H.; Miller, G.W.; Yagi, T.; Matsuno-Yagi, A.; Greenamyre, J.T. Mechanism of toxicity in rotenone models of Parkinson’s disease. J. Neurosci., 2003, 23(34), 10756-10764.
[http://dx.doi.org/10.1523/JNEUROSCI.23-34-10756.2003] [PMID: 14645467]
[113]
Strathearn, K.E.; Yousef, G.G.; Grace, M.H.; Roy, S.L.; Tambe, M.A.; Ferruzzi, M.G.; Wu, Q.L.; Simon, J.E.; Lila, M.A.; Rochet, J.C. Neuroprotective effects of anthocyanin- and proanthocyanidin-rich extracts in cellular models of Parkinson׳s disease. Brain Res., 2014, 1555, 60-77.
[http://dx.doi.org/10.1016/j.brainres.2014.01.047] [PMID: 24502982]
[114]
Strömberg, I.; Gemma, C.; Vila, J.; Bickford, P.C. Blueberry- and spirulina-enriched diets enhance striatal dopamine recovery and induce a rapid, transient microglia activation after injury of the rat nigrostriatal dopamine system. Exp. Neurol., 2005, 196(2), 298-307.
[http://dx.doi.org/10.1016/j.expneurol.2005.08.013] [PMID: 16176814]
[115]
Halleskog, C.; Mulder, J.; Dahlström, J.; Mackie, K.; Hortobágyi, T.; Tanila, H.; Kumar Puli, L.; Färber, K.; Harkany, T.; Schulte, G. WNT signaling in activated microglia is proinflammatory. Glia, 2011, 59(1), 119-131.
[http://dx.doi.org/10.1002/glia.21081] [PMID: 20967887]
[116]
Zhang, L.; Cen, L.; Qu, S.; Wei, L.; Mo, M.; Feng, J.; Sun, C.; Xiao, Y.; Luo, Q.; Li, S.; Yang, X.; Xu, P. Enhancing beta-catenin activity via GSK3beta inhibition protects PC12 cells against rotenone toxicity through Nurr1 induction. PLoS One, 2016, 11(4), e0152931.
[http://dx.doi.org/10.1371/journal.pone.0152931] [PMID: 27045591]
[117]
Benito-León, J.; Contador, I.; Vega, S.; Villarejo-Galende, A.; Bermejo-Pareja, F. Non-steroidal anti-inflammatory drugs use in older adults decreases risk of Alzheimer’s disease mortality. PLoS One, 2019, 14(9), e0222505.
[http://dx.doi.org/10.1371/journal.pone.0222505] [PMID: 31527913]
[118]
Lleo, A.; Galea, E.; Sastre, M. Molecular targets of non-steroidal anti-inflammatory drugs in neurodegenerative diseases. Cell. Mol. Life Sci., 2007, 64(11), 1403-1418.
[http://dx.doi.org/10.1007/s00018-007-6516-1] [PMID: 17447008]
[119]
Hurst, R.D.; Lyall, K.A.; Wells, R.W.; Sawyer, G.M.; Lomiwes, D.; Ngametua, N.; Hurst, S.M. Daily consumption of an anthocyanin-rich extract made from New Zealand blackcurrants for 5 weeks supports exercise recovery through the management of oxidative stress and in-flammation: A randomized placebo controlled pilot study. Front. Nutr., 2020, 7(16), 16.
[http://dx.doi.org/10.3389/fnut.2020.00016] [PMID: 32175326]
[120]
USFDA. Guidance for industry: Estimating the maximum safe starting dose in adult healthy volunteer. Rockville, MD: US Food and Drug Administration. 2005. Available from: https://www.fda. gov/downloads/drugs/guidances
[121]
do Rosario, V.A.; Fitzgerald, Z.; Broyd, S.; Paterson, A.; Roodenrys, S.; Thomas, S.; Bliokas, V.; Potter, J.; Walton, K.; Weston-Green, K.; Yousefi, M.; Williams, D.; Wright, I.M.R.; Charlton, K. Food anthocyanins decrease concentrations of TNF-α in older adults with mild cognitive impairment: A randomized, controlled, double blind clinical trial. Nutr. Metab. Cardiovasc. Dis., 2021, 31(3), 950-960.
[http://dx.doi.org/10.1016/j.numecd.2020.11.024] [PMID: 33546942]
[122]
Karlsen, A.; Retterstøl, L.; Laake, P.; Paur, I.; Bøhn, S.K.; Sandvik, L.; Blomhoff, R. Anthocyanins inhibit nuclear factor-kappaB activa-tion in monocytes and reduce plasma concentrations of pro-inflammatory mediators in healthy adults. J. Nutr., 2007, 137(8), 1951-1954.
[http://dx.doi.org/10.1093/jn/137.8.1951] [PMID: 17634269]
[123]
Boespflug, E.L.; Eliassen, J.C.; Dudley, J.A.; Shidler, M.D.; Kalt, W.; Summer, S.S.; Stein, A.L.; Stover, A.N.; Krikorian, R. Enhanced neural activation with blueberry supplementation in mild cognitive impairment. Nutr. Neurosci., 2018, 21(4), 297-305.
[http://dx.doi.org/10.1080/1028415X.2017.1287833] [PMID: 28221821]
[124]
Bowtell, J.L.; Aboo-Bakkar, Z.; Conway, M.E.; Adlam, A.R.; Fulford, J. Enhanced task-related brain activation and resting perfusion in healthy older adults after chronic blueberry supplementation. Appl. Physiol. Nutr. Metab., 2017, 42(7), 773-779.
[http://dx.doi.org/10.1139/apnm-2016-0550] [PMID: 28249119]
[125]
Kent, K.; Charlton, K.; Roodenrys, S.; Batterham, M.; Potter, J.; Traynor, V.; Gilbert, H.; Morgan, O.; Richards, R. Consumption of antho-cyanin-rich cherry juice for 12 weeks improves memory and cognition in older adults with mild-to-moderate dementia. Eur. J. Nutr., 2017, 56(1), 333-341.
[http://dx.doi.org/10.1007/s00394-015-1083-y] [PMID: 26482148]
[126]
Davinelli, S.; Bertoglio, J.C.; Zarrelli, A.; Pina, R.; Scapagnini, G. A randomized clinical trial evaluating the efficacy of an anthocyanin-Maqui berry extract (Delphinol®) on oxidative stress biomarkers. J. Am. Coll. Nutr., 2015, 34((sup1)(Suppl. 1),), 28-33.
[http://dx.doi.org/10.1080/07315724.2015.1080108] [PMID: 26400431]
[127]
ClinicalTrials.gov. Bethesda (MD): National Library of Medicine. “Anthocyanins as dementia prevention.” Retrieved 8th January 2022, from https://clinicaltrials.gov/ct2/show/ NCT03419039?term=anthocyanins&cond=Neurological+Disorder&draw=2&rank=1
[128]
Khalifa, K.; Bergland, A.K.; Soennesyn, H.; Oppedal, K.; Oesterhus, R.; Dalen, I.; Larsen, A.I.; Fladby, T.; Brooker, H.; Wesnes, K.A.; Ballard, C.; Aarsland, D. Effects of Purified Anthocyanins in People at Risk for Dementia: Study Protocol for a Phase II Randomized Con-trolled Trial. Front. Neurol., 2020, 11, 916.
[http://dx.doi.org/10.3389/fneur.2020.00916] [PMID: 32982933]
[129]
ClinicalTrials.gov. Bethesda (MD): National Library of Medicine. “The effects of wild blueberries on depressive symptoms in young adults (BluMood).” Retreived 10th January 2022, from https://clinicaltrials.gov/ct2/show/NCT04647019?term=anthocyanins&cond=neurological+disorders&draw=2&rank=3
[130]
Smeriglio, A.; Barreca, D.; Bellocco, E.; Trombetta, D. Chemistry, pharmacology and health benefits of anthocyanins. Phytother. Res., 2016, 30(8), 1265-1286.
[http://dx.doi.org/10.1002/ptr.5642] [PMID: 27221033]
[131]
de Pascual-Teresa, S. Molecular mechanisms involved in the cardiovascular and neuroprotective effects of anthocyanins. Arch. Biochem. Biophys., 2014, 559, 68-74.
[http://dx.doi.org/10.1016/j.abb.2014.04.012] [PMID: 24791600]
[132]
Decendit, A.; Mamani-Matsuda, M.; Aumont, V.; Waffo-Teguo, P.; Moynet, D.; Boniface, K.; Richard, E.; Krisa, S.; Rambert, J.; Mérillon, J.M.; Mossalayi, M.D. Malvidin-3-O-β glucoside, major grape anthocyanin, inhibits human macrophage-derived inflammatory mediators and decreases clinical scores in arthritic rats. Biochem. Pharmacol., 2013, 86(10), 1461-1467.
[http://dx.doi.org/10.1016/j.bcp.2013.06.010] [PMID: 23796750]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy