Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Antiviral, Anticancer and Hypotensive Potential of Diphyllin Glycosides and their Mechanisms of Action

Author(s): Bhagya Nekrakalaya* and Chandrashekar Konambi Ramaiah

Volume 22, Issue 13, 2022

Published on: 18 February, 2022

Page: [1752 - 1771] Pages: 20

DOI: 10.2174/1389557522666220117122718

Price: $65

Abstract

Diphyllin glycosides (DG) are a type of arylnaphthalene lignans isolated from different plants, and their synthetic derivatives have shown effective antiviral, cytotoxic, hypotensive and diuretic effects at very low concentrations similar to standard drugs that are under clinical use. The biological activities of the DG interfere with signaling pathways of viral infection and cancer induction. The sugar moieties of DG enhance bioavailability and pharmacological activities. The promising results of DG at nanomolar concentrations under in vitro and in vivo conditions should be explored further with clinical trials to determine its toxic effects, pharmacokinetics and pharmacodynamics. This may help identify suitable antiviral and anticancer drugs in the near future. Considering all these activities, the present review is focused on the chemical aspects of DG with a detailed account of the mechanisms of action of DG. An attempt is also made to comment on the status of clinical trials involving DG along with the possible limitations in studies based on available literature till September 2020.

Keywords: Diphyllin glycosides, lignan, cytotoxic, anti-HIV, hypotensive, pharmacological activities.

Graphical Abstract
[1]
Rivera-Mondragón, A.; Bijttebier, S.; Tuenter, E.; Custers, D.; Ortíz, O.O.; Pieters, L.; Caballero-George, C.; Apers, S.; Foubert, K. Phyto-chemical characterization and comparative studies of four Cecropia species collected in Panama using multivariate data analysis. Sci. Rep., 2019, 9(1), 1763.
[http://dx.doi.org/10.1038/s41598-018-38334-4] [PMID: 30742130]
[2]
Bhagya, N.; Chandrashekar, K.R. Tetrandrine--A molecule of wide bioactivity. Phytochemistry, 2016, 125, 5-13.
[http://dx.doi.org/10.1016/j.phytochem.2016.02.005] [PMID: 26899361]
[3]
Cragg, G.M.; Newman, D.J. Plants as a source of anti-cancer agents. J. Ethnopharmacol., 2005, 100(1-2), 72-79.
[http://dx.doi.org/10.1016/j.jep.2005.05.011] [PMID: 16009521]
[4]
Cui, Q.; Du, R.; Liu, M.; Rong, L. Lignans and their derivatives from plants as antivirals. Molecules, 2020, 25(1), 1-17.
[http://dx.doi.org/10.3390/molecules25010183] [PMID: 31906391]
[5]
Pan, J.Y.; Chen, S.L.; Yang, M.H.; Wu, J.; Sinkkonen, J.; Zou, K. An update on lignans: Natural products and synthesis. Nat. Prod. Rep., 2009, 26(10), 1251-1292.
[http://dx.doi.org/10.1039/b910940d] [PMID: 19779640]
[6]
Jakhetia, V.; Patel, R.; Khatri, P.; Pahuja, N.; Garg, S.; Pandey, A.; Sharma, S. Cinnamon: A pharmacological review. Int. J. Adv. Sci. Res., 2010, 1(2), 19-23.
[7]
Rao, P.V.; Gan, S.H. Cinnamon: A multifaceted medicinal plant. Evid. Based Complement. Altern. Med., 2014.
[http://dx.doi.org/10.1155/2014/642942]
[8]
Bhagya, N.; Chandrashekar, K.R. In vitro production of bioactive compounds from stem and leaf explants of Justicia gendarussa Burm. f. Asian J. Pharm. Clin. Res., 2013, 6, 100-105.
[9]
Paval, J.; Kaitheri, S.K.; Potu, B.K.; Govindan, S.; Kumar, R.S.; Narayanan, S.N.; Moorkoth, S. Anti-arthritic potential of the plant Justicia gendarussa Burm F. Clinics (São Paulo), 2009, 64(4), 357-362.
[http://dx.doi.org/10.1590/S1807-59322009000400015] [PMID: 19488595]
[10]
Srivastava, S.; Srivastava, M.; Misra, A.; Pandey, G.; Rawat, A. A review on biological and chemical diversity in Berberis (Berberidaceae). EXCLI J., 2015, 14, 247-267.
[PMID: 26535033]
[11]
Iwasaki, T.; Kondo, K.; Kuroda, T.; Moritani, Y.; Yamagata, S.; Sugiura, M.; Kikkawa, H.; Kaminuma, O.; Ikezawa, K. Novel selective PDE IV inhibitors as antiasthmatic agents. Synthesis and biological activities of a series of 1-aryl-2,3-bis(hydroxymethyl)naphthalene lig-nans. J. Med. Chem., 1996, 39(14), 2696-2704.
[http://dx.doi.org/10.1021/jm9509096] [PMID: 8709099]
[12]
Charlton, J.L. Antiviral activity of lignans. J. Nat. Prod., 1998, 61(11), 1447-1451.
[http://dx.doi.org/10.1021/np980136z] [PMID: 9834179]
[13]
Capilla, A.S.; Sánchez, I.; Caignard, D.H.; Renard, P.; Pujol, M.D. Antitumor agents. Synthesis and biological evaluation of new com-pounds related to podophyllotoxin, containing the 2,3-dihydro-1,4-benzodioxin system. Eur. J. Med. Chem., 2001, 36(4), 389-393.
[http://dx.doi.org/10.1016/S0223-5234(01)01231-4] [PMID: 11461764]
[14]
Lu, H.; Liu, G.T. Anti-oxidant activity of dibenzocyclooctene lignans isolated from Schisandraceae. Planta Med., 1992, 58(4), 311-313.
[http://dx.doi.org/10.1055/s-2006-961473] [PMID: 1332091]
[15]
Li, S.; Liang, Z.; Li, J.; Zhang, X.; Zheng, R.; Zhao, C. Update on naturally occurring novel arylnaphthalenes from plants. Phytochem. Rev., 2020, 19, 337-403.
[http://dx.doi.org/10.1007/s11101-020-09668-7]
[16]
Hirano, T.; Wakasugi, A.; Oohara, M.; Oka, K.; Sashida, Y. Suppression of mitogen-induced proliferation of human peripheral blood lymphocytes by plant lignans. Planta Med., 1991, 57(4), 331-334.
[http://dx.doi.org/10.1055/s-2006-960110] [PMID: 1663632]
[17]
Rodríguez-García, C.; Sánchez-Quesada, C.; Toledo, E.; Delgado-Rodríguez, M.; Gaforio, J.J. Naturally lignan-rich foods: A dietary tool for health promotion? Molecules, 2019, 24(5), E917.
[http://dx.doi.org/10.3390/molecules24050917] [PMID: 30845651]
[18]
Chrispal, A. Cleistanthus collinus poisoning. J. Emerg. Trauma Shock, 2012, 5(2), 160-166.
[http://dx.doi.org/10.4103/0974-2700.96486] [PMID: 22787347]
[19]
Stransky, L.; Cotter, K.; Forgac, M. The function of V-ATPases in cancer. Physiol. Rev., 2016, 96(3), 1071-1091.
[http://dx.doi.org/10.1152/physrev.00035.2015] [PMID: 27335445]
[20]
Ezzat, S.M.; Shouman, S.A.; Elkhoely, A.; Attia, Y.M.; Elsesy, M.S.; El Senousy, A.S.; Choucry, M.A.; El Gayed, S.H.; El Sayed, A.A.; Sattar, E.A.; El Tanbouly, N. Anticancer potentiality of lignan rich fraction of six Flaxseed cultivars. Sci. Rep., 2018, 8(1), 544.
[http://dx.doi.org/10.1038/s41598-017-18944-0] [PMID: 29323210]
[21]
Park, J.E.; Lee, J.; Seo, S.Y.; Shin, D. Regioselective route for arylnaphthalene lactones: Convenient synthesis of taiwanin C, justicidin E, and daurinol. Tetrahedron Lett., 2014, 55, 818-820.
[http://dx.doi.org/10.1016/j.tetlet.2013.12.014]
[22]
Ren, Y.; Lantvit, D.D.; Deng, Y.; Kanagasabai, R.; Gallucci, J.C.; Ninh, T.N.; Chai, H.B.; Soejarto, D.D.; Fuchs, J.R.; Yalowich, J.C.; Yu, J.; Swanson, S.M.; Kinghorn, A.D. Potent cytotoxic arylnaphthalene lignan lactones from Phyllanthus poilanei. J. Nat. Prod., 2014, 77(6), 1494-1504.
[http://dx.doi.org/10.1021/np5002785] [PMID: 24937209]
[23]
Susplugas, S.; Hung, N.V.; Bignon, J.; Thoison, O.; Kruczynski, A.; Sévenet, T.; Guéritte, F. Cytotoxic arylnaphthalene lignans from a Vietnamese acanthaceae, Justicia patentiflora. J. Nat. Prod., 2005, 68(5), 734-738.
[http://dx.doi.org/10.1021/np050028u] [PMID: 15921419]
[24]
Wu, S.J.; Wu, T.S. Cytotoxic arylnaphthalene lignans from Phyllanthus oligospermus. Chem. Pharm. Bull. (Tokyo), 2006, 54(8), 1223-1225.
[http://dx.doi.org/10.1248/cpb.54.1223] [PMID: 16880677]
[25]
Sørensen, M.G.; Henriksen, K.; Neutzsky-Wulff, A.V.; Dziegiel, M.H.; Karsdal, M.A. Diphyllin, a novel and naturally potent V-ATPase inhibitor, abrogates acidification of the osteoclastic resorption lacunae and bone resorption. J. Bone Miner. Res., 2007, 22(10), 1640-1648.
[http://dx.doi.org/10.1359/jbmr.070613] [PMID: 17576165]
[26]
Maureen Rouhi, A. Lignin and lignan biosynthesis. Chem. Eng. News, 2000, 78, 29-32.
[http://dx.doi.org/10.1021/cen-v078n046.p029]
[27]
Suman, T.; Elangomathavan, R.; Kasipandi, M.; Chakkaravarthi, K.; Tamilvendan, D.; Parimelazhagan, T. Diphyllin: An effective antican-didal agent isolated from Cleistanthus collinus leaf extract. Egypt. J. Basic Appl. Sci., 2018, 5, 130-137.
[28]
Zhang, Z.; Ma, J.; Zhu, L.; Zhao, Y. Synthesis and identification of cytotoxic diphyllin glycosides as vacuolar H(+)-ATPase inhibitors. Eur. J. Med. Chem., 2014, 82, 466-471.
[http://dx.doi.org/10.1016/j.ejmech.2014.06.002] [PMID: 24929344]
[29]
Solyomváry, A.; Beni, S.; Boldizsar, I. Dibenzylbutyrolactone lignans – a review of their structural diversity, biosynthesis, occurrence, identification and importance. Mini Rev. Med. Chem., 2017, 17(12), 1053-1074.
[http://dx.doi.org/10.2174/1389557516666160614005828] [PMID: 27297675]
[30]
Xu, W.H.; Zhao, P.; Wang, M.; Liang, Q. Naturally occurring furofuran lignans: Structural diversity and biological activities. Nat. Prod. Res., 2019, 33(9), 1357-1373.
[http://dx.doi.org/10.1080/14786419.2018.1474467] [PMID: 29768037]
[31]
Yeung, A.W.K.; Tzvetkov, N.T.; Balacheva, A.A.; Georgieva, M.G.; Gan, R.Y.; Jozwik, A.; Pyzel, B.; Horbańczuk, J.O.; Novellino, E.; Durazzo, A.; Lucarini, M.; Camilli, E.; Souto, E.B.; Atanasov, A.G.; Santini, A. Lignans: quantitative analysis of the research literature. Front. Pharmacol., 2020, 11, 37.
[http://dx.doi.org/10.3389/fphar.2020.00037] [PMID: 32116713]
[32]
Asano, J.; Chiba, K.; Tada, M.; Yoshii, T. Antiviral activity of lignans and their glycosides from Justicia procumbens. Phytochemistry, 1996, 42(3), 713-717.
[http://dx.doi.org/10.1016/0031-9422(96)00024-6] [PMID: 8768323]
[33]
Pradheepkumar, C.P.; Shanmugam, G. Anticancer potential of cleistanthin A isolated from the tropical plant Cleistanthus collinus. Oncol. Res., 1999, 11(5), 225-232.
[PMID: 10608617]
[34]
Thummar, V.R.; Parasuraman, S.; Basu, D.; Raveendran, R. Evaluation of in vivo antitumor activity of cleistanthin B in Swiss albino mice. J. Tradit. Complement. Med., 2015, 6(4), 383-388.
[http://dx.doi.org/10.1016/j.jtcme.2015.08.004] [PMID: 27774423]
[35]
Tuchinda, P.; Kumkao, A.; Pohmakotr, M.; Sophasan, S.; Santisuk, T.; Reutrakul, V. Cytotoxic arylnaphthalide lignan glycosides from the aerial parts of Phyllanthus taxodiifolius. Planta Med., 2006, 72(1), 60-62.
[http://dx.doi.org/10.1055/s-2005-873141] [PMID: 16450297]
[36]
Parasuraman, S.; Raveendran, R. Diuretic effects of cleistanthin a and cleistanthin B from the leaves of cleistanthus collinus in wistar rats. J. Young Pharm., 2012, 4(2), 73-77.
[http://dx.doi.org/10.4103/0975-1483.96616] [PMID: 22754257]
[37]
Parasuraman, S.; Raveendran, R.; Ardestani, M.S.; Ananthakrishnan, R.; Jabbari-Arabzadeh, A.; Alavidjeh, M.S.; Aghasadeghi, M.R.; Elangovan, S.; Dhanapathi, H. Biodistribution properties of cleistanthin A and cleistanthin B using magnetic resonance imaging in a normal and tumoric animal model. Pharmacogn. Mag., 2012, 8(30), 129-134.
[http://dx.doi.org/10.4103/0973-1296.96559] [PMID: 22701286]
[38]
Parasuraman, S.; Raveendran, R.; Vijayakumar, B.; Velmurugan, D.; Balamurugan, S. Molecular docking and ex vivo pharmacological evaluation of constituents of the leaves of Cleistanthus collinus (Roxb.) (Euphorbiaceae). Indian J. Pharmacol., 2012, 44(2), 197-203.
[http://dx.doi.org/10.4103/0253-7613.93848] [PMID: 22529475]
[39]
Priyadharsini, R.P.; Parasuraman, S.; Raveendran, R. Evaluation of the antihypertensive activity and alpha adrenergic receptor interaction of cleistanthins A and B. J. Basic Clin. Pharm., 2014, 5(4), 109-114.
[http://dx.doi.org/10.4103/0976-0105.141950] [PMID: 25316991]
[40]
Zhang, H.J.; Rumschlag-Booms, E.; Guan, Y.F.; Liu, K.L.; Wang, D.Y.; Li, W.F.; Nguyen, V.H.; Cuong, N.M.; Soejarto, D.D.; Fong, H.H.S.; Rong, L. Anti-HIV diphyllin glycosides from Justicia gendarussa. Phytochemistry, 2017, 136, 94-100.
[http://dx.doi.org/10.1016/j.phytochem.2017.01.005] [PMID: 28110956]
[41]
Zhang, H.J.; Rumschlag-Booms, E.; Guan, Y.F.; Wang, D.Y.; Liu, K.L.; Li, W.F.; Nguyen, V.H.; Cuong, N.M.; Soejarto, D.D.; Fong, H.H.S.; Rong, L. Potent inhibitor of drug-resistant HIV-1 strains identified from the medicinal plant Justicia gendarussa. J. Nat. Prod., 2017, 80(6), 1798-1807.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00004] [PMID: 28613071]
[42]
Innocenti, G.; Puricelli, L.; Piacente, S.; Caniato, R.; Filippini, R.; Cappelletti, E.M. Patavine, a new arylnaphthalene lignan glycoside from shoot cultures of Haplophyllum patavinum. Chem. Pharm. Bull. (Tokyo), 2002, 50(6), 844-846.
[http://dx.doi.org/10.1248/cpb.50.844] [PMID: 12045345]
[43]
Liu, Y.; Young, K.; Rakotondraibe, L.H.; Brodie, P.J.; Wiley, J.D.; Cassera, M.B.; Callmander, M.W.; Rakotondrajaona, R.; Rakotobe, E.; Rasamison, V.E.; TenDyke, K.; Shen, Y.; Kingston, D.G.I. Antiproliferative Compounds from Cleistanthus boivinianus from the Mada-gascar Dry Forest. J. Nat. Prod., 2015, 78(7), 1543-1547.
[http://dx.doi.org/10.1021/np501020m] [PMID: 26091020]
[44]
Lewis, N.G.; Davin, L.B.; Sarkanen, S. Lignin and lignan biosynthesis: Distinctions and reconciliations. ACS Symp. Ser., 1998, 697, 1-27.
[http://dx.doi.org/10.1021/bk-1998-0697.ch001]
[45]
Suzuki, S.; Umezawa, T. Biosynthesis of lignans and norlignans. J. Wood Sci., 2007, 53, 273-284.
[http://dx.doi.org/10.1007/s10086-007-0892-x]
[46]
Fang, X.; Hu, X. Advances in the synthesis of lignan natural products. Molecules, 2018, 23(12), E3385.
[http://dx.doi.org/10.3390/molecules23123385] [PMID: 30572693]
[47]
Hemmati, S.; Seradj, H.; Justicidin, B. A promising bioactive lignan. Molecules, 2016, 21(7), 1-20.
[http://dx.doi.org/10.3390/molecules21070820] [PMID: 27347906]
[48]
Kocsis, L.S.; Brummond, K.M. Intramolecular dehydro-Diels-Alder reaction affords selective entry to arylnaphthalene or aryldihydrona-phthalene lignans. Org. Lett., 2014, 16(16), 4158-4161.
[http://dx.doi.org/10.1021/ol501853y] [PMID: 25061845]
[49]
Zhao, Y.; Ni, C.; Zhang, Y.; Zhu, L. Synthesis and bioevaluation of diphyllin glycosides as novel anticancer agents. Arch. Pharm. (Weinheim), 2012, 345(8), 622-628.
[http://dx.doi.org/10.1002/ardp.201200035] [PMID: 22592997]
[50]
Zhao, Y.; Li, Y.X. First synthesis of bioactive diphyllin glycosides isolated from Justicia patentiflora Hemsl. Chin. J. Chem., 2007, 25, 679-682.
[http://dx.doi.org/10.1002/cjoc.200790127]
[51]
Yin, Y.; Wunderink, R.G. MERS, SARS and other coronaviruses as causes of pneumonia. Respirology, 2018, 23(2), 130-137.
[http://dx.doi.org/10.1111/resp.13196] [PMID: 29052924]
[52]
De Clercq, E.; Li, G. Approved antiviral drugs over the past 50 years. Clin. Microbiol. Rev., 2016, 29(3), 695-747.
[http://dx.doi.org/10.1128/CMR.00102-15] [PMID: 27281742]
[53]
Mohammadi Pour, P.; Fakhri, S.; Asgary, S.; Farzaei, M.H.; Echeverría, J. The signaling pathways, and therapeutic targets of antiviral agents: Focusing on the antiviral approaches and clinical perspectives of anthocyanins in the management of viral diseases. Front. Pharmacol., 2019, 10, 1207.
[http://dx.doi.org/10.3389/fphar.2019.01207] [PMID: 31787892]
[54]
Ben-Shabat, S.; Yarmolinsky, L.; Porat, D.; Dahan, A. Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Deliv. Transl. Res., 2020, 10(2), 354-367.
[http://dx.doi.org/10.1007/s13346-019-00691-6] [PMID: 31788762]
[55]
Sever, R.; Brugge, J.S. Signal transduction in cancer. Cold Spring Harb. Perspect. Med., 2015, 5(4), 1-29.
[http://dx.doi.org/10.1101/cshperspect.a006098] [PMID: 25833940]
[56]
Martinez-Lopez, A.; Persaud, M.; Chavez, M.P.; Zhang, H.; Rong, L.; Liu, S.; Wang, T.T.; Sarafianos, S.G.; Diaz-Griffero, F. Glycosylated diphyllin as a broad-spectrum antiviral agent against Zika virus. Exp. Biol. Med., 2019, 47, 269-283.
[http://dx.doi.org/10.1016/j.ebiom.2019.08.060] [PMID: 31501074]
[57]
D’Cruz, O.J.; Uckun, F.M. Dawn of non-nucleoside inhibitor-based anti-HIV microbicides. J. Antimicrob. Chemother., 2006, 57(3), 411-423.
[http://dx.doi.org/10.1093/jac/dki464] [PMID: 16431862]
[58]
Nolan, D.; Reiss, P.; Mallal, S. Adverse effects of antiretroviral therapy for HIV infection: A review of selected topics. Expert Opin. Drug Saf., 2005, 4(2), 201-218.
[http://dx.doi.org/10.1517/14740338.4.2.201] [PMID: 15794714]
[59]
Mazzon, M.; Marsh, M. Targeting viral entry as a strategy for broad-spectrum antivirals. F1000 Res., 2019, 8.
[http://dx.doi.org/10.12688/f1000research.19694.1]
[60]
Al-Bari, M.A.A. Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral di-seases. Pharmacol. Res. Perspect., 2017, 5(1), e00293.
[http://dx.doi.org/10.1002/prp2.293] [PMID: 28596841]
[61]
Saiz, J.C.; Martín-Acebes, M.A. The race to find antivirals for zika virus. Antimicrob. Agents Chemother., 2017, 61(6), e00411-e00417.
[http://dx.doi.org/10.1128/AAC.00411-17] [PMID: 28348160]
[62]
Mbaveng, A.T.; Kuete, V.; Mapunya, B.M.; Beng, V.P.; Nkengfack, A.E.; Meyer, J.J.M.; Lall, N. Evaluation of four Cameroonian medici-nal plants for anticancer, antigonorrheal and antireverse transcriptase activities. Environ. Toxicol. Pharmacol., 2011, 32(2), 162-167.
[http://dx.doi.org/10.1016/j.etap.2011.04.006] [PMID: 21843795]
[63]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[64]
N, B.; K R, C. Tetrandrine and cancer - An overview on the molecular approach. Biomed. Pharmacother., 2018, 97, 624-632.
[http://dx.doi.org/10.1016/j.biopha.2017.10.116] [PMID: 29101806]
[65]
Martin, G.S. Cell signaling and cancer. Cancer Cell, 2003, 4(3), 167-174.
[http://dx.doi.org/10.1016/S1535-6108(03)00216-2] [PMID: 14522250]
[66]
Rezanka, T.; Rezanka, P.; Sigler, K. Glycosides of arylnaphthalene lignans from Acanthus mollis having axial chirality. Phytochemistry, 2009, 70(8), 1049-1054.
[http://dx.doi.org/10.1016/j.phytochem.2009.05.016] [PMID: 19559451]
[67]
Feng, Y.; Gao, Y.; Wang, D.; Xu, Z.; Sun, W.; Ren, P. Autophagy inhibitor (ly294002) and 5-fluorouracil (5-fu) combination-based nanoliposome for enhanced efficacy against esophageal squamous cell carcinoma. Nanoscale Res. Lett., 2018, 13(1), 325.
[http://dx.doi.org/10.1186/s11671-018-2716-x] [PMID: 30328537]
[68]
Paha, J.; Kanjanasirirat, P.; Munyoo, B.; Tuchinda, P.; Suvannang, N.; Nantasenamat, C.; Boonyarattanakalin, K.; Kittakoop, P.; Srikor, S.; Kongklad, G.; Rangkasenee, N.; Hongeng, S.; Utaisincharoen, P.; Borwornpinyo, S.; Ponpuak, M. A novel potent autophagy inhibitor ECDD-S27 targets vacuolar ATPase and inhibits cancer cell survival. Sci. Rep., 2019, 9(1), 9177.
[http://dx.doi.org/10.1038/s41598-019-45641-x] [PMID: 31235856]
[69]
Pan, S.; Cai, H.; Gu, L.; Cao, S. Cleistanthin A inhibits the invasion and metastasis of human melanoma cells by inhibiting the expression of matrix metallopeptidase-2 and -9. Oncol. Lett., 2017, 14(5), 6217-6223.
[http://dx.doi.org/10.3892/ol.2017.6917] [PMID: 29113270]
[70]
Shen, W.; Zhao, Y.; Chen, H.; Zhang, T.; Wu, S.; Liu, P. M3, a natural lignan xyloside, exhibits potent anticancer activity in HCT116 cells. Oncol. Lett., 2019, 17(2), 2117-2122.
[PMID: 30675278]
[71]
Shi, D.K.; Zhang, W.; Ding, N.; Li, M.; Li, Y.X. Design, synthesis and biological evaluation of novel glycosylated diphyllin derivatives as topoisomerase II inhibitors. Eur. J. Med. Chem., 2012, 47(1), 424-431.
[http://dx.doi.org/10.1016/j.ejmech.2011.11.011] [PMID: 22119124]
[72]
Liu, T.; Zhang, J.; Li, K.; Deng, L.; Wang, H. Combination of an autophagy inducer and an autophagy inhibitor: A smarter strategy emer-ging in cancer therapy. Front. Pharmacol., 2020, 11, 408.
[http://dx.doi.org/10.3389/fphar.2020.00408] [PMID: 32322202]
[73]
Mukhtar, E.; Adhami, V.M.; Mukhtar, H. Targeting microtubules by natural agents for cancer therapy. Mol. Cancer Ther., 2014, 13(2), 275-284.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0791] [PMID: 24435445]
[74]
Mauvezin, C.; Nagy, P.; Juhász, G.; Neufeld, T.P. Autophagosome-lysosome fusion is independent of V-ATPase-mediated acidification. Nat. Commun., 2015, 6, 7007.
[http://dx.doi.org/10.1038/ncomms8007] [PMID: 25959678]
[75]
Yamamoto, A.; Tagawa, Y.; Yoshimori, T.; Moriyama, Y.; Masaki, R.; Tashiro, Y. Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Struct. Funct., 1998, 23(1), 33-42.
[http://dx.doi.org/10.1247/csf.23.33] [PMID: 9639028]
[76]
Sternlicht, M.D.; Werb, Z. How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol., 2001, 17, 463-516.
[http://dx.doi.org/10.1146/annurev.cellbio.17.1.463] [PMID: 11687497]
[77]
Li, H.; Qiu, Z.; Li, F.; Wang, C. The relationship between MMP-2 and MMP-9 expression levels with breast cancer incidence and progno-sis. Oncol. Lett., 2017, 14(5), 5865-5870.
[http://dx.doi.org/10.3892/ol.2017.6924] [PMID: 29113219]
[78]
Webb, A.H.; Gao, B.T.; Goldsmith, Z.K.; Irvine, A.S.; Saleh, N.; Lee, R.P.; Lendermon, J.B.; Bheemreddy, R.; Zhang, Q.; Brennan, R.C.; Johnson, D.; Steinle, J.J.; Wilson, M.W.; Morales-Tirado, V.M. Inhibition of MMP-2 and MMP-9 decreases cellular migration, and angio-genesis in in vitro models of retinoblastoma. BMC Cancer, 2017, 17(1), 434.
[http://dx.doi.org/10.1186/s12885-017-3418-y] [PMID: 28633655]
[79]
Xie, Y.; Mustafa, A.; Yerzhan, A.; Merzhakupova, D.; Yerlan, P.; N., Orakov A.; Wang, X.; Huang, Y.; Miao, L. Nuclear matrix metallo-proteinases: Functions resemble the evolution from the intracellular to the extracellular compartment. Cell Death Discov., 2017, 3, 17036.
[http://dx.doi.org/10.1038/cddiscovery.2017.36] [PMID: 28811933]
[80]
Tschan, M.P.; Simon, H.U. The role of autophagy in anticancer therapy: Promises and uncertainties. J. Intern. Med., 2010, 268(5), 410-418.
[http://dx.doi.org/10.1111/j.1365-2796.2010.02266.x] [PMID: 20964733]
[81]
Yang, Y.P.; Hu, L.F.; Zheng, H.F.; Mao, C.J.; Hu, W.D.; Xiong, K.P.; Wang, F.; Liu, C.F. Application and interpretation of current autop-hagy inhibitors and activators. Acta Pharmacol. Sin., 2013, 34(5), 625-635.
[http://dx.doi.org/10.1038/aps.2013.5] [PMID: 23524572]
[82]
Kuroda, J.; Shimura, Y.; Yamamoto-Sugitani, M.; Sasaki, N.; Taniwaki, M. Multifaceted mechanisms for cell survival and drug targeting in chronic myelogenous leukemia. Curr. Cancer Drug Targets, 2013, 13(1), 69-79.
[http://dx.doi.org/10.2174/156800913804486638] [PMID: 22414011]
[83]
Kimura, T.; Takabatake, Y.; Takahashi, A.; Isaka, Y. Chloroquine in cancer therapy: A double-edged sword of autophagy. Cancer Res., 2013, 73(1), 3-7.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2464] [PMID: 23288916]
[84]
Bai, J.; Li, Y.; Zhang, G. Cell cycle regulation and anticancer drug discovery. Cancer Biol. Med., 2017, 14(4), 348-362.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2017.0033] [PMID: 29372101]
[85]
Shapiro, G.I. Preclinical and clinical development of the cyclin-dependent kinase inhibitor flavopiridol. Clin. Cancer Res., 2004, 10(12 Pt 2), 4270s-4275s.
[http://dx.doi.org/10.1158/1078-0432.CCR-040020]
[86]
Nogales, E. Structural insight into microtubule function. Annu. Rev. Biophys. Biomol. Struct., 2001, 30, 397-420.
[http://dx.doi.org/10.1146/annurev.biophys.30.1.397] [PMID: 11441808]
[87]
Mitchison, T.; Kirschner, M. Cytoskeletal dynamics and nerve growth. Neuron, 1988, 1(9), 761-772.
[http://dx.doi.org/10.1016/0896-6273(88)90124-9] [PMID: 3078414]
[88]
Honore, S.; Pasquier, E.; Braguer, D. Understanding microtubule dynamics for improved cancer therapy. Cell. Mol. Life Sci., 2005, 62(24), 3039-3056.
[http://dx.doi.org/10.1007/s00018-005-5330-x] [PMID: 16314924]
[89]
Cirillo, L.; Gotta, M.; Meraldi, P. The elephant in the room: The role of microtubules in cancer. Cell Div. Machin. Dis., 2017, 1002, 93-124.
[http://dx.doi.org/10.1007/978-3-319-57127-0_5] [PMID: 28600784]
[90]
Bhalla, K.N. Microtubule-targeted anticancer agents and apoptosis. Oncogene, 2003, 22(56), 9075-9086.
[http://dx.doi.org/10.1038/sj.onc.1207233] [PMID: 14663486]
[91]
Dumontet, C.; Jordan, M.A. Microtubule-binding agents: A dynamic field of cancer therapeutics. Nat. Rev. Drug Discov., 2010, 9(10), 790-803.
[http://dx.doi.org/10.1038/nrd3253] [PMID: 20885410]
[92]
Vakifahmetoglu-Norberg, H.; Xia, H.G.; Yuan, J. Pharmacologic agents targeting autophagy. J. Clin. Invest., 2015, 125(1), 5-13.
[http://dx.doi.org/10.1172/JCI73937] [PMID: 25654545]
[93]
Jain, C.K.; Majumder, H.K.; Roychoudhury, S. Natural compounds as anticancer agents targeting DNA topoisomerases. Curr. Genomics, 2017, 18(1), 75-92.
[http://dx.doi.org/10.2174/1389202917666160808125213] [PMID: 28503091]
[94]
Nitiss, J.L. Targeting DNA topoisomerase II in cancer chemotherapy. Nat. Rev. Cancer, 2009, 9(5), 338-350.
[http://dx.doi.org/10.1038/nrc2607] [PMID: 19377506]
[95]
Pommier, Y. Drugging topoisomerases: Lessons and challenges. ACS Chem. Biol., 2013, 8(1), 82-95.
[http://dx.doi.org/10.1021/cb300648v] [PMID: 23259582]
[96]
Chen, G.L.; Liu, L.F. Chapter 24. DNA topoisomerases as therapeutic targets in cancer chemotherapy. Annu. Rep. Med. Chem., 1986, 21, 257-262.
[http://dx.doi.org/10.1016/S0065-7743(08)61134-3]
[97]
Oparil, S.; Acelajado, M.C.; Bakris, G.L.; Berlowitz, D.R.; Cífková, R.; Dominiczak, A.F.; Grassi, G.; Jordan, J.; Poulter, N.R.; Rodgers, A.; Whelton, P.K. Hypertension. Nat. Rev. Dis. Primers, 2018, 4, 18014.
[98]
Raven, P.B.; Chapleau, M.W. Blood pressure regulation XI: Overview and future research directions. Eur. J. Appl. Physiol., 2014, 114(3), 579-586.
[http://dx.doi.org/10.1007/s00421-014-2823-z] [PMID: 24463603]
[99]
Swales, J.D. Studies of salt intake in hypertension. What can epidemiology teach us? Am. J. Hypertens., 1990, 3(8 Pt 1), 645-649.
[http://dx.doi.org/10.1093/ajh/3.8.645] [PMID: 2222958]
[100]
Mazloomy Mahmoodabad, S.S.; Tehrani, H.; Gholian-Aval, M.; Gholami, H.; Nematy, M. The effect of social class on the amount of salt intake in patients with hypertension. Blood Press., 2016, 25(6), 360-363.
[http://dx.doi.org/10.1080/08037051.2016.1179508] [PMID: 27146368]
[101]
Gakidou, E.; Afshin, A.; Abajobir, A.A. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet, 2017, 390(10100), 1345-1422.
[http://dx.doi.org/10.1016/S0140-6736(17)32366-8] [PMID: 28919119]
[102]
Duarte, J.D.; Cooper-DeHoff, R.M. Mechanisms for blood pressure lowering and metabolic effects of thiazide and thiazide-like diuretics. Expert Rev. Cardiovasc. Ther., 2010, 8(6), 793-802.
[http://dx.doi.org/10.1586/erc.10.27] [PMID: 20528637]
[103]
Nachawati, D.; Patel, J. Alpha Blockers. In: StatPearls; Stat Pearls Publishing: Treasure Island, (FL), 2020.
[104]
Parasuraman, S.; Raveendran, R. Effect of cleistanthin A and B on adrenergic and cholinergic receptors. Pharmacogn. Mag., 2011, 7(27), 243-247.
[http://dx.doi.org/10.4103/0973-1296.84239] [PMID: 21969796]
[105]
Eswarappa, S.; Chakraborty, A.R.; Palatty, B.U.; Vasnaik, M. Cleistanthus collinus poisoning: Case reports and review of the literature. J. Toxicol. Clin. Toxicol., 2003, 41(4), 369-372.
[http://dx.doi.org/10.1081/CLT-120022005] [PMID: 12870879]
[106]
Ardalani, H.; Avan, A.; Ghayour-Mobarhan, M. Podophyllotoxin: A novel potential natural anticancer agent. Avicenna J. Phytomed., 2017, 7(4), 285-294.
[PMID: 28884079]
[107]
Cavalli, F.; Sonntag, R.W.; Brunner, K.W. Epipodophyllin derivative (VP 16-213) in treatment of solid tumours. Lancet, 1977, 2(8033), 362.
[http://dx.doi.org/10.1016/S0140-6736(77)91530-6] [PMID: 69974]
[108]
Gordaliza, M.; Castro, M.A.; del Corral, J.M.; Feliciano, A.S. Antitumor properties of podophyllotoxin and related compounds. Curr. Pharm. Des., 2000, 6(18), 1811-1839.
[http://dx.doi.org/10.2174/1381612003398582] [PMID: 11102564]
[109]
Rassmann, I.; Thödtmann, R.; Mross, M.; Hüttmann, A.; Berdel, W.E.; Manegold, C.; Fiebig, H.H.; Kaeser-Fröhlich, A.; Burk, K.; Ha-nauske, A.R. Phase I clinical and pharmacokinetic trial of the podophyllotoxin derivative NK611 administered as intravenous short infu-sion. Invest. New Drugs, 1998-1999, 16(4), 319-324.
[http://dx.doi.org/10.1023/A:1006293830585] [PMID: 10426664]
[110]
Shimizu, K.; Takada, M.; Asai, T.; Irimura, K.; Baba, K.; Oku, N. Potential usage of liposomal 4β-aminoalkyl-4′-O-demethyl-4-desoxypodophyllotoxin (TOP-53) for cancer chemotherapy. Biol. Pharm. Bull., 2002, 25(6), 783-786.
[http://dx.doi.org/10.1248/bpb.25.783] [PMID: 12081147]
[111]
Utsugi, T.; Shibata, J.; Sugimoto, Y.; Aoyagi, K.; Wierzba, K.; Kobunai, T.; Terada, T.; Oh-hara, T.; Tsuruo, T.; Yamada, Y. Antitumor activity of a novel podophyllotoxin derivative (TOP-53) against lung cancer and lung metastatic cancer. Cancer Res., 1996, 56(12), 2809-2814.
[PMID: 8665518]
[112]
Parasuraman, S.; Raveendran, R.; Rajesh, N.G.; Nandhakumar, S. Sub-chronic toxicological evaluation of cleistanthin A and cleistanthin B from the leaves of Cleistanthus collinus (Roxb.). Toxicol. Rep., 2014, 1, 596-611.
[http://dx.doi.org/10.1016/j.toxrep.2014.08.006] [PMID: 28962273]
[113]
Wang, J.Z.; Tian, X.; Tsumura, H.; Shimura, K.; Ito, H. Antitumor activity of a new low immunosuppressive derivative of podophylloto-xin (GP-11) and its mechanisms. Anticancer Drug Des., 1993, 8(3), 193-202.
[PMID: 8517913]
[114]
Wei, J.; Chen, J.; Ju, P.; Ma, L.; Chen, L.; Ma, W.; Zheng, T.; Yang, G.; Wang, Y.X. Synthesis and biological evaluation of 4β-n-acetylamino substituted podophyllotoxin derivatives as novel anticancer agents. Front Chem., 2019, 7, 1-13.
[http://dx.doi.org/10.3389/fchem.2019.00253]
[115]
Chabot, G.G.; Armand, J.P.; Terret, C.; de Forni, M.; Abigerges, D.; Winograd, B.; Igwemezie, L.; Schacter, L.; Kaul, S.; Ropers, J.; Bon-nay, M. Etoposide bioavailability after oral administration of the prodrug etoposide phosphate in cancer patients during a phase I study. J. Clin. Oncol., 1996, 14(7), 2020-2030.
[http://dx.doi.org/10.1200/JCO.1996.14.7.2020] [PMID: 8683232]
[116]
Pagani, O.; Zucchetti, M.; Sessa, C.; de Jong, J.; D’Incalci, M.; De Fusco, M.; Kaeser-Fröhlich, A.; Hanauske, A.; Cavalli, F. Clinical and pharmacokinetic study of oral NK611, a new podophyllotoxin derivative. Cancer Chemother. Pharmacol., 1996, 38(6), 541-547.
[http://dx.doi.org/10.1007/s002800050524] [PMID: 8823496]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy