Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Recent Developments of Flavonoids with Various Activities

Author(s): Zhi-Gang Sun*, Zhi-Na Li, Jin-Mai Zhang, Xiao-Yan Hou, Stacy Mary Yeh and Xin Ming*

Volume 22, Issue 4, 2022

Published on: 17 January, 2022

Page: [305 - 329] Pages: 25

DOI: 10.2174/1568026622666220117111858

Price: $65

Abstract

Flavonoids, a series of compounds with a C6-C3-C6 structure, mostly originate from plant metabolism. Flavonoids have shown beneficial effects on many aspects of human physiology and health. Recently, many flavonoids with various activities have been discovered, which has led to more and more studies focusing on their physiological and pharmacodynamic activities. The anticancer and anti-viral activities especially have gained the attention of many researchers. Therefore, the discovery and development of flavonoids as anti-disease drugs has great potential and may make a significant contribution to fighting diseases. This review focus on the discovery and development of flavonoids in medicinal chemistry in recent years.

Keywords: Flavonoids, Natural product, Anti-cancer, Development, Anti-viral, Medicinal chemistry.

« Previous
Graphical Abstract
[1]
Hartonen, K.; Parshintsev, J.; Sandberg, K.; Bergelin, E.; Nisula, L.; Riekkola, M-L. Isolation of flavonoids from aspen knotwood by pressurized hot water extraction and comparison with other extraction techniques. Talanta, 2007, 74(1), 32-38.
[http://dx.doi.org/10.1016/j.talanta.2007.05.040] [PMID: 18371609]
[2]
Liau, B-C.; Ponnusamy, V.K.; Lee, M-R.; Jong, T-T.; Chen, J-H. Development of pressurized hot water extraction for five flavonoid glycosides from defatted Camellia oleifera seeds (byproducts). Ind. Crops Prod., 2017, 95, 296-304.
[http://dx.doi.org/10.1016/j.indcrop.2016.10.034]
[3]
CHEN, J-G.; Mi, L-X.; Shangguan, X-C.; Li, X.; Zhong, S-G. Optimization of alkali extraction and acid precipitation process for total flavonoids from Cyclocarya paliurus callus. Shipin Kexue, 2011, 32(16), 103-107.
[4]
Routray, W.; Orsat, V. Microwave-assisted extraction of flavonoids: A review. Food Bioprocess Technol., 2012, 5(2), 409-424.
[http://dx.doi.org/10.1007/s11947-011-0573-z]
[5]
Alara, O.R.; Abdurahman, N.H.; Olalere, O.A. Optimization of microwave-assisted extraction of flavonoids and antioxidants from Vernonia amygdalina leaf using response surface methodology. Food Bioprod. Process., 2018, 107, 36-48.
[http://dx.doi.org/10.1016/j.fbp.2017.10.007]
[6]
Liu, Y.; Luo, X.; Lan, Z.; Tang, J.; Zhao, P.; Kan, H. Ultrasonic-assisted extraction and antioxidant capacities of flavonoids from Camellia fascicularis leaves. CYTA J. Food, 2018, 16(1), 105-112.
[http://dx.doi.org/10.1080/19476337.2017.1343867]
[7]
Wen, X.; Tian, T.; Shen, Y.; Zhang, T.; Diao, Z.; Zhang, Z. Optimization of ultrasonic-assisted extraction and antioxidant activity of flavonoids from Malus toringoides. Nat. Prod. Res. Dev., 2016, 28, 452-456.
[8]
Zuorro, A.; Lavecchia, R.; González-Delgado, Á.D.; García-Martinez, J.B.; L’Abbate, P. Optimization of enzyme-assisted extraction of flavonoids from corn husks. Processes (Basel), 2019, 7(11), 804.
[http://dx.doi.org/10.3390/pr7110804]
[9]
Lin, M-C.; Tsai, M-J.; Wen, K-C. Supercritical fluid extraction of flavonoids from Scutellariae Radix. J. Chromatogr. A, 1999, 830(2), 387-395.
[http://dx.doi.org/10.1016/S0021-9673(98)00906-6]
[10]
Song, L.; Liu, P.; Yan, Y.; Huang, Y.; Bai, B.; Hou, X.; Zhang, L. Supercritical CO2 fluid extraction of flavonoid compounds from Xinjiang jujube (Ziziphus jujuba Mill.) leaves and associated biological activities and flavonoid compositions. Ind. Crops Prod., 2019, 139, 111508
[http://dx.doi.org/10.1016/j.indcrop.2019.111508]
[11]
Oteiza, P.I.; Fraga, C.G.; Mills, D.A.; Taft, D.H. Flavonoids and the gastrointestinal tract: Local and systemic effects. Mol. Aspects Med., 2018, 61, 41-49.
[http://dx.doi.org/10.1016/j.mam.2018.01.001] [PMID: 29317252]
[12]
Akhlaghi, M.; Foshati, S. Bioavailability and metabolism of flavonoids: A review. Int. J. Nurs. Sci., 2017, 2(4), 180-184.
[13]
Grosso, G.; Micek, A.; Godos, J.; Pajak, A.; Sciacca, S.; Galvano, F.; Giovannucci, E.L. Dietary flavonoid and lignan intake and mortality in prospective cohort studies: Systematic review and dose-response meta-analysis. Am. J. Epidemiol., 2017, 185(12), 1304-1316.
[http://dx.doi.org/10.1093/aje/kww207] [PMID: 28472215]
[14]
Kim, S-A.; Kim, J.; Jun, S.; Wie, G-A.; Shin, S.; Joung, H. Association between dietary flavonoid intake and obesity among adults in Korea. Appl. Physiol. Nutr. Metab., 2020, 45(2), 203-212.
[http://dx.doi.org/10.1139/apnm-2019-0211] [PMID: 31999468]
[15]
Bo, Y.; Sun, J.; Wang, M.; Ding, J.; Lu, Q.; Yuan, L. Dietary flavonoid intake and the risk of digestive tract cancers: A systematic review and meta-analysis. Sci. Rep., 2016, 6, 24836.
[http://dx.doi.org/10.1038/srep24836] [PMID: 27112267]
[16]
Xu, M.; Chen, Y-M.; Huang, J.; Fang, Y-J.; Huang, W-Q.; Yan, B.; Lu, M-S.; Pan, Z-Z.; Zhang, C-X. Flavonoid intake from vegetables and fruits is inversely associated with colorectal cancer risk: A case-control study in China. Br. J. Nutr., 2016, 116(7), 1275-1287.
[http://dx.doi.org/10.1017/S0007114516003196] [PMID: 27650133]
[17]
Rodríguez-García, C.; Sánchez-Quesada, C.J.; Gaforio, J. Dietary flavonoids as cancer chemopreventive agents: An updated review of human studies. Antioxidants, 2019, 8(5), 137.
[http://dx.doi.org/10.3390/antiox8050137] [PMID: 31109072]
[18]
Lajous, M.; Rossignol, E.; Fagherazzi, G.; Perquier, F.; Scalbert, A.; Clavel-Chapelon, F.; Boutron-Ruault, M-C. Flavonoid intake and incident hypertension in women. Am. J. Clin. Nutr., 2016, 103(4), 1091-1098.
[http://dx.doi.org/10.3945/ajcn.115.109249] [PMID: 26936332]
[19]
Gao, X.; Cassidy, A.; Schwarzschild, M.A.; Rimm, E.B.; Ascherio, A. Habitual intake of dietary flavonoids and risk of Parkinson disease. Neurology, 2012, 78(15), 1138-1145.
[http://dx.doi.org/10.1212/WNL.0b013e31824f7fc4] [PMID: 22491871]
[20]
Man, R-J.; Chen, L-W.; Zhu, H-L. Telomerase inhibitors: A patent review (2010-2015). Expert Opin. Ther. Pat., 2016, 26(6), 679-688.
[http://dx.doi.org/10.1080/13543776.2016.1181172] [PMID: 27104627]
[21]
Baginski, M.; Serbakowska, K. In silico design of telomerase inhibitors. Drug Discov. Today, 2020, 25(7), 1213-1222.
[http://dx.doi.org/10.1016/j.drudis.2020.04.024] [PMID: 32387261]
[22]
Menichincheri, M.; Ballinari, D.; Bargiotti, A.; Bonomini, L.; Ceccarelli, W.; D’Alessio, R.; Fretta, A.; Moll, J.; Polucci, P.; Soncini, C.; Tibolla, M.; Trosset, J.Y.; Vanotti, E. Catecholic flavonoids acting as telomerase inhibitors. J. Med. Chem., 2004, 47(26), 6466-6475.
[http://dx.doi.org/10.1021/jm040810b] [PMID: 15588081]
[23]
Fan, Z-F.; Ho, S-T.; Wen, R.; Fu, Y.; Zhang, L.; Wang, J.; Hu, C.; Shaw, P-C.; Liu, Y.; Cheng, M-S. Design, synthesis and molecular docking analysis of flavonoid derivatives as potential telomerase inhibitors. Molecules, 2019, 24(17), 3180.
[http://dx.doi.org/10.3390/molecules24173180] [PMID: 31480619]
[24]
Quan, Wang J.; Di Yang, M.; Chen, X.; Wang, Y.; Zeng Chen, L.; Cheng, X.; Hua Liu, X. Discovery of new chromen-4-one derivatives as telomerase inhibitors through regulating expression of dyskerin. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 1199-1211.
[http://dx.doi.org/10.1080/14756366.2018.1466881] [PMID: 30132373]
[25]
Li, N.; Wang, Y.; Neri, S.; Zhen, Y.; Fong, L.W.R.; Qiao, Y.; Li, X.; Chen, Z.; Stephan, C.; Deng, W.; Ye, R.; Jiang, W.; Zhang, S.; Yu, Y.; Hung, M.C.; Chen, J.; Lin, S.H. Tankyrase disrupts metabolic homeostasis and promotes tumorigenesis by inhibiting LKB1-AMPK signalling. Nat. Commun., 2019, 10(1), 4363.
[http://dx.doi.org/10.1038/s41467-019-12377-1] [PMID: 31554794]
[26]
Seimiya, H. The telomeric PARP, tankyrases, as targets for cancer therapy. Br. J. Cancer, 2006, 94(3), 341-345.
[http://dx.doi.org/10.1038/sj.bjc.6602951] [PMID: 16421589]
[27]
Narwal, M.; Koivunen, J.; Haikarainen, T.; Obaji, E.; Legala, O.E.; Venkannagari, H.; Joensuu, P.; Pihlajaniemi, T.; Lehtiö, L. Discovery of tankyrase inhibiting flavones with increased potency and isoenzyme selectivity. J. Med. Chem., 2013, 56(20), 7880-7889.
[http://dx.doi.org/10.1021/jm401463y] [PMID: 24116873]
[28]
Asghar, U.; Witkiewicz, A.K.; Turner, N.C.; Knudsen, E.S. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat. Rev. Drug Discov., 2015, 14(2), 130-146.
[http://dx.doi.org/10.1038/nrd4504] [PMID: 25633797]
[29]
Sánchez-Martínez, C.; Lallena, M.J.; Sanfeliciano, S.G.; de Dios, A. Cyclin dependent kinase (CDK) inhibitors as anticancer drugs: Recent advances (2015-2019). Bioorg. Med. Chem. Lett., 2019, 29(20), 126637
[http://dx.doi.org/10.1016/j.bmcl.2019.126637] [PMID: 31477350]
[30]
Yun, F.; Cheng, C.; Ullah, S.; Yuan, Q. Design, synthesis and biological evaluation of novel histone deacetylase1/2 (HDAC1/2) and cyclin-dependent Kinase2 (CDK2) dual inhibitors against malignant cancer. Eur. J. Med. Chem., 2020, 198, 112322
[http://dx.doi.org/10.1016/j.ejmech.2020.112322] [PMID: 32361064]
[31]
De Azevedo, W.F., Jr; Mueller-Dieckmann, H-J.; Schulze-Gahmen, U.; Worland, P.J.; Sausville, E.; Kim, S-H. Structural basis for specificity and potency of a flavonoid inhibitor of human CDK2, a cell cycle kinase. Proc. Natl. Acad. Sci. USA, 1996, 93(7), 2735-2740.
[http://dx.doi.org/10.1073/pnas.93.7.2735] [PMID: 8610110]
[32]
Liu, T.; Xu, Z.; He, Q.; Chen, Y.; Yang, B.; Hu, Y. Nitrogen-containing flavonoids as CDK1/Cyclin B inhibitors: Design, synthesis, and biological evaluation. Bioorg. Med. Chem. Lett., 2007, 17(1), 278-281.
[http://dx.doi.org/10.1016/j.bmcl.2006.07.088] [PMID: 17085048]
[33]
Liu, H.; Liu, K.; Huang, Z.; Park, C-M.; Thimmegowda, N.R.; Jang, J-H.; Ryoo, I-J.; He, L.; Kim, S-O.; Oi, N.; Lee, K.W.; Soung, N.K.; Bode, A.M.; Yang, Y.; Zhou, X.; Erikson, R.L.; Ahn, J.S.; Hwang, J.; Kim, K.E.; Dong, Z.; Kim, B.Y. A chrysin derivative suppresses skin cancer growth by inhibiting cyclin-dependent kinases. J. Biol. Chem., 2013, 288(36), 25924-25937.
[http://dx.doi.org/10.1074/jbc.M113.464669] [PMID: 23888052]
[34]
Lian, H.; Su, M.; Zhu, Y.; Zhou, Y.; Soomro, S.H.; Fu, H. Protein kinase CK2, a potential therapeutic target in carcinoma management. APJCP, 2019, 20(1), 23-32.
[http://dx.doi.org/10.31557/APJCP.2019.20.1.23] [PMID: 30677865]
[35]
Gibson, S.A.; Benveniste, E.N. Protein kinase CK2: An emerging regulator of immunity. Trends Immunol., 2018, 39(2), 82-85.
[http://dx.doi.org/10.1016/j.it.2017.12.002] [PMID: 29307449]
[36]
Oramas-Royo, S.; Haidar, S.; Amesty, Á.; Martín-Acosta, P.; Feresin, G.; Tapia, A.; Aichele, D.; Jose, J.; Estévez-Braun, A. Design, synthesis and biological evaluation of new embelin derivatives as CK2 inhibitors. Bioorg. Chem., 2020, 95, 103520
[http://dx.doi.org/10.1016/j.bioorg.2019.103520] [PMID: 31887475]
[37]
Qi, X.; Zhang, N.; Zhao, L.; Hu, L.; Cortopassi, W.A.; Jacobson, M.P.; Li, X.; Zhong, R. Structure-based identification of novel CK2 inhibitors with a linear 2-propenone scaffold as anti-cancer agents. Biochem. Biophys. Res. Commun., 2019, 512(2), 208-212.
[http://dx.doi.org/10.1016/j.bbrc.2019.03.016] [PMID: 30878184]
[38]
Lolli, G.; Cozza, G.; Mazzorana, M.; Tibaldi, E.; Cesaro, L.; Donella-Deana, A.; Meggio, F.; Venerando, A.; Franchin, C.; Sarno, S.; Battistutta, R.; Pinna, L.A. Inhibition of protein kinase CK2 by flavonoids and tyrphostins. A structural insight. Biochemistry, 2012, 51(31), 6097-6107.
[http://dx.doi.org/10.1021/bi300531c] [PMID: 22794353]
[39]
Haidar, S.; Jabbour, M.; Al-Khayat, M.A.; Aichele, D.; Jose, J. Synthesis and biological evaluation of novel 2 (4`-hydroxynaphthyl) chromen-4-one as a CK2 inhibitor. Pharmazie, 2018, 73(4), 191-195.
[PMID: 29609684]
[40]
Chumsri, S.; Howes, T.; Bao, T.; Sabnis, G.; Brodie, A. Aromatase, aromatase inhibitors, and breast cancer. J. Steroid Biochem. Mol. Biol., 2011, 125(1-2), 13-22.
[http://dx.doi.org/10.1016/j.jsbmb.2011.02.001] [PMID: 21335088]
[41]
Martino, G.; Catalano, A.; Agostino, R.M.; Bellone, F.; Morabito, N.; Lasco, C.G.; Vicario, C.M.; Schwarz, P.; Feldt-Rasmussen, U. Quality of life and psychological functioning in postmenopausal women undergoing aromatase inhibitor treatment for early breast cancer. PLoS One, 2020, 15(3), e0230681
[http://dx.doi.org/10.1371/journal.pone.0230681] [PMID: 32214378]
[42]
Recanatini, M.; Bisi, A.; Cavalli, A.; Belluti, F.; Gobbi, S.; Rampa, A.; Valenti, P.; Palzer, M.; Palusczak, A.; Hartmann, R.W. A new class of nonsteroidal aromatase inhibitors: Design and synthesis of chromone and xanthone derivatives and inhibition of the P450 enzymes aromatase and 17 α-hydroxylase/C17,20-lyase. J. Med. Chem., 2001, 44(5), 672-680.
[http://dx.doi.org/10.1021/jm000955s] [PMID: 11262078]
[43]
Gobbi, S.; Cavalli, A.; Rampa, A.; Belluti, F.; Piazzi, L.; Paluszcak, A.; Hartmann, R.W.; Recanatini, M.; Bisi, A. Lead optimization providing a series of flavone derivatives as potent nonsteroidal inhibitors of the cytochrome P450 aromatase enzyme. J. Med. Chem., 2006, 49(15), 4777-4780.
[http://dx.doi.org/10.1021/jm060186y] [PMID: 16854084]
[44]
Bonfield, K.; Amato, E.; Bankemper, T.; Agard, H.; Steller, J.; Keeler, J.M.; Roy, D.; McCallum, A.; Paula, S.; Ma, L. Development of a new class of aromatase inhibitors: Design, synthesis and inhibitory activity of 3-phenylchroman-4-one (isoflavanone) derivatives. Bioorg. Med. Chem., 2012, 20(8), 2603-2613.
[http://dx.doi.org/10.1016/j.bmc.2012.02.042] [PMID: 22444875]
[45]
Rao, Y.K.; Fang, S-H.; Tzeng, Y-M. Synthesis, growth inhibition, and cell cycle evaluations of novel flavonoid derivatives. Bioorg. Med. Chem., 2005, 13(24), 6850-6855.
[http://dx.doi.org/10.1016/j.bmc.2005.07.062] [PMID: 16140534]
[46]
Hehir, D.J.; McGreal, G.; Kirwan, W.O.; Kealy, W.; Brady, M.P. c-myc oncogene expression: A marker for females at risk of breast carcinoma. J. Surg. Oncol., 1993, 54(4), 207-209.
[http://dx.doi.org/10.1002/jso.2930540402] [PMID: 8255078]
[47]
Smith, D.R.; Myint, T.; Goh, H.S. Over-expression of the c-myc proto-oncogene in colorectal carcinoma. Br. J. Cancer, 1993, 68(2), 407-413.
[http://dx.doi.org/10.1038/bjc.1993.350] [PMID: 8347498]
[48]
Kochevar, D.T.; Kochevar, J.; Garrett, L. Low level amplification of c-sis and c-myc in a spontaneous osteosarcoma model. Cancer Lett., 1990, 53(2-3), 213-222.
[http://dx.doi.org/10.1016/0304-3835(90)90216-K] [PMID: 2208081]
[49]
Yang, H.; Zhong, H-J.; Leung, K-H.; Chan, D.S-H.; Ma, V.P-Y.; Fu, W-C.; Nanjunda, R.; Wilson, W.D.; Ma, D-L.; Leung, C-H. Structure-based design of flavone derivatives as c-myc oncogene down-regulators. Eur. J. Pharm. Sci., 2013, 48(1-2), 130-141.
[http://dx.doi.org/10.1016/j.ejps.2012.10.010] [PMID: 23127826]
[50]
Rubio, S.; León, F.; Quintana, J.; Cutler, S.; Estévez, F. Cell death triggered by synthetic flavonoids in human leukemia cells is amplified by the inhibition of extracellular signal-regulated kinase signaling. Eur. J. Med. Chem., 2012, 55, 284-296.
[http://dx.doi.org/10.1016/j.ejmech.2012.07.028] [PMID: 22867530]
[51]
Sable, P.M.; Potey, L.C. Synthesis and antiproliferative activity of imidazole and triazole derivatives of flavonoids. Pharm. Chem. J., 2018, 52(5), 438-443.
[http://dx.doi.org/10.1007/s11094-018-1836-z]
[52]
Wang, J.; Ge, R.; Qiu, X.; Xu, X.; Wei, L.; Li, Z.; Bian, J. Discovery and synthesis of novel Wogonin derivatives with potent antitumor activity in vitro. Eur. J. Med. Chem., 2017, 140, 421-434.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.046] [PMID: 28987604]
[53]
Zhang, N.; Yang, J.; Li, K.; Luo, J.; Yang, S.; Song, J-R.; Chen, C.; Pan, W-D. Synthesis of flavone derivatives via N-amination and evaluation of their anticancer activities. Molecules, 2019, 24(15), 2723.
[http://dx.doi.org/10.3390/molecules24152723] [PMID: 31357486]
[54]
Liu, R.; Deng, X.; Peng, Y.; Feng, W.; Xiong, R.; Zou, Y.; Lei, X.; Zheng, X.; Xie, Z.; Tang, G. Synthesis and biological evaluation of novel 5,6,7-trimethoxy flavonoid salicylate derivatives as potential anti-tumor agents. Bioorg. Chem., 2020, 96, 103652
[http://dx.doi.org/10.1016/j.bioorg.2020.103652] [PMID: 32059154]
[55]
Guo, Y.; Wei, L.; Zhou, Y.; Lu, N.; Tang, X.; Li, Z.; Wang, X. Flavonoid GL-V9 induces apoptosis and inhibits glycolysis of breast cancer via disrupting GSK-3β-modulated mitochondrial binding of HKII. Free Radic. Biol. Med., 2020, 146, 119-129.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.10.413] [PMID: 31669347]
[56]
McCormick, F. K-Ras protein as a drug target. J. Mol. Med. (Berl.), 2016, 94(3), 253-258.
[http://dx.doi.org/10.1007/s00109-016-1382-7] [PMID: 26960760]
[57]
Kovar, S.E.; Fourman, C.; Kinstedt, C.; Williams, B.; Morris, C.; Cho, K.J.; Ketcha, D.M. Chalcones bearing a 3,4,5-trimethoxyphenyl motif are capable of selectively inhibiting oncogenic K-Ras signaling. Bioorg. Med. Chem. Lett., 2020, 30(11), 127144
[http://dx.doi.org/10.1016/j.bmcl.2020.127144] [PMID: 32276831]
[58]
Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer, 2013, 13(10), 714-726.
[http://dx.doi.org/10.1038/nrc3599] [PMID: 24060863]
[59]
Liu, W.; Wang, X.; Zhu, H.; Duan, Y. Precision tumor medicine and drug targets. Curr. Top. Med. Chem., 2019, 19(17), 1488-1489.
[http://dx.doi.org/10.2174/156802661917190828111130] [PMID: 31592750]
[60]
Sun, Z-G.; Liu, J-H.; Zhang, J-M.; Qian, Y. Research progress of Axl inhibitors. Curr. Top. Med. Chem., 2019, 19(15), 1338-1349.
[http://dx.doi.org/10.2174/1568026619666190620155613] [PMID: 31218961]
[61]
Sun, Z-G.; Yang, Y-A.; Zhang, Z-G.; Zhu, H-L. Optimization techniques for novel c-Met kinase inhibitors. Expert Opin. Drug Discov., 2019, 14(1), 59-69.
[http://dx.doi.org/10.1080/17460441.2019.1551355] [PMID: 30518273]
[62]
Duan, Y.; Liu, W.; Tian, L.; Mao, Y.; Song, C. Targeting tubulin-colchicine site for Cancer therapy: Inhibitors, antibody- drug conjugates and degradation agents. Curr. Top. Med. Chem., 2019, 19(15), 1289-1304.
[http://dx.doi.org/10.2174/1568026619666190618130008] [PMID: 31210108]
[63]
Desai, A.; Yan, Y.; Gerson, S.L. Concise reviews: Cancer stem cell targeted therapies: Toward clinical success. Stem Cells Transl. Med., 2019, 8(1), 75-81.
[http://dx.doi.org/10.1002/sctm.18-0123] [PMID: 30328686]
[64]
Feng, N.; Yu, Y.; Wang, T.; Wilker, P.; Wang, J.; Li, Y.; Sun, Z.; Gao, Y.; Xia, X. Fatal canine distemper virus infection of giant pandas in China. Sci. Rep., 2016, 6, 27518.
[http://dx.doi.org/10.1038/srep27518] [PMID: 27310722]
[65]
Mourya, D.T.; Yadav, P.D.; Mohandas, S.; Kadiwar, R.F.; Vala, M.K.; Saxena, A.K.; Shete-Aich, A.; Gupta, N.; Purushothama, P.; Sahay, R.R.; Gangakhedkar, R.R.; Mishra, S.C.K.; Bhargava, B. Canine distemper virus in asiatic lions of gujarat state, India. Emerg. Infect. Dis., 2019, 25(11), 2128-2130.
[http://dx.doi.org/10.3201/eid2511.190120] [PMID: 31625861]
[66]
Molenaar, R.J.; Buter, R. Outbreaks of canine distemper in Dutch and Belgian mink farms. Vet. Q., 2018, 38(1), 112-117.
[http://dx.doi.org/10.1080/01652176.2018.1544427] [PMID: 30675810]
[67]
Carvalho, O.V.; Botelho, C.V.; Ferreira, C.G.; Ferreira, H.C.; Santos, M.R.; Diaz, M.A.; Oliveira, T.T.; Soares-Martins, J.A.; Almeida, M.R.; Silva, A., Jr In vitro inhibition of canine distemper virus by flavonoids and phenolic acids: Implications of structural differences for antiviral design. Res. Vet. Sci., 2013, 95(2), 717-724.
[http://dx.doi.org/10.1016/j.rvsc.2013.04.013] [PMID: 23664014]
[68]
Weiss, R.A. How does HIV cause AIDS? Science, 1993, 260(5112), 1273-1279.
[http://dx.doi.org/10.1126/science.8493571] [PMID: 8493571]
[69]
Gilbert, P.B.; McKeague, I.W.; Eisen, G.; Mullins, C. Guéye-NDiaye, A.; Mboup, S.; Kanki, P.J. Comparison of HIV-1 and HIV-2 infectivity from a prospective cohort study in Senegal. Stat. Med., 2003, 22(4), 573-593.
[http://dx.doi.org/10.1002/sim.1342] [PMID: 12590415]
[70]
Frank, T.D.; Carter, A.; Jahagirdar, D.; Biehl, M.H.; Douwes-Schultz, D.; Larson, S.L.; Arora, M.; Dwyer-Lindgren, L.; Steuben, K.M.; Abbastabar, H. Global, regional, and national incidence, prevalence, and mortality of HIV, 1980-2017, and forecasts to 2030, for 195 countries and territories: A systematic analysis for the Global Burden of Diseases, Injuries, and Risk Factors Study 2017. Lancet HIV, 2019, 6(12), e831-e859.
[http://dx.doi.org/10.1016/S2352-3018(19)30196-1] [PMID: 31439534]
[71]
Casano, G.; Dumètre, A.; Pannecouque, C.; Hutter, S.; Azas, N.; Robin, M. Anti-HIV and antiplasmodial activity of original flavonoid derivatives. Bioorg. Med. Chem., 2010, 18(16), 6012-6023.
[http://dx.doi.org/10.1016/j.bmc.2010.06.067] [PMID: 20638854]
[72]
Pommier, Y.; Johnson, A.A.; Marchand, C. Integrase inhibitors to treat HIV/AIDS. Nat. Rev. Drug Discov., 2005, 4(3), 236-248.
[http://dx.doi.org/10.1038/nrd1660] [PMID: 15729361]
[73]
Deeks, S.G.; Kar, S.; Gubernick, S.I.; Kirkpatrick, P. Raltegravir. Nat. Rev. Drug Discov., 2008, 7, 117-118.
[http://dx.doi.org/10.1038/nrd2512]
[74]
Li, B-W.; Zhang, F-H.; Serrao, E.; Chen, H.; Sanchez, T.W.; Yang, L-M.; Neamati, N.; Zheng, Y-T.; Wang, H.; Long, Y-Q. Design and discovery of flavonoid-based HIV-1 integrase inhibitors targeting both the active site and the interaction with LEDGF/p75. Bioorg. Med. Chem., 2014, 22(12), 3146-3158.
[http://dx.doi.org/10.1016/j.bmc.2014.04.016] [PMID: 24794743]
[75]
Cole, A.L.; Hossain, S.; Cole, A.M.; Phanstiel, O.I.V. Synthesis and bioevaluation of substituted chalcones, coumaranones and other flavonoids as anti-HIV agents. Bioorg. Med. Chem., 2016, 24(12), 2768-2776.
[http://dx.doi.org/10.1016/j.bmc.2016.04.045] [PMID: 27161874]
[76]
Pasetto, S.; Pardi, V.; Murata, R.M. Anti-HIV-1 activity of flavonoid myricetin on HIV-1 infection in a dual-chamber in vitro model. PLoS One, 2014, 9(12), e115323
[http://dx.doi.org/10.1371/journal.pone.0115323] [PMID: 25546350]
[77]
Ortega, J.T.; Suárez, A.I.; Serrano, M.L.; Baptista, J.; Pujol, F.H.; Rangel, H.R. The role of the glycosyl moiety of myricetin derivatives in anti-HIV-1 activity in vitro. AIDS Res. Ther., 2017, 14(1), 57.
[http://dx.doi.org/10.1186/s12981-017-0183-6] [PMID: 29025433]
[78]
Stauft, C.B.; Yang, C.; Coleman, J.R.; Boltz, D.; Chin, C.; Kushnir, A.; Mueller, S. Live-attenuated H1N1 influenza vaccine candidate displays potent efficacy in mice and ferrets. PLoS One, 2019, 14(10), e0223784
[http://dx.doi.org/10.1371/journal.pone.0223784] [PMID: 31609986]
[79]
Jagadesh, A.; Salam, A.A.A.; Mudgal, P.P.; Arunkumar, G. Influenza virus neuraminidase (NA): A target for antivirals and vaccines. Arch. Virol., 2016, 161(8), 2087-2094.
[http://dx.doi.org/10.1007/s00705-016-2907-7] [PMID: 27255748]
[80]
Grienke, U.; Richter, M.; Walther, E.; Hoffmann, A.; Kirchmair, J.; Makarov, V.; Nietzsche, S.; Schmidtke, M.; Rollinger, J.M. Discovery of prenylated flavonoids with dual activity against influenza virus and Streptococcus pneumoniae. Sci. Rep., 2016, 6, 27156.
[http://dx.doi.org/10.1038/srep27156] [PMID: 27257160]
[81]
Roschek, B., Jr; Fink, R.C.; McMichael, M.D.; Li, D.; Alberte, R.S. Elderberry flavonoids bind to and prevent H1N1 infection in vitro. Phytochemistry, 2009, 70(10), 1255-1261.
[http://dx.doi.org/10.1016/j.phytochem.2009.06.003] [PMID: 19682714]
[82]
Shi, D.; Chen, M.; Liu, L.; Wang, Q.; Liu, S.; Wang, L.; Wang, R. Anti-influenza A virus mechanism of three representative compounds from Flos Trollii via TLRs signaling pathways. J. Ethnopharmacol., 2020, 253, 112634
[http://dx.doi.org/10.1016/j.jep.2020.112634] [PMID: 32004628]
[83]
Chintakrindi, A.S.; Gohil, D.J.; Chowdhary, A.S.; Kanyalkar, M.A. Design, synthesis and biological evaluation of substituted flavones and aurones as potential anti-influenza agents. Bioorg. Med. Chem., 2020, 28(1), 115191
[http://dx.doi.org/10.1016/j.bmc.2019.115191] [PMID: 31744778]
[84]
Li, H.; Li, M.; Xu, R.; Wang, S.; Zhang, Y.; Zhang, L.; Zhou, D.; Xiao, S. Synthesis, structure activity relationship and in vitro anti-influenza virus activity of novel polyphenol-pentacyclic triterpene conjugates. Eur. J. Med. Chem., 2019, 163, 560-568.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.006] [PMID: 30554131]
[85]
Wang, M.; Zhang, G.; Wang, Y.; Wang, J.; Zhu, M.; Cen, S.; Wang, Y. Design, synthesis and anti-influenza A virus activity of novel 2,4-disubstituted quinazoline derivatives. Bioorg. Med. Chem. Lett., 2020, 30(11), 127143
[http://dx.doi.org/10.1016/j.bmcl.2020.127143] [PMID: 32273213]
[86]
Sánchez‐Vizcaíno, J.M.; Laddomada, A.; Arias, M.L. African swine fever virus; Diseases of Swine, 2019, pp. 443-452.
[http://dx.doi.org/10.1002/9781119350927.ch25]
[87]
Cwynar, P.; Stojkov, J.; Wlazlak, K. African swine fever status in Europe. Viruses, 2019, 11(4), 310.
[http://dx.doi.org/10.3390/v11040310] [PMID: 30935026]
[88]
Zhou, X.; Li, N.; Luo, Y.; Liu, Y.; Miao, F.; Chen, T.; Zhang, S.; Cao, P.; Li, X.; Tian, K.; Qiu, H.J.; Hu, R. Emergence of African swine fever in China, 2018. Transbound. Emerg. Dis., 2018, 65(6), 1482-1484.
[http://dx.doi.org/10.1111/tbed.12989] [PMID: 30102848]
[89]
Hakobyan, A.; Arabyan, E.; Avetisyan, A.; Abroyan, L.; Hakobyan, L.; Zakaryan, H. Apigenin inhibits African swine fever virus infection in vitro. Arch. Virol., 2016, 161(12), 3445-3453.
[http://dx.doi.org/10.1007/s00705-016-3061-y] [PMID: 27638776]
[90]
Hakobyan, A.; Arabyan, E.; Kotsinyan, A.; Karalyan, Z.; Sahakyan, H.; Arakelov, V.; Nazaryan, K.; Ferreira, F.; Zakaryan, H. Inhibition of African swine fever virus infection by genkwanin. Antiviral Res., 2019, 167, 78-82.
[http://dx.doi.org/10.1016/j.antiviral.2019.04.008] [PMID: 30991087]
[91]
Jo, S.; Kim, S.; Shin, D.H.; Kim, M-S. Inhibition of African swine fever virus protease by myricetin and myricitrin. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 1045-1049.
[http://dx.doi.org/10.1080/14756366.2020.1754813] [PMID: 32299265]
[92]
Simo, F.B.N.; Bigna, J.J.; Kenmoe, S.; Ndangang, M.S.; Temfack, E.; Moundipa, P.F.; Demanou, M. Dengue virus infection in people residing in Africa: A systematic review and meta-analysis of prevalence studies. Sci. Rep., 2019, 9(1), 13626.
[http://dx.doi.org/10.1038/s41598-019-50135-x] [PMID: 31541167]
[93]
Suroengrit, A.; Yuttithamnon, W.; Srivarangkul, P.; Pankaew, S.; Kingkaew, K.; Chavasiri, W.; Boonyasuppayakorn, S. Halogenated Chrysins inhibit Dengue and Zika virus infectivity. Sci. Rep., 2017, 7(1), 13696.
[http://dx.doi.org/10.1038/s41598-017-14121-5] [PMID: 29057920]
[94]
Yao, X.; Guo, S.; Wu, W.; Wang, J.; Wu, S.; He, S.; Wan, Y.; Nandakumar, K.S.; Chen, X.; Sun, N.; Zhu, Q.; Liu, S. Q63, a novel DENV2 RdRp non-nucleoside inhibitor, inhibited DENV2 replication and infection. J. Pharmacol. Sci., 2018, 138(4), 247-256.
[http://dx.doi.org/10.1016/j.jphs.2018.06.012] [PMID: 30518482]
[95]
Yao, X.; Ling, Y.; Guo, S.; He, S.; Wang, J.; Zhang, Q.; Wu, W.; Zou, M.; Zhang, T.; Nandakumar, K.S.; Chen, X.; Liu, S. Inhibition of dengue viral infection by diasarone-I is associated with 2'O methyltransferase of NS5. Eur. J. Pharmacol., 2018, 821, 11-20.
[http://dx.doi.org/10.1016/j.ejphar.2017.12.029] [PMID: 29246851]
[96]
Musso, D.; Gubler, D.J. Zika Virus. Clin. Microbiol. Rev., 2016, 29(3), 487-524.
[http://dx.doi.org/10.1128/CMR.00072-15] [PMID: 27029595]
[97]
Lee, J.L.; Loe, M.W.C.; Lee, R.C.H.; Chu, J.J.H. Antiviral activity of pinocembrin against Zika virus replication. Antiviral Res., 2019, 167, 13-24.
[http://dx.doi.org/10.1016/j.antiviral.2019.04.003] [PMID: 30959074]
[98]
Hu, B.; Guo, H.; Zhou, P.; Shi, Z.L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol., 2021, 19(3), 141-154.
[http://dx.doi.org/10.1038/s41579-020-00459-7]]
[99]
Andersen, K.G.; Rambaut, A.; Lipkin, W.I.; Holmes, E.C.; Garry, R.F. The proximal origin of SARS-CoV-2. Nat. Med., 2020, 26(4), 450-452.
[http://dx.doi.org/10.1038/s41591-020-0820-9] [PMID: 32284615]
[100]
Park, J-Y.; Ko, J-A.; Kim, D.W.; Kim, Y.M.; Kwon, H-J.; Jeong, H.J.; Kim, C.Y.; Park, K.H.; Lee, W.S.; Ryu, Y.B. Chalcones isolated from Angelica keiskei inhibit cysteine proteases of SARS-CoV. J. Enzyme Inhib. Med. Chem., 2016, 31(1), 23-30.
[http://dx.doi.org/10.3109/14756366.2014.1003215] [PMID: 25683083]
[101]
Yoon, J.H.; Lee, J.; Lee, J.Y.; Shin, Y.S.; Kim, D.E.; Min, J.S.; Park, C.M.; Song, J.H.; Kim, S.; Kwon, S.; Jang, M.S.; Kim, H.R. Study on the 2-phenylchroman-4-one derivatives and their anti-MERS-CoV activities. Bull. Korean Chem. Soc., 2019, 40(9), 906-909.
[http://dx.doi.org/10.1002/bkcs.11832] [PMID: 32313350]
[102]
Das, S.; Sarmah, S.; Lyndem, S.; Singha Roy, A. An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. J. Biomol. Struct. Dyn., 2021, 39(9), 3347-3357.
[http://dx.doi.org/10.1080/07391102.2020.1763201]
[103]
Owis, A.I.; El-Hawary, M.S.; El Amir, D.; Aly, O.M.; Abdelmohsen, U.R.; Kamel, M.S. Molecular docking reveals the potential of Salvadora persica flavonoids to inhibit COVID-19 virus main protease. RSC Advances, 2020, 10(33), 19570-19575.
[http://dx.doi.org/10.1039/D0RA03582C]
[104]
Yu, R.; Chen, L.; Lan, R.; Shen, R.; Li, P. Computational screening of antagonists against the SARS-CoV-2 (COVID-19) coronavirus by molecular docking. Int. J. Antimicrob. Agents, 2020, 56(2), 106012
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106012] [PMID: 32389723]
[105]
Feng, Y.; Chen, W.; Jia, Y.; Tian, Y.; Zhao, Y.; Long, F.; Rui, Y.; Jiang, X. N-Heterocyclic molecule-capped gold nanoparticles as effective antibiotics against multi-drug resistant bacteria. Nanoscale, 2016, 8(27), 13223-13227.
[http://dx.doi.org/10.1039/C6NR03317B] [PMID: 27355451]
[106]
Lee, J.; Kim, S.; Sim, J-Y.; Lee, D.; Kim, H.H.; Hwang, J.S.; Lee, D.G.; Park, Z-Y.; Kim, J.I. A potent antibacterial activity of new short d-enantiomeric lipopeptide against multi drug resistant bacteria. Biochim. Biophys. Acta Biomembr., 2019, 1861(1), 34-42.
[http://dx.doi.org/10.1016/j.bbamem.2018.10.014] [PMID: 30393205]
[107]
Xiao, Z-P.; Wang, X-D.; Wang, P-F.; Zhou, Y.; Zhang, J-W.; Zhang, L.; Zhou, J.; Zhou, S-S.; Ouyang, H.; Lin, X-Y.; Mustapa, M.; Reyinbaike, A.; Zhu, H.L. Design, synthesis, and evaluation of novel fluoroquinolone-flavonoid hybrids as potent antibiotics against drug-resistant microorganisms. Eur. J. Med. Chem., 2014, 80, 92-100.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.037] [PMID: 24769347]
[108]
Kant, R.; Kumar, D.; Agarwal, D.; Gupta, R.D.; Tilak, R.; Awasthi, S.K.; Agarwal, A. Synthesis of newer 1,2,3-triazole linked chalcone and flavone hybrid compounds and evaluation of their antimicrobial and cytotoxic activities. Eur. J. Med. Chem., 2016, 113, 34-49.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.041] [PMID: 26922227]
[109]
Huang, M.; Ruan, X.; Li, Q.; Zhang, J.; Zhong, X.; Wang, X.; Xie, Y.; Xiao, W.; Xue, W. Synthesis and antibacterial activity of novel phosphorylated flavonoid derivatives. Phosphorus Sulfur Silicon Relat. Elem., 2017, 192(8), 954-959.
[http://dx.doi.org/10.1080/10426507.2017.1295963]
[110]
Pervez, S.; Saeed, M.; Ali, M.S.; Fatima, I.; Khan, H.; Ullah, I. Antimicrobial and antioxidant potential of berberisinol, a new flavone from Berberis baluchistanica. Chem. Nat. Compd., 2019, 55(2), 247-251.
[http://dx.doi.org/10.1007/s10600-019-02660-4]
[111]
Lv, X-H.; Liu, H.; Ren, Z-L.; Wang, W.; Tang, F.; Cao, H-Q. Design, synthesis and biological evaluation of novel flavone Mannich base derivatives as potential antibacterial agents. Mol. Divers., 2019, 23(2), 299-306.
[http://dx.doi.org/10.1007/s11030-018-9873-9] [PMID: 30168050]
[112]
Rammohan, A.; Bhaskar, B.V.; Venkateswarlu, N.; Rao, V.L.; Gunasekar, D.; Zyryanov, G.V. Isolation of flavonoids from the flowers of Rhynchosia beddomei baker as prominent antimicrobial agents and molecular docking. Microb. Pathog., 2019, 136, 103667
[http://dx.doi.org/10.1016/j.micpath.2019.103667] [PMID: 31419459]
[113]
Olleik, H.; Yahiaoui, S.; Roulier, B.; Courvoisier-Dezord, E.; Perrier, J.; Pérès, B.; Hijazi, A.; Baydoun, E.; Raymond, J.; Boumendjel, A.; Maresca, M.; Haudecoeur, R. Aurone derivatives as promising antibacterial agents against resistant Gram-positive pathogens. Eur. J. Med. Chem., 2019, 165, 133-141.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.022] [PMID: 30665143]
[114]
Sun, Z.G. Yang-Liu; Zhang, J.M.; Cui, S.C.; Zhang, Z.G.; Zhu, H.L. The research progress of direct thrombin inhibitors. Mini Rev. Med. Chem., 2020, 20(16), 1574-1585. E-pub Ahead of Print
[http://dx.doi.org/10.2174/1389557519666191015201125] [PMID: 31644402]
[115]
Shi, Y.; Pan, B-W.; Li, W-C.; Wang, Q.; Wu, Q.; Pan, M.; Fu, H-Z. Synthesis and biological evaluation of Isosteviol derivatives as FXa inhibitors. Bioorg. Med. Chem. Lett., 2020, 30(2), 126585
[http://dx.doi.org/10.1016/j.bmcl.2019.07.044] [PMID: 31859158]
[116]
Bijak, M.; Ponczek, M.B.; Nowak, P. Polyphenol compounds belonging to flavonoids inhibit activity of coagulation factor X. Int. J. Biol. Macromol., 2014, 65, 129-135.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.01.023] [PMID: 24444877]
[117]
Gaspar, R.S.; da Silva, S.A.; Stapleton, J.; Fontelles, J.L.L.; Sousa, H.R.; Chagas, V.T.; Alsufyani, S.; Trostchansky, A.; Gibbins, J.M.; Paes, A.M.A. Myricetin, the main flavonoid in Syzygium cumini leaf, is a novel inhibitor of platelet thiol isomerases PDI and ERp5. Front. Pharmacol., 2020, 10, 1678.
[http://dx.doi.org/10.3389/fphar.2019.01678] [PMID: 32116678]
[118]
Rao, Y.K.; Fang, S-H.; Tzeng, Y-M. Anti-inflammatory activities of flavonoids isolated from Caesalpinia pulcherrima. J. Ethnopharmacol., 2005, 100(3), 249-253.
[http://dx.doi.org/10.1016/j.jep.2005.02.039] [PMID: 15893896]
[119]
Zhang, X.; Wang, G.; Gurley, E.C.; Zhou, H. Flavonoid apigenin inhibits lipopolysaccharide-induced inflammatory response through multiple mechanisms in macrophages. PLoS One, 2014, 9(9), e107072
[http://dx.doi.org/10.1371/journal.pone.0107072] [PMID: 25192391]
[120]
Ding, H-W.; Huang, A-L.; Zhang, Y-L.; Li, B.; Huang, C.; Ma, T.T.; Meng, X-M.; Li, J. Design, synthesis and biological evaluation of hesperetin derivatives as potent anti-inflammatory agent. Fitoterapia, 2017, 121, 212-222.
[http://dx.doi.org/10.1016/j.fitote.2017.07.016] [PMID: 28774689]
[121]
Tu, Y.B.; Xiao, T.; Gong, G.Y.; Bian, Y.Q.; Li, Y.F. A new isoflavone with anti-inflammatory effect from the seeds of Millettia pachycarpa. Nat. Prod. Res., 2020, 34(7), 981-987.
[http://dx.doi.org/10.1080/14786419.2018.1547294] [PMID: 30636441]
[122]
Yu, P.; Xia, C-J.; Li, D-D.; Ni, J-J.; Zhao, L-G.; Ding, G.; Wang, Z-Z.; Xiao, W. Design, synthesis, and anti-inflammatory activity of caffeoyl salicylate analogs as NO production inhibitors. Fitoterapia, 2018, 129, 25-33.
[http://dx.doi.org/10.1016/j.fitote.2018.05.029] [PMID: 29852263]
[123]
Chainoglou, E.; Hadjipavlou-Litina, D. Curcumin analogues and derivatives with anti-proliferative and anti-inflammatory activity: Structural characteristics and molecular targets. Expert Opin. Drug Discov., 2019, 14(8), 821-842.
[http://dx.doi.org/10.1080/17460441.2019.1614560] [PMID: 31094233]
[124]
Reczek, C.R.; Chandel, N.S. ROS-dependent signal transduction. Curr. Opin. Cell Biol., 2015, 33, 8-13.
[http://dx.doi.org/10.1016/j.ceb.2014.09.010] [PMID: 25305438]
[125]
Pratt, D.; Miller, E. A flavonoid antioxidant in Spanish peanuts (Arachia hypogoea). J. Am. Oil Chem. Soc., 1984, 61(6), 1064-1067.
[http://dx.doi.org/10.1007/BF02636221]
[126]
Xia, N.; Daiber, A.; Förstermann, U.; Li, H. Antioxidant effects of resveratrol in the cardiovascular system. Br. J. Pharmacol., 2017, 174(12), 1633-1646.
[http://dx.doi.org/10.1111/bph.13492] [PMID: 27058985]
[127]
White, P.A.; Oliveira, R.C.; Oliveira, A.P.; Serafini, M.R.; Araújo, A.A.; Gelain, D.P.; Moreira, J.C.; Almeida, J.R.; Quintans, J.S.; Quintans-Junior, L.J.; Santos, M.R. Antioxidant activity and mechanisms of action of natural compounds isolated from lichens: A systematic review. Molecules, 2014, 19(9), 14496-14527.
[http://dx.doi.org/10.3390/molecules190914496] [PMID: 25221871]
[128]
Das, S.; Mitra, I.; Batuta, S.; Niharul Alam, M.; Roy, K.; Begum, N.A. Design, synthesis and exploring the quantitative structure-activity relationship of some antioxidant flavonoid analogues. Bioorg. Med. Chem. Lett., 2014, 24(21), 5050-5054.
[http://dx.doi.org/10.1016/j.bmcl.2014.09.028] [PMID: 25278230]
[129]
Kuncoro, H.; Farabi, K.; Rijai, L.; Julaeha, E.; Supratman, U.; Shiono, Y. Flavonoid compounds from the herb of krokot (Lygodium microphyllum) and their antioxidant activity against DPPH. J. Mathem. Fund. Sci., 2018, 50(2), 192-202.
[http://dx.doi.org/10.5614/j.math.fund.sci.2018.50.2.7]
[130]
Zhang, B.; Chen, T.; Chen, Z.; Wang, M.; Zheng, D.; Wu, J.; Jiang, X.; Li, X. Synthesis and anti-hyperglycemic activity of hesperidin derivatives. Bioorg. Med. Chem. Lett., 2012, 22(23), 7194-7197.
[http://dx.doi.org/10.1016/j.bmcl.2012.09.049] [PMID: 23067551]
[131]
Chen, J.; Wu, Y.; Zou, J.; Gao, K. α-Glucosidase inhibition and antihyperglycemic activity of flavonoids from Ampelopsis grossedentata and the flavonoid derivatives. Bioorg. Med. Chem., 2016, 24(7), 1488-1494.
[http://dx.doi.org/10.1016/j.bmc.2016.02.018] [PMID: 26922036]
[132]
Qin, N.; Chen, Y.; Jin, M-N.; Zhang, C.; Qiao, W.; Yue, X-L.; Duan, H-Q.; Niu, W-Y. Anti-obesity and anti-diabetic effects of flavonoid derivative (Fla-CN) via microRNA in high fat diet induced obesity mice. Eur. J. Pharm. Sci., 2016, 82, 52-63.
[http://dx.doi.org/10.1016/j.ejps.2015.11.013] [PMID: 26598088]
[133]
Ahrén, B. DPP-4 inhibitors. Best Pract. Res. Clin. Endocrinol. Metab., 2007, 21(4), 517-533.
[http://dx.doi.org/10.1016/j.beem.2007.07.005] [PMID: 18054733]
[134]
Meng, X.; Cai, Z.; Hao, Q.; Lin, K.; Zhou, X.; Zhou, W. Design, synthesis and dipeptidyl peptidase 4 inhibition of novel aminomethyl biaryl derivatives. Curr. Enzym. Inhib., 2017, 13(3), 191-203.
[http://dx.doi.org/10.2174/1573408013666161121161130]
[135]
Kalhotra, P.; Chittepu, V.C.S.R.; Osorio-Revilla, G.; Gallardo-Velázquez, T. Structure–activity relationship and molecular docking of natural product library reveal Chrysin as a novel dipeptidyl peptidase-4 (DPP-4) inhibitor: An integrated in silico and in vitro study. Molecules, 2018, 23(6), 1368.
[http://dx.doi.org/10.3390/molecules23061368] [PMID: 29882783]
[136]
Kalhotra, P.; Chittepu, V.C.S.R.; Osorio-Revilla, G.; Gallardo-Velázquez, T. Discovery of galangin as a potential DPP-4 inhibitor that improves insulin-stimulated skeletal muscle glucose uptake: A combinational therapy for diabetes. Int. J. Mol. Sci., 2019, 20(5), 1228.
[http://dx.doi.org/10.3390/ijms20051228] [PMID: 30862104]
[137]
Zhang, L.; Zhang, S-T.; Yin, Y-C.; Xing, S.; Li, W-N.; Fu, X-Q. Hypoglycemic effect and mechanism of isoquercitrin as an inhibitor of dipeptidyl peptidase-4 in type 2 diabetic mice. RSC Advances, 2018, 8(27), 14967-14974.
[http://dx.doi.org/10.1039/C8RA00675J]
[138]
Anand, P.; Singh, B.; Singh, N. A review on coumarins as acetylcholinesterase inhibitors for Alzheimer’s disease. Bioorg. Med. Chem., 2012, 20(3), 1175-1180.
[http://dx.doi.org/10.1016/j.bmc.2011.12.042] [PMID: 22257528]
[139]
Masondo, N.; Stafford, G.; Aremu, A.; Makunga, N. Acetylcholinesterase inhibitors from southern African plants: An overview of ethnobotanical, pharmacological potential and phytochemical research including and beyond Alzheimer’s disease treatment. S. Afr. J. Bot., 2019, 120, 39-64.
[http://dx.doi.org/10.1016/j.sajb.2018.09.011]
[140]
Li, R-S.; Wang, X-B.; Hu, X-J.; Kong, L-Y. Design, synthesis and evaluation of flavonoid derivatives as potential multifunctional acetylcholinesterase inhibitors against Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2013, 23(9), 2636-2641.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.095] [PMID: 23511019]
[141]
Luo, W.; Wang, T.; Hong, C.; Yang, Y.C.; Chen, Y.; Cen, J.; Xie, S.Q.; Wang, C.J. Design, synthesis and evaluation of 4-dimethylamine flavonoid derivatives as potential multifunctional anti-Alzheimer agents. Eur. J. Med. Chem., 2016, 122, 17-26.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.022] [PMID: 27343850]
[142]
Luo, W.; Chen, Y.; Wang, T.; Hong, C.; Chang, L-P.; Chang, C-C.; Yang, Y-C.; Xie, S-Q.; Wang, C-J. Design, synthesis and evaluation of novel 7-aminoalkyl-substituted flavonoid derivatives with improved cholinesterase inhibitory activities. Bioorg. Med. Chem., 2016, 24(4), 672-680.
[http://dx.doi.org/10.1016/j.bmc.2015.12.031] [PMID: 26752094]
[143]
Singh, M.; Silakari, O. Design, synthesis and biological evaluation of novel 2-phenyl-1-benzopyran-4-one derivatives as potential poly-functional anti-Alzheimer’s agents. RSC Advances, 2016, 6(110), 108411-108422.
[http://dx.doi.org/10.1039/C6RA17678J]
[144]
Singh, M.; Kaur, M.; Vyas, B.; Silakari, O. Design, synthesis and biological evaluation of 2-Phenyl-4H-chromen-4-one derivatives as polyfunctional compounds against Alzheimer’s disease. Med. Chem. Res., 2018, 27(2), 520-530.
[http://dx.doi.org/10.1007/s00044-017-2078-4]
[145]
Basha, S.J.; Mohan, P.; Yeggoni, D.P.; Babu, Z.R.; Kumar, P.B.; Rao, A.D.; Subramanyam, R.; Damu, A.G. New flavone-cyanoacetamide hybrids with a combination of cholinergic, antioxidant, modulation of β-amyloid aggregation, and neuroprotection properties as innovative multifunctional therapeutic candidates for Alzheimer’s disease and unraveling their mechanism of action with acetylcholinesterase. Mol. Pharm., 2018, 15(6), 2206-2223.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00041] [PMID: 29745222]
[146]
Faraji, L.; Nadri, H.; Moradi, A.; Bukhari, S.N.A.; Pakseresht, B.; Moghadam, F.H.; Moghimi, S.; Abdollahi, M.; Khoobi, M.; Foroumadi, A. Aminoalkyl-substituted flavonoids: Synthesis, cholinesterase inhibition, β-amyloid aggregation, and neuroprotective study. Med. Chem. Res., 2019, 28(7), 974-983.
[http://dx.doi.org/10.1007/s00044-019-02350-4]
[147]
Medhurst, A.D.; Atkins, A.R.; Beresford, I.J.; Brackenborough, K.; Briggs, M.A.; Calver, A.R.; Cilia, J.; Cluderay, J.E.; Crook, B.; Davis, J.B.; Davis, R.K.; Davis, R.P.; Dawson, L.A.; Foley, A.G.; Gartlon, J.; Gonzalez, M.I.; Heslop, T.; Hirst, W.D.; Jennings, C.; Jones, D.N.; Lacroix, L.P.; Martyn, A.; Ociepka, S.; Ray, A.; Regan, C.M.; Roberts, J.C.; Schogger, J.; Southam, E.; Stean, T.O.; Trail, B.K.; Upton, N.; Wadsworth, G.; Wald, J.A.; White, T.; Witherington, J.; Woolley, M.L.; Worby, A.; Wilson, D.M. GSK189254, a novel H3 receptor antagonist that binds to histamine H3 receptors in Alzheimer’s disease brain and improves cognitive performance in preclinical models. J. Pharmacol. Exp. Ther., 2007, 321(3), 1032-1045.
[http://dx.doi.org/10.1124/jpet.107.120311] [PMID: 17327487]
[148]
Wen, G.; Liu, Q.; Hu, H.; Wang, D.; Wu, S. Design, synthesis, biological evaluation, and molecular docking of novel flavones as H3 R inhibitors. Chem. Biol. Drug Des., 2017, 90(4), 580-589.
[http://dx.doi.org/10.1111/cbdd.12981] [PMID: 28328173]
[149]
Liu, T-T.; Huo, X-K.; Tian, X-G.; Liang, J-H.; Yi, J.; Zhang, X-Y.; Zhang, S.; Feng, L.; Ning, J.; Zhang, B-J.; Sun, C.P.; Ma, X.C. Demethylbellidifolin isolated from Swertia bimaculate against human carboxylesterase 2: Kinetics and interaction mechanism merged with docking simulations. Bioorg. Chem., 2019, 90, 103101
[http://dx.doi.org/10.1016/j.bioorg.2019.103101] [PMID: 31291611]
[150]
Wang, D-D.; Zou, L-W.; Jin, Q.; Hou, J.; Ge, G-B.; Yang, L. Recent progress in the discovery of natural inhibitors against human carboxylesterases. Fitoterapia, 2017, 117, 84-95.
[http://dx.doi.org/10.1016/j.fitote.2017.01.010] [PMID: 28126414]
[151]
Liu, Y-J.; Li, S-Y.; Hou, J.; Liu, Y-F.; Wang, D-D.; Jiang, Y-S.; Ge, G-B.; Liang, X-M.; Yang, L. Identification and characterization of naturally occurring inhibitors against human carboxylesterase 2 in White Mulberry Root-bark. Fitoterapia, 2016, 115, 57-63.
[http://dx.doi.org/10.1016/j.fitote.2016.09.022] [PMID: 27702666]
[152]
Weng, Z-M.; Ge, G-B.; Dou, T-Y.; Wang, P.; Liu, P-K.; Tian, X-H.; Qiao, N.; Yu, Y.; Zou, L-W.; Zhou, Q.; Zhang, W.D.; Hou, J. Characterization and structure-activity relationship studies of flavonoids as inhibitors against human carboxylesterase 2. Bioorg. Chem., 2018, 77, 320-329.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.011] [PMID: 29421708]
[153]
Song, S-S.; Sun, C-P.; Zhou, J-J.; Chu, L. Flavonoids as human carboxylesterase 2 inhibitors: Inhibition potentials and molecular docking simulations. Int. J. Biol. Macromol., 2019, 131, 201-208.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.03.060] [PMID: 30872054]
[154]
Sun, Z-G.; Zhou, X-J.; Zhu, M-L.; Ding, W-Z.; Li, Z.; Zhu, H-L. Synthesis and biological evaluation of novel aryl-2H-pyrazole derivatives as potent non-purine xanthine oxidase inhibitors. Chem. Pharm. Bull. (Tokyo), 2015, 63(8), 603-607.
[http://dx.doi.org/10.1248/cpb.c15-00282] [PMID: 26040271]
[155]
Mehmood, A.; Ishaq, M.; Zhao, L.; Safdar, B.; Rehman, A.U.; Munir, M.; Raza, A.; Nadeem, M.; Iqbal, W.; Wang, C. Natural compounds with xanthine oxidase inhibitory activity: A review. Chem. Biol. Drug Des., 2019, 93(4), 387-418.
[http://dx.doi.org/10.1111/cbdd.13437] [PMID: 30403440]
[156]
Santi, M.D.; Paulino Zunini, M.; Vera, B.; Bouzidi, C.; Dumontet, V.; Abin-Carriquiry, A.; Grougnet, R.; Ortega, M.G. Xanthine oxidase inhibitory activity of natural and hemisynthetic flavonoids from Gardenia oudiepe (Rubiaceae) in vitro and molecular docking studies. Eur. J. Med. Chem., 2018, 143, 577-582.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.071] [PMID: 29207340]
[157]
Xiao, C-M.; Jia, X-H.; Du, H-F.; Zhao, H-X.; Du, C-L.; Tang, W-Z.; Wang, X-J. Three new C-geranylated flavonoids from Paulownia catalpifolia T. Gong ex DY Hong seeds with their inhibitory effects on xanthine oxidase. Phytochem. Lett., 2020, 36, 162-165.
[http://dx.doi.org/10.1016/j.phytol.2020.02.002]
[158]
Administration, U.S.F.A.D. Coronavirus (COVID-19) Update: FDA Issues Emergency Use Authorization for Potential COVID19 Treatment. Available from: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-issues-emergency-use-authorization-potential-covid-19-treatment[Accessed on June 9, 2020].

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy